Skip to main content
Log in

Investigation of Micropolar Hybrid Nanofluid (Iron Oxide–Molybdenum Disulfide) Flow Across a Sinusoidal Cylinder in Presence of Magnetic Field

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to investigate the micropolar nanofluid flow across a sinusoidal cylinder in presence of the magnetic field. The base fluid is an equal mixture of ethylene glycol and water; also,ithybridized by iron oxide (Fe3O4) andMolybdenum disulfide (MoS2) nanoparticles.In this study, equations are transformed from PDEs to ODEs and solved by Rung-Kutta fifth-order. After solving the equations, it can be seen that various nondimension parameters are involved (e.g.micro-polar parameter, nanoparticle volume fraction, shape factor, and magnetic field parameter), therefore a sensitivity analysis is applied to investigate the effect ofinvolvedparameters. Besides, variation of Nusselt number and skin friction coefficient are studied.Further analysis showed that Nusselt number is an increasing function of volume fraction and increment in the magnetic field leads to higherskin friction coefficient.Also, whenmicro-gyrationis zero the microelements in the vicinity of the wall are unable to rotate, and by increasing micro-gyration parameters these microelements meet rotation.As a novelty, the hybrid Micropolar nanofluid suspends in mixture fluid flow in sinusoidal cylinder geometry have been investigated. The magnetic force and rotational velocity have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(x,y,z\) :

Direction components

\(U,V,W\) :

Velocity components

\(\alpha_{nf}\) :

Thermal diffusivity of nanofluid

\(\mu_{nf}\) :

Viscosity of nanofluid

\(\mu_{f}\) :

Viscosity of fluid

\((C_{p} )_{nf}\) :

Heat capacity of nanofluid

\(k_{nf}\) :

Thermal conductivity of nanofluid

\(k_{f}\) :

Thermal conductivity of fluid

\(v_{nf}\) :

Nanofluid kinematic viscosity

\(v_{f}\) :

Fluid kinematic viscosity

\(T_{\infty }\) :

Ambient temperature

\(T_{w}\) :

Wall temperature

\(\rho\) :

Density

\(N_{1}\) :

Angular velocity along X-direction

\(N_{2}\) :

Angular velocity along Y-direction

\(F\) :

Velocity profile along X-direction

\(g\) :

Velocity profile along Y-direction

\(\theta\) :

Temperature profile

\(K\) :

Micro-polar parameter

\(n\) :

Micro-gyration parameter

\(\phi\) :

Nanoparticle volume fraction

\(\Pr\) :

Prandtl number

\(Nu\) :

Nusselt number

\(f\) :

Base fluid

\(nf\) :

Nanofluid

\(w\) :

Wall

\(hnf\) :

Hybrid nanofluid

\(s1\) :

First nanoparticle

\(s2\) :

Second nanoparticle

References

  1. Choi, S.U., Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. Argonne National Lab, Lemont (1995)

    Google Scholar 

  2. Eastman, J.A., Choi, S.U., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)

    Article  Google Scholar 

  3. Das, S.K., Putra, N., Thiesen, P., Roetzel, W.: Temperature dependence of thermalconductivity enhancement for nanofluids. ASME J. Heat Transf. 125, 567–574 (2003)

    Article  Google Scholar 

  4. Xuan, Y., Li, Q.: Investigation on convective heat transfer and flow features of nanofluids. J. Heat transfer. 125(1), 151–155 (2003)

    Article  Google Scholar 

  5. Mansur, S., Ishak, A., Pop, I.: MHD homogeneous-heterogeneous reactions in a nanofluid due to a permeable shrinking surface. J. Appl. Fluid Mech. 9(3), 1073–1079 (2016)

    Article  Google Scholar 

  6. Ellahi, R.: The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl. Math. Model. 37(3), 1451–1467 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sheikholeslami, M., Ganji, D.D.: Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 75, 400–410 (2014)

    Article  Google Scholar 

  8. Akram, S., Zafar, M., Nadeem, S.: Peristaltic transport of a Jeffrey fluid with double-diffusive convection in nanofluids in the presence of inclined magnetic field. Int. J. Geometric Methods Mod. Phys. 15(11), 1850181 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hayat, T., Javed, M., Imtiaz, M., Alsaedi, A.: Convective flow of Jeffrey nanofluid due to two stretchable rotating disks. J. Mol. Liq. 240, 291–302 (2017)

    Article  Google Scholar 

  10. Hosseinzadeh, K., Moghaddam, M.E., Asadi, A., Mogharrebi, A.R., Jafari, B., Hasani, M.R., Ganji, D.D.: Effect of two different fins (longitudinal-tree like) and hybrid nano-particles (MoS2-TiO2) on solidification process in triplex latent heat thermal energy storage system. Alex. Eng. J. 60(1), 1967–1979 (2021)

    Article  Google Scholar 

  11. Jyothi, K., Reddy, P.S., Reddy, M.S.: Influence of magnetic field and thermal radiation on convective flow of SWCNTs-water and MWCNTs-water nanofluid between rotating stretchable disks with convective boundary conditions. Powder Technol. 331, 326–337 (2018)

    Article  Google Scholar 

  12. Khan, M.I., Hafeez, M.U., Hayat, T., Khan, M.I., Alsaedi, A.: Magneto rotating flow of hybrid nanofluid with entropy generation. Comput. Methods Progr. Biomed. 183, 105093 (2020)

    Article  Google Scholar 

  13. Hosseinzadeh, K., Asadi, A., Mogharrebi, A.R., Khalesi, J., Mousavisani, S., Ganji, D.D.: Entropy generation analysis of (CH2OH) 2 containing CNTs nanofluid flow under effect of MHD and thermal radiation. Case Stud. Thermal Eng. 14, 100482 (2019)

