Skip to main content
Log in

Analytic Solutions of Fractal and Fractional Time Derivative-Burgers–Nagumo Equation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The Nagumo equation describes a reaction–diffusion system in biology. Here, it is coupled to Burgers equation, via including convection, which is the Burgers–Nagumo equation (BNE). The first objective of this work is to present a theorem to reduce, approximately, the different versions of the fractional time derivatives (FTD) to an ordinary derivative (OD) with time dependent coefficients (non autonomous). The second objective is to find the exact solutions of the fractal and FTD-BNE is reduced to BNE with time dependent coefficient. Further similarity transformations are introduced. The unified and extended unified method are used to find the exact traveling waves solutions. Also, self-similar solutions are obtained. The novelties in this work are (i) reducing, via an analytic approximation, the different versions of FTD to non autonomous OD. (ii) Traveling and self-similar waves solutions of the FTD-BNE are derived. (iii) The effect of the order of fractional and fractal derivatives, on waves structure, are investigated. It is found that significant fractal effects hold for smaller order derivatives. While significant fractional effects hold for higher-order derivatives. It is found that, the solutions obtained show solitary wave, wrinkle soliton, solitons with double kinks or with spikes and undulated wave. Further It is shown that wrinkle soliton, with double kink configuration holds for smaller fractal order. While in the case of fractional derivative, this holds for higher orders. We mention that the results found here are completely new. Symbolic computations are carried by using Mathematica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

Not applicable.

References

  1. McKean, H.P.: Nagumo’s equation. Adv. Math. 4(3) 209–223 (1970)

  2. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  3. Tonnelier, A .: The McKean’s caricature of the FitzHugh–Nagumo model I. The space-clamped system. SIAM J. Appl. Math. 63(2), 459–484 (2003)

  4. Hodgkin, A.L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  5. FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17(4), 257–278 (1955)

    Article  Google Scholar 

  6. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  7. Yefimova, O.Yu., Kudryashov, N.A.: Exact solutions of the Burgers-Huxley equation. J. Appl. Math. Mech. 68(3), 413–420 (2004)

  8. Estévez, P.G.: Non-classical symmetries and the singular manifold method: the Burgers and the Burgers-Huxley equations. J. Phys. A 27, 2113–2127 (1994)

    Article  MathSciNet  Google Scholar 

  9. Estévez, P.G., Gordoa, P.R.: Nonclassical symmetries and the singular manifold method: theory and six examples. Stud. Appl. Math. 95, 73–113 (1995)

    Article  MathSciNet  Google Scholar 

  10. Nourazar, S.S., Soori, M., Nazari-Golshan, A.: On the exact solution of Burgers-Huxley equation using the homotopy perturbation method. J. Appl. Math. Phys. 3, 285–294 (2015)

    Article  Google Scholar 

  11. Katzengruber, B., Krupa, M., Szmolyan, P.: Bifurcation of traveling waves in extrinsic semiconductors. Physica D 144, 1–19 (2000)

    Article  MathSciNet  Google Scholar 

  12. Li, J.B., Dai, H.H.: On the Study of Singular Nonlinear Traveling Wave Equation: Dynamical System Approach. Science Press, Beijing (2007)

    Google Scholar 

  13. Chen, W.: Time-space fabric underlying anomalous diffusion. Chaos Solitons Fractals 28, 923–929 (2006)

    Article  Google Scholar 

  14. Chen, W., Ye, L., Sun, H.: Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 59, 1614–1620 (2010)

    Article  MathSciNet  Google Scholar 

  15. Sousa, E.: Finite difference approximations for a fractional advection diffusion problem. J. Comput. Phys. 228(11), 4038–4054 (2009)

    Article  MathSciNet  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  17. Atangana, A.: Convergence and stability analysis of a novel iteration method for fractional biological population equation. Neural Comput. Appl. 25(5), 1021–1030 (2014)

    Article  Google Scholar 

  18. Alibaud, N., Imbert, C., Karch, G.: Asymptotic properties of entropy solutions to fractal Burgers equation. SIAM J. Math. Anal. 42(1), 354–376 (2010)

    Article  MathSciNet  Google Scholar 

  19. Karch, G., Miao, C., Xu, X.: On convergence of solutions of fractal Burgers equation toward rarefaction waves. SIAM J. Math. Anal. 39(5), 1536–1549 (2008)

    Article  MathSciNet  Google Scholar 

  20. Chan, C.H., Czubak, M., Silvestre, L.: Eventual regularization of the slightly supercritical fractional Burgers equation. Discrete Contin. Dyn. Syst. 27(2), 847–861 (2010)

    Article  MathSciNet  Google Scholar 

  21. Syam, M.I., Abu, Obayda D., Alshamsi, W., Al-Wahashi, N., Alshehhi, M.: Generalized solutions of the fractional Burger’s equation. Res. Phys. 15, 102525 (2019)

  22. Xu, Y., Agrawal, O.P.: Numerical solutions and analysis of diffusion for new generalized fractional Burgers equation. Fract. Calc. Appl. Anal. 16(3), 709–736 (2013)

    Article  MathSciNet  Google Scholar 

  23. Wu, G.C., Baleanu, D.: Variational iteration method for the Burgers’ flow with fractional derivatives–new Lagrange multipliers. Appl. Math. Mod. 37(9), 6183–6190 (2013)

  24. Chen, Y., An, H.L.: Numerical solutions of coupled Burgers equations with time-and space-fractional derivatives. Appl. Math. Comput. 200(1), 87–95 (2008)

    Article  MathSciNet  Google Scholar 

  25. Nikan, O., Molavi-Arabshai, S.M., Jafari, H.: Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete Contin. Dyn. Syst. S 14(10), 3685–3701 (2021)

