Skip to main content

Advertisement

Log in

Investigation of Cattaneo–Christov Double Diffusions Theory in Bioconvective Slip Flow of Radiated Magneto-Cross-Nanomaterial Over Stretching Cylinder/Plate with Activation Energy

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The present exploration examines the Cattaneo–Christov double diffusions theory in magneto-Cross nanomaterial flow conveying gyrotactic microorganisms over an extending horizontal cylinder/plate under the aspects of velocity slippage, and activation energy with chemically reacting features. The phenomena of thermophoresis, Brownian movement, and thermal radiation are also incorporated. Utilization of the adopted similarity transformations makes it convenient to transform our governing nonlinear higher-order coupled PDEs into ODEs which are further solved numerically by adopting well-known MATLAB function bvp4c. The quantitative outcomes of emerging thermo-physical and geometrical parameters on the associated non-dimensional profiles of interest are anatomized via requisite graphs and numerically erected tabular forms. It is detected that fluid velocity components decline due to upgraded magnetic field and velocity slippage parameter. When thermal time relaxation parameter varies from 0.0 to 0.9, Nusselt number augments about \(22.02\%\) for cylindrical surface and about \(23.61\%\) for plate surface. Likewise, with the same variations in thermal time relaxation parameter Sherwood number increases about \(17.32\%\) for cylindrical surface and about \(18.24\%\) for plate surface. Moreover, comparative exploration of the emerging flow features over a flat plate, and cylindrical surface is reported. It is visualized that flat plate offers less temperature than cylindrical surface when flow occurs. The results would offer primary guidance for many industrial, biological, medical and ecological challenges, for instance, bio-fuel, bio-diesel, ethanol, biological tissues, bio-fertilizers, bio-micro-systems, reproduction, infection, and marine life ecosystems, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bird, R.: Useful non-newtonian models. Annu. Rev. Fluid Mech. 8(11), 13–34 (2003)

    Google Scholar 

  2. Khan, M., Manzur, M., Rahman, M.: Boundary layer flow and heat transfer of cross fluid over a stretching sheet, Thermal Sci. 23(9). https://doi.org/10.2298/TSCI160919111K

  3. Cross, M.M.: Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J. Colloid Sci. 20(5), 417–437 (1965)

    Article  Google Scholar 

  4. Hayat, T., Khan, M.I., Tamoor, M., Waqas, M., Alsaedi, A.: Numerical simulation of heat transfer in MHD stagnation point flow of cross fluid model towards a stretched surface. Results Phys. 7, 1824–1827 (2017)

    Article  Google Scholar 

  5. Khan, W.A., Ali, M., Shahzad, M., Sultan, F., Irfan, M., Asghar, Z.: A note on activation energy and magnetic dipole aspects for cross nanofluid subjected to cylindrical surface. Appl. Nanosci. 10(11), 3235–3244 (2019). https://doi.org/10.1007/s13204-019-01220-0

    Article  Google Scholar 

  6. Naz, R., Noor, M., Hayat, T., Javed, M., Alsaedi, A.: Dynamism of magnetohydrodynamic cross nanofluid with particulars of entropy generation and gyrotactic motile microorganisms. Int. Commun. Heat Mass Transf. 110(11), 104431 (2019)

    Google Scholar 

  7. Hina, S., Shafique, A., Mustafa, M.: Numerical simulations of heat transfer around a circular cylinder immersed in a shear-thinning fluid obeying Cross model. Physica A 540(15), 123184 (2020)

    Article  MathSciNet  Google Scholar 

  8. Shahzad, M., Ali, M., Sultan, F., Khan, W.A., Hussain, Z.: Computational investigation of magneto-cross fluid flow with multiple slip along wedge and chemically reactive species. Results Phys. 16(1), 102972 (2020)

    Article  Google Scholar 

  9. Kim, S.K.: Forced convection heat transfer for the fullydeveloped laminar flow of the cross fluid between parallel plates. J. Nonnewton. Fluid Mech. 276(1), 104226 (2020)

    Article  Google Scholar 

  10. Hosseinzadeh, K., Roghani, S., Mogharrebi, A.R., Asadi, A., Waqas, M., Ganji, D.D.: Investigation of cross-fluid flow containing motile gyrotactic microorganisms and nanoparticles over a three-dimensional cylinder. Alex. Eng. J. 59(5), 3297–3307 (2020). https://doi.org/10.1016/j.aej.2020.04.037

