Skip to main content
Log in

Analysis of Time-Fractional \(\phi ^{4}\)-Equation with Singular and Non-Singular Kernels

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, we investigate the nonlinear time-fractional \(\phi ^{4}\)-equation under Caputo, Caputo-Fabrizio, and Atangana-Baleanu in Caputo’s sense. The modified double Laplace decomposition method is applied to study the proposed model under the aforementioned operators. The suggested approach is the combination of double Laplace and decomposition methods. It is observed that, the obtained series solutions of the system with considered fractional derivatives converges to the exact solution. A numerical example is presented with corresponding numerical simulations to demonstrate and validate the efficiency of the proposed technique. The error analysis of the considered equation with all considered operators is presented in the form of the tables. The physical behaviors of the obtained solutions with different fractional orders are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data Availibility Statement

The data that support the findings of this study are available from the corresponding author.

References

  1. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  2. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science, Yverdon, Switzerland (1993)

    MATH  Google Scholar 

  3. AKilbas, Srivastava, H.M, and Trujillo, J. J.: Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud, 204, (2006)

  4. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    Article  MATH  Google Scholar 

  6. Podlubny, I.: Fractional Differential Equations. Academic, NewYork (1999)

    MATH  Google Scholar 

  7. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic, New York (1974)

    MATH  Google Scholar 

  8. De la Sen, M., Deniz, S., H. : Sözen A new efficient technique for solving modified Chua’s circuit model with a new fractional operator. Adv. Diff. Equ. 2021(1), 1–16 (2021)

  9. Kumar, D., Singh, J., Al Qurashi, M., Baleanu, D.: Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel. Adv. Mech. Eng. 9(2), 16878140–17690069 (2017)

    Article  Google Scholar 

  10. Saad, K..M., Atangana, A., Baleanu, D.: New fractional derivatives with non-singular kernel applied to the Burgers equation. Chaos. 28(6), 063109 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Akram, T., Abbas, M., Ali, A., Iqbal, A., Baleanu, D.: A numerical approach of a time fractional reaction–diffusion model with a non-singular kernel. Symmetry 12(10), 1653 (2020)

    Article  Google Scholar 

  12. Bildik, N., Deniz, S.: A comparative study on solving fractional cubic isothermal auto-catalytic chemical system via new efficient technique. Chaos Solitons Fractals. 132, 109555 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ibrahim, R.W., Darus, M.: Infective disease processes based on fractional diferential equation. Proceedings of ICMS. (2013)

  14. Ibrahim, R.W., Darus, M.: Diferential operator generalized by fractional derivatives. Miskolc Math. Notes 12, 167–184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Darus, M., Ibrahim, R.W.: On classes of analytic functions containing generalization of integral operator. J. Indones. Math. Soc. 17, 29–38 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Tarasov, V.E.: Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives. Fundam. Inform. 151, 431–442 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tarasova, V.V., Tarasov, V.E.: Economic interpretation of fractional derivatives. Prog. Fract. Differ. Appl. 3(1), 1–6 (2017)

    Article  Google Scholar 

  18. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  19. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586–1593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41, 9–12 (2010)

    Article  MATH  Google Scholar 

  21. Atangana, A., Gömez-Aguilar, J.F.: Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu. Numer. Methods Partial Differ. Equ. 34, 1502–1523 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Furati, K.M., Kassim, M.D., Tatar, N.T.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64, 1616–1626 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Veeresha, P., Prakasha, D.G., Baskonus, H.M.: New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives. Chaos solitons fract. 29, 013119 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Caputo, M.: Linear model of dissipation whose Q is almost frequency independent. II Geophys. J. Int. 13, 529–539 (1967)

    Article  Google Scholar 

  25. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  26. Atangana, A., Gómez-Aguilar, J.F.: A new derivative with normal distribution kernel: theory, methods and applications. Physica A. 476, 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  27. Bashiri, T., Vaezpour, S.M., Nieto, J.J.: Approximating solution of Fabrizio-Caputo Volterra’s model for population growth in a closed system by homotopy analysis method. J. Funct. Spaces. 2018,(2018)

  28. Dokuyucu, M.A., Celik, E., Bulut, H., Baskonu, H.M.: Cancer treatment model with the Caputo-Fabrizio fractional derivative. Eur. Phys. J. Plus. 133, 1–6 (2018)

    Google Scholar 

  29. Rice, M.J.: Charged \(\pi \)-phase kinks in lightly doped polyacetyline. Phys. Lett. A. 71, 152–154 (1979)

    Article  Google Scholar 

  30. Su, W.P., Schrieffer, J.R., Heeger, A.J.: Solitons in Polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979)

    Article  Google Scholar 

  31. Bishop, A.R., Schneider, T.: Solitons and condensed matter physics. Springer, Newyork (1978)

    Book  MATH  Google Scholar 

  32. Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61(4), 763 (1989)

    Article  Google Scholar 

  33. Dashen, R.F., Hasslacher, B., Neveu, A.: Particle spectrum in model field theories from semi-classical functional integral technique. Phys. Rev. D. 11, 3424–3450 (1975)

    Article  Google Scholar 

  34. Wazwaz, A.M.: Generalized forms of the phi-four equation with compactons, solitons and periodic solutions. Math. Comput. Simul. 69, 580–588 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kurulay, M.: Solving the fractional nonlinear Klein-Gordon equation by means of the homotopy analysis method. Adv. Differ. Equ. 187, 2012 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Khan, K., Khan, Z., Ali, A., Irfan, M.: Investigation of Hirota equation: Modified double Laplace decomposition method. Physica Scripta 96, 104006 (2021)