    Article  MathSciNet  Google Scholar 

  26. Nikan, O., Tenreiro Machado, J.A., Golbabai, A., Rashidinia, J.: Numerical evaluation of the fractional Klein–Kramers model arising in molecular dynamics. J. Comp. Phys. 428, 109983 (2021)

  27. Nikan, O., Avazzadeh, Z., Tenreiro Machado, J.A.: Numerical approximation of the nonlinear time-fractional telegraph equation arising in neutron transport. Commun. Nonlinear Sci. Numer. Simul. 99, 105755 (2021)

    Article  MathSciNet  Google Scholar 

  28. Nikan, O., Avazzadeh, Z., Tenreiro Machado, J.A.: A local stabilized approach for approximating the modified time-fractional diffusion problem arising in heat and mass transfer. J. Adv. Res. 32, 45–60 (2021).

  29. Nikan, O., Avazzadeh, Z.: An improved localized radial basis-pseudospectral method for solving fractional reaction–subdiffusion problem. Results Phys. 23, 104048 (2021)

    Article  Google Scholar 

  30. Jafari, H., Jassim, H.K., Baleanu, D., Chu, Y.: On the approximate solutions for a system of coupled Korteweg-de Vries equations with local fractional derivative. Fractals 29, 1–7 (2021)

    Google Scholar 

  31. Jafari, H., Prasad, J.G., Goswami, P., Dubey, R.S.: Solution of the local fractional generalized KDV equation using homotopy analysis method. Fractals 5, 2140014 (2021)

    Article  Google Scholar 

  32. Khader, M.M., Saad, K.M., Hammouch, Z., Baleanu, D.: A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives. Appl. Numer. Math. 161, 137–146 (2021)

    Article  MathSciNet  Google Scholar 

  33. Chen, W., Sun, H., Zhang, X., Koroak, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59(5), 1754–1758 (2010)

    Article  MathSciNet  Google Scholar 

  34. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular Kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  35. Losada, J., Nieto, J.J.: Properties of the new fractional derivative without singular Kernel. Prog. Fract. Differ. Appl. 1(2), 87–92 (2015)

    Google Scholar 

  36. Yusuf, A., Qureshi, S., Shah, S.F.: Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators. Chaos Solitons Fractals 132, 109552 (2020)

    Article  MathSciNet  Google Scholar 

  37. Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and applications to heat transfer model. Therm Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  38. Singh, J., Kumar, D., Hammouch, Z., Atangana, A.: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 316(1), 504–515 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Anastasiu, G.A.: Caputo fractional approximation by sublinear operator. J. Numer. Anal. Approx. Theory 47, 89–113 (2018)

    MathSciNet  Google Scholar 

  40. Kumar, K., Pandey, R.K., Sharma, S.: Approximations of fractional integrals and Caputo derivatives with application in solving Abel’s integral equations. J. King Saud Univ. Sci. 31, 692–700 (2019)

  41. Abdel-Gawad, H.I., Sweilam, N.H., Al-Mekhlafi, S.M., Baleanu, D.: Exact solutions of the fractional time-derivative Fokker-Planck equation: a novel approach Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.7251

    Article  Google Scholar 

  42. Abdel-Gawad, H.I.: Approximate solutions of nonlinear fractional equations. Appl. Math. Comput. 215, 4094–4100 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Tantawy, M., Abdel-Gawad, H.I.: On continuum model analog to zig-zag optical lattice in quantum optics. Appl. Phys. B 127(8), 1–9 (2021)

    Article  Google Scholar 

  44. Abdel-Gawad, H.I., Tantawy, M.: Traveling wave solutions of DNA-torsional model of fractional order. Appl. Math. Inf. Sci. Lett. 6(2), 85–89 (2018)

    Article  Google Scholar 

  45. Abdel-Gawad, H.I., Tantawy, M., Baleanu, D.: Fractional KdV and Boussenisq–Burger’s equations, reduction to PDE and stability approaches. Math. Meth. Appl. Sci. 43(7), 4125–4135 (2020)

  46. Abdel-Gawad, H.I.: Towards a unified method for exact solutions of evolution equations. An application to reaction diffusion equations with finite memory transport. J. Stat. Phys. 147, 506–521 (2012)

    Article  MathSciNet  Google Scholar 

  47. Abdel-Gawad, H.I., Tantawy, M., Abo-Elkhair, R.E.: On the extension of solutions of the real to complex KdV equation and A mechanism for the constructions of rogue waves. Wave Random Complex. 26(3), 397–406 (2016)

    Article  MathSciNet  Google Scholar 

  48. Abdel-Gawad, H.I., Tantawy, M.: A novel model for lasing cavities in the presence of population inversion: bifurcation and stability analysis. Chaos Solitons Fractals 144, 110693 (2021)

    Article  MathSciNet  Google Scholar 

  49. Abdel-Gawad, H.I., Abdel-Rashied, H.M., Tantawy, M., Ibrahimcd, G.H.: Multi-geometric structures of thermophoretic waves transmission in (2 + 1) dimensional graphene sheets. Stability analysis. Int. Commun. Heat Mass Transf. 126, 105406 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Reviewers for their relevant comments that led to improving the presentation of the paper.

Funding

This study and all authors have received no funding.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Gawad, H.I., Tantawy, M., Abdel-Aziz, B. et al. Analytic Solutions of Fractal and Fractional Time Derivative-Burgers–Nagumo Equation. Int. J. Appl. Comput. Math 7, 237 (2021). https://doi.org/10.1007/s40819-021-01145-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01145-9

Keywords

Navigation