    Article  Google Scholar 

  11. Choi, S.U.S.: Enhancing thermal conductivity of fluid with nanoparticales. Develop. Appl. Non-Newtonian Flows 66, 99–105 (1995)

    Google Scholar 

  12. Khan, M.I., Alzahrani, F.: Free convection and radiation effects in nanofluid (silicon dioxide and molybdenum disulfide) with second order velocity slip, entropy generation, Darcy–Forchheimer porous medium. Int. J. Hydrogen Energy 46(1), 1362–1369 (2021). https://doi.org/10.1016/j.ijhydene.2020.09.240

    Article  Google Scholar 

  13. Khan, M.: Transportation of hybrid nanoparticles in forced convective Darcy-Forchheimer flow by a rotating disk. Int. Commun. Heat Mass Transf. 122(3), 105177 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105177

    Article  Google Scholar 

  14. Khan, M., Alzahrani, F.: Nonlinear dissipative slip flow of Jeffrey nanomaterial towards a curved surface with entropy generation and activation energy. Math. Comput. Simul. 185(07), 47–61 (2021). https://doi.org/10.1016/j.matcom.2020.12.004

    Article  MathSciNet  MATH  Google Scholar 

  15. Nayak, M., Hakeem, A.A., Ganga, B., Khan, M.I., Waqas, M., Makinde, O.: Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: a combined approach to good absorber of solar energy and intensification of heat transport. Comput. Methods Program. Biomed. 186, 105131 (2020). https://doi.org/10.1016/j.cmpb.2019.105131

    Article  Google Scholar 

  16. Ibrahim, M., Khan, M.I.: Mathematical modeling and analysis of SWCNT-water and MWCNT-water flow over a stretchable sheet. Comput. Methods Program. Biomed. 187, 105222 (2020). https://doi.org/10.1016/j.cmpb.2019.105222

    Article  Google Scholar 

  17. Khan, M.I., Alzahrani, F.: Entropy optimized magnetohydrodynamics Darcy-Forchheimer second order velocity slip flow of nanomaterials between two stretchable disks. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 234(21), 4190–4199 (2020). https://doi.org/10.1177/0954406220920317

    Article  Google Scholar 

  18. Kuznetsov, A., Avramenko, A.: Effect of small particles on the stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth. Int. Commun. Heat Mass Transf. 31(01), 1–10 (2004)

    Article  Google Scholar 

  19. Sokolov, A., Goldstein, R., Feldchtein, F., Igor, S.: Enhanced mixing and spatial instability in concentrated bacterial suspensions. Phys. Rev. E 80(9), 031903 (2009)

    Article  Google Scholar 

  20. Siddiqa, S., Sulaiman, M., Hossain, M.A., Islam, S., Gorla, R.S.: Gyrotactic bioconvection flow of a nanofluid past a vertical wavy surface. Int. J. Therm. Sci. 108(5), 244–250 (2016)

    Article  Google Scholar 

  21. Sk, M., Das, K., Kundu, P.: Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles. J. Mol. Liq. 220(8), 518–526 (2016)

    Article  Google Scholar 

  22. De, P.: Impact of dual solutions on nanofluid containing motile gyrotactic micro-organisms with thermal radiation, BioNanoScience 9(12). https://doi.org/10.1007/s12668-018-0584-6

  23. Ferdows, M., Reddy, M.G., Sun, S., Alzahrani, F.: Two-dimensional gyrotactic microorganisms flow of hydromagnetic power law nanofluid past an elongated sheet. Adv. Mech. Eng. 11(11), 1–17 (2019). https://doi.org/10.1177/1687814019881252

    Article  Google Scholar 

  24. Khan, W., Rashad, A., Abdou, M.M.M., Tlili, I.: Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone. Eur. J. Mech.-B/Fluids 75, 133–142 (2019). https://doi.org/10.1016/j.euromechflu.2019.01.002

    Article  MathSciNet  Google Scholar 

  25. Khan, M., Alzahrani, F., Hobiny, A.: Heat transport and nonlinear mixed convective nanomaterial slip flow of Walter-B fluid containing gyrotactic microorganisms. Alex. Eng. J. 59(3), 1761–1769 (2020). https://doi.org/10.1016/j.aej.2020.04.042

    Article  Google Scholar 

  26. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3(01), 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  27. Christov, C.: On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36(06), 481–486 (2009)