    Article  Google Scholar 

  37. Damil, N., Potier-Ferry, M., Najah, A., Chari, R., Lahmam, H.: An iterative method based upon Padé approximamants. Commun. Numer. Meth. Engg. 15, 701–708 (1999)

    Article  MATH  Google Scholar 

  38. Liu, G.L.: New Research Directions in Singular Perturbation Theory: Artificial Parameter Approach and Inverse Perturbation Technique, Proc. 7th Conf. of the Mod. Maths. and Mech., Shanghai, 47-53 (1997)

  39. Deniz, S., Konuralp, A., M. : De la Sen Optimal perturbation iteration method for solving fractional model of damped Burgers’ equation. Symmetry 12(6),(2020)

  40. Cadou, J.M., Moustaghfir, N., Mallil, E.H., Damil, N., Potier-Ferry, M.: Linear iterative solvers based on pertubration techniques. C. R. Acad. Sci. 329, 457–462 (2001)

    Google Scholar 

  41. Mallil, E., Lahmam, H., Damil, N., Potier-Ferry, N.: An iterative process based on Homotopy and perturbation techniques. Comput. Methods in Appl. Mech. Eng. 190, 1845–1858 (2000)

    Article  MATH  Google Scholar 

  42. Adomian, G.: Solving frontier problems of physics: the decomposition method in Fundamental Theories of Physics. Kluwer. Acad. Publ. Springer/Plenum 60, 6–195 (1994)

    Google Scholar 

  43. Ali, A., Gul, Z., Khan, W.A., Ahmad, S., Zeb, S.: Investigation of fractional order sine-gordon equation using laplace adomian decomposition method. Fractals 29(5), 2150121 (2021)

    Article  Google Scholar 

  44. Majid, K., Hussain, M., Hossein, J., Yasir, K.: Application of Laplace decomposition method to solve nonlinear coupled partial differential equations. World Appl Sci J. 9, 13–19 (2010)

    Google Scholar 

  45. Majid, K., Muhammed, A.G.: Application of Laplace decomposition to solve nonlinear partial differential equations. Int. J. Adv. Comput. Sci. Appl. 2, 52–62 (2010)

    MathSciNet  Google Scholar 

  46. Hosseinzadeh, H., Jafari, H., Roohani, M.: Application of Laplace decomposition method for solving Klein-Gordon equation. World Appl. Sci. J. 8, 809–813 (2010)

    Google Scholar 

  47. jafari, H., Nazari, M., Baleanu, D., Khalique, C.M.: A new approach for solving a system of fractional partial differential equations. Comput. Math. Appl. 66(5), 838–843 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, L., Ma, Y., Meng, Z.: Haar wavelet method for solving fractional partial differential equations numerically. Appl. Math. Comput. 227, 66–76 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Fu, Z., Chen, W., Yang, H.: Boundary particle method for laplace transformed time fractional diffusion equations, academic press professional. Inc. USA 235, 52–66 (2013)

    Google Scholar 

  50. Jafari, H., Seifi, S.: Solving a system of nonlinear fractional partial differential equations using homotopy analysis method. J. Nonlinear Sci. Numer. Simul. 14, 1962–1969 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Gupta, A., Ray, S.S.: Numerical treatment for the solution of fractional fifth-order Sawada-Kotera equation using second kind Chebyshev wavelet method. J. Appl. Math. Model. 39, 5121–5130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wazwaz, A.-M.: The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations. Comput. Math. with Appl. 54, 926–932 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Baseri, A., Babolian, E., Abbasbandy, S.: Normalized Bernstein polynomials in solving space-time fractional diffusion equation. Adv. Differ. Equ. 2017(1), 1–25 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Srivastava, H.M., Deniz, S., Saad, K.M.: An efficient semi-analytical method for solving the generalized regularized long wave equations with a new fractional derivative operator. J. King Saud Univ. Sci. 33(2), 101345 (2021)

    Article  Google Scholar 

  55. Tang, Z., Fu, Z., Sun, H., Liu, X.: An efficient localized collocation solver for anomalous diffusion on surfaces. Fract. Calc. Appl. Anal. 24, 865–894 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  56. Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Progr Fract Differ Appl. 1, 87–92 (2015)

    Google Scholar 

  57. Sneddon, I.N.: The use of integral transforms. Tata McGraw Hill Edition (1974)

  58. Adomian, G.: Modification of the decomposition approach to heat equation. J. Math. Anal. Appl. 124, 290–291 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors confirm that, there is no funding source/body to support this manuscript financially.

Author information

Authors and Affiliations

Authors

Contributions

It is also declared that all the authors have equal contribution in the manuscript. Furthermore, the authors have checked and approved the final version of the manuscript.

Corresponding author

Correspondence to Amir Ali.

Ethics declarations

Conflicts of interest

It is declared that all the authors have no conflict of interest regarding this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, F., Ali, A. & Saifullah, S. Analysis of Time-Fractional \(\phi ^{4}\)-Equation with Singular and Non-Singular Kernels. Int. J. Appl. Comput. Math 7, 192 (2021). https://doi.org/10.1007/s40819-021-01128-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01128-w

Keywords

Navigation