    Article  MathSciNet  Google Scholar 

  28. Straughan, B.: Thermal convection with the Cattaneo–Christov model. Int. J. Heat Mass Transf. 53(01), 95–98 (2010)

    Article  Google Scholar 

  29. Tibullo, V., Zampoli, V.: A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech. Res. Commun. 38, 77–79 (2011)

    Article  Google Scholar 

  30. Han, S., Zheng, L., Li, C., Zhang, X.: Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Appl. Math. Lett. 38(12), 87–93 (2014)

    Article  MathSciNet  Google Scholar 

  31. Hayat, T., Khan, M., Farooq, M., Waqas, M., Alsaedi, A., Yasmeen, T.: Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 99(4), 702–710 (2016)

    Article  Google Scholar 

  32. Sohail, M., Naz, R.: Modified heat and mass transmission models in the magnetohydrodynamic flow of sutterby nanofluid in stretching cylinder. Physica A 549, 124088 (2020). https://doi.org/10.1016/j.physa.2019.124088

    Article  MathSciNet  Google Scholar 

  33. Khan, M.I., Alzahrani, F., Hobiny, A., Ali, Z.: Modeling of Cattaneo–Christov double diffusions (CCDD) in Williamson nanomaterial slip flow subject to porous medium. J. Market. Res. 9(3), 6172–6177 (2020). https://doi.org/10.1016/j.jmrt.2020.04.019

    Article  Google Scholar 

  34. Khan, M., Alzahrani, F.: Cattaneo–Christov double diffusion (CCDD) and magnetized stagnation point flow of non-Newtonian fluid with internal resistance of particles. Phys. Scr. 95(11), 125002 (2020). https://doi.org/10.1088/1402-4896/abc0c2

    Article  Google Scholar 

  35. Mehmood, Y., Sagheer, M., Hussain, S., Bilal, M.: MHD stagnation point flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Neural Comput. Appl. 30, 2979–2986 (2018). https://doi.org/10.1007/s00521-017-2902-2

    Article  Google Scholar 

  36. Hayat, T., Khan, S., Khan, M., Momani, S., Alsaedi, A.: Cattane–Christov (cc) heat flux model for nanomaterial stagnation point flow of Oldroyd-b fluid. Comput. Methods Programs Biomed. 187(12), 105247 (2019)

    Google Scholar 

  37. Ahmad, I., Aziz, S., Khan, S., Ali, N.: Periodically moving surface in an Oldroyd-B fluid with variable thermal conductivity and Cattaneo–Christov heat flux features. Heat Transf.-Asian Res. 49(6), 3246–3266 (2020). https://doi.org/10.1002/htj.21772

    Article  Google Scholar 

  38. Ahmad, S., Nadeem, P.D.S., Muhammad, N., Khan, M.: Cattaneo–Christov heat flux model for stagnation point flow of micropolar nanofluid toward a nonlinear stretching surface with slip effects. J. Therm. Anal. Calorim. 143(3), 1187–1199 (2020). https://doi.org/10.1007/s10973-020-09504-2

    Article  Google Scholar 

  39. Khan, M., Alzahrani, F.: Transportation of heat through Cattaneo–Christov heat flux model in non-Newtonian fluid subject to internal resistance of particles. Appl. Math. Mech. 41, 1157–1166 (2020). https://doi.org/10.1007/s10483-020-2641-9

    Article  MathSciNet  Google Scholar 

  40. Bestman, A.: Natural convection boundary layer with suction and mass transfer in a porous medium. Int. J. Energy Res. 14(05), 389–396 (1990)

    Article  Google Scholar 

  41. Makinde, O.D., Olanrewaju, P.O., Charles, W.M.: Unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving through a binary mixture. Afr. Mat. 22(04), 65–78 (2011)

    Article  MathSciNet  Google Scholar 

  42. Kumar, R.V.M.S.S.K., Kumar, G.V., Raju, C.S.K., Shehzad, S.A., Varma, S.V.K.: Analysis of Arrhenius activation energy in magnetohydrodynamic Carreau fluid flow through improved theory of heat diffusion and binary chemical reaction. J. Phys. Commun. 2(3), 035004 (2018). https://doi.org/10.1088/2399-6528/aaafff

    Article  Google Scholar 

  43. Khan, M., Qayyum, S., Kadry, S., Khan, W., Abbas, S.: Irreversibility analysis and heat transport in squeezing nanoliquid flow of non-Newtonian (second-grade) fluid between infinite plates with activation energy. Arab. J. Sci. Eng. 45, 4939–4947 (2020). https://doi.org/10.1007/s13369-020-04442-5

    Article  Google Scholar 

  44. Ijaz Khan, M., Haq, F., Khan, S.A., Hayat, T., Imran Khan, M.: Development of thixotropic nanomaterial in fluid flow with gyrotactic microorganisms, activation energy, mixed convection. Comput. Methods Programs Biomed. 187, 105186 (2020)

    Article  Google Scholar 

  45. Irfan, M., Khan, W., Khan, M., Waqas, M.: Evaluation of Arrhenius activation energy and new mass flux condition in Carreau nanofluid: dual solutions. Appl. Nanosci. 10(06), 5279–5289 (2020). https://doi.org/10.1007/s13204-020-01449-0

    Article  Google Scholar 

  46. Azam, M., Xu, T., Shakoor, A., Khan, M.: Effects of Arrhenius activation energy in development of covalent bonding in axisymmetric flow of radiative-cross nanofluid. Int. Commun. Heat Mass Transf. 113(04), 104547 (2020)

    Article  Google Scholar 

  47. Khan, M., Alzahrani, F.: Entropy-optimized dissipative flow of Carreau–Yasuda fluid with radiative heat flux and chemical reaction. Eur. Phys. J. Plus 135, 516 (2020). https://doi.org/10.1140/epjp/s13360-020-00532-3

    Article  Google Scholar 

  48. Khan, M., Alzahrani, F.: Activation energy and binary chemical reaction effect in nonlinear thermal radiative stagnation point flow of Walter-B nanofluid: Numerical computations. Int. J. Mod. Phys. B 34(5), 2050132 (2020). https://doi.org/10.1142/S0217979220501325

    Article  MathSciNet  MATH  Google Scholar 

  49. Khan, M.I., Alzahrani, F.: Dynamics of activation energy and nonlinear mixed convection in Darcy–Forchheimer radiated flow of Carreau nanofluid near stagnation point region. J. Thermal Sci. Eng. Appl. 13(5), 051009 (2021). https://doi.org/10.1115/1.4049434

    Article  Google Scholar 

  50. Khan, M.I., Alzahrani, F.: Binary chemical reaction with activation energy in dissipative flow of non-Newtonian nanomaterial. J. Theor. Comput. Chem. 19(3), 2040006 (2020). https://doi.org/10.1142/S0219633620400064

    Article  Google Scholar 

  51. Khan, M.I., Alzahrani, F.: Numerical simulation for the mixed convective flow of non-Newtonian fluid with activation energy and entropy generation. Math. Methods Appl. Sci. 44(9), 7766–7777 (2021). https://doi.org/10.1002/mma.6919

    Article  MathSciNet  MATH  Google Scholar 

  52. Khan, M.I., Waqas, M., Hayat, T., Alsaedi, A.: A comparative study of Casson fluid with homogeneous-heterogeneous reactions. J. Colloid Interf. Sci. 498, 85–90 (2017). https://doi.org/10.1016/j.jcis.2017.03.024

    Article  Google Scholar 

  53. Sarkar, S., Jana, R., Das, S.: Activation energy impact on radiated magneto-Sisko nanofluid flow over a stretching and slipping cylinder: entropy analysis. Multidiscip. Model. Mater. Struct. 16(5), 1085–1115 (2020). https://doi.org/10.1108/MMMS-09-2019-0165

    Article  Google Scholar 

  54. Naz, R., Noor, M., Shah, Z., Sohail, M., Kumam, P., Thounthong, P.: Entropy generation optimization in MHD Pseudoplastic fluid comprising motile microorganisms with stratification effect. Alex. Eng. J. 59(1), 485–496 (2020). https://doi.org/10.1016/j.aej.2020.01.018

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to anonymous reviewers for their fruitful comments and constructive suggestions to improve our manuscript.

Funding

None

Author information

Authors and Affiliations

Authors

Contributions

A. Ali: Conceptualization, Methodology, Software, Visualization, Investigation, Writing–original draft, review & editing. S. Sarkar: Formal analysis, Investigation, Writing–original draft. S. Das: Conceptualization, Investigation, Writing–review & editing, Supervision. R.N. Jana: Conceptualization, Methodology, Investigation, Writing–review & editing, Supervision.

Corresponding author

Correspondence to Asgar Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Sarkar, S., Das, S. et al. Investigation of Cattaneo–Christov Double Diffusions Theory in Bioconvective Slip Flow of Radiated Magneto-Cross-Nanomaterial Over Stretching Cylinder/Plate with Activation Energy. Int. J. Appl. Comput. Math 7, 208 (2021). https://doi.org/10.1007/s40819-021-01144-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01144-w

Keywords

Navigation