    Article  Google Scholar 

  14. Hosseinzadeh, K., Afsharpanah, F., Zamani, S., Gholinia, M., Ganji, D.D.: A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption. Case Stud. Thermal Eng. 12, 228–236 (2018)

    Article  Google Scholar 

  15. Gholinia, M., Gholinia, S., Hosseinzadeh, K., Ganji, D.D.: Investigation on ethylene glycol nano fluid flow over a vertical permeable circular cylinder under effect of magnetic field. Res. Phys. 9, 1525–1533 (2018)

    Google Scholar 

  16. Eringen, A.C.: Microcontinuum Field Theories: II. Fluent Media. Springer, Berlin (2001)

    MATH  Google Scholar 

  17. Lukaszewicz, G.: Micropolar Fluids: Theory and Applications. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  18. Kumar, J.P., Umavathi, J.C., Chamkha, A.J., Pop, I.: Fully-developed free-convective flow of micropolar and viscous fluids in a vertical channel. Appl. Math. Model. 34(5), 1175–1186 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rashidi, M.M., Reza, M., Gupta, S.: MHD stagnation point flow of micropolar nanofluid between parallel porous plates with uniform blowing. Powder Technol. 301, 876–885 (2016)

    Article  Google Scholar 

  20. Mohsen, I., Mohammadi, S.A., Mehryan, S.A.M., Yang, T., Sheremet, M.A.: Thermogravitational convection of magnetic micropolar nanofluid with coupling between energy and angular momentum equations. Int. J. Heat Mass Transf. 145, 118748 (2019)

    Article  Google Scholar 

  21. Gibanov, N.S., Sheremet, M.A., Pop, I.: Natural convection of micropolar fluid in a wavy differentially heated cavity. J. Mol. Liq. 221, 518–525 (2016)

    Article  Google Scholar 

  22. Sheremet, M.A., Pop, I., Ishak, A.: Time-dependent natural convection of micropolar fluid in a wavy triangular cavity. Int. J. Heat Mass Transf. 105, 610–622 (2017)

    Article  Google Scholar 

  23. Umavathi, J.C., Sheremet, M.A.: Onset of double-diffusive convection of a sparsely packed micropolar fluid in a porous medium layer saturated with a nanofluid. Microfluid. Nanofluid. 21(7), 1–22 (2017)

    Article  Google Scholar 

  24. Sheikholeslami, M., Rokni, H.B.: Influence of EFD viscosity on nanofluid forced convection in a cavity with sinusoidal wall. J. Mol. Liq. 232, 390–395 (2017)

    Article  Google Scholar 

  25. Sheikholeslami, M., Rokni, H.B.: Magnetohydrodynamic CuO–water nanofluid in a porous complex-shaped enclosure. J. Thermal Sci. Eng. Appl. 9(4), 041007 (2017)

    Article  Google Scholar 

  26. Sheikholeslami, M., Ellahi, R.: Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Appl. Sci. 5(3), 294–306 (2015)

    Article  Google Scholar 

  27. Tang, W., Hatami, M., Zhou, J., Jing, D.: Natural convection heat transfer in a nanofluid-filled cavity with double sinusoidal wavy walls of various phase deviations. Int. J. Heat Mass Transf. 115, 430–440 (2017)

    Article  Google Scholar 

  28. Öztop, H.F., Sakhrieh, A., Abu-Nada, E., Al-Salem, K.: Mixed convection of MHD flow in nanofluid filled and partially heated wavy walled lid-driven enclosure. Int. Commun. Heat Mass Transfer 86, 42–51 (2017)

    Article  Google Scholar 

  29. Öztop, H.F., Abu-Nada, E., Varol, Y., Chamkha, A.: Natural convection in wavy enclosure with volumetric heat sources [J]. Int. J. Therm. Sci. 50(4), 502–514 (2011)

    Article  Google Scholar 

  30. Sulochana, C., Ashwinkumar, G.P.: Impact of Brownian moment and thermophoresis on magnetohydrodynamic flow of magnetic nanofluid past an elongated sheet in the presence of thermal diffusion. Multidiscipl. Model. Mater. Struct. 14, 744–755 (2018)

    Article  Google Scholar 

  31. Mabood, F., Ashwinkumar, G.P., Sandeep, N.: Effect of nonlinear radiation on 3D unsteady MHD stagnancy flow of Fe3O4/graphene–water hybrid nanofluid. Int. J. Ambient Energy 2020, 1–11 (2020)

    Google Scholar 

  32. Mabood, F., Ashwinkumar, G.P., Sandeep, N.: Simultaneous results for unsteady flow of MHD hybrid nanoliquid above a flat/slendering surface. J. Thermal Anal. Calorim. 146, 227–239 (2020)

    Article  Google Scholar 

  33. Ashwinkumar, G.P.: Heat and mass transfer analysis in unsteady MHD flow of aluminum alloy/silver-water nanoliquid due to an elongated surface. Heat Transf. 50(2), 1679–1696 (2021)

    Article  MathSciNet  Google Scholar 

  34. Ashwinkumar, G.P., Sulochana, C., Samrat, S.P.: Effect of the aligned magnetic field on the boundary layer analysis of magnetic-nanofluid over a semi-infinite vertical plate with ferrous nanoparticles. Multidiscipl. Model. Mater. Struct. 14, 497–515 (2018)

    Article  Google Scholar 

  35. Mohsen, I., Sheremet, M.A., Mehryan, S.A.M., Pop, I., Öztop, H.F., Abu-Hamdeh, N.: MHD thermogravitational convection and thermal radiation of a micropolar nanoliquid in a porous chamber. Int. Commun. Heat Mass Transf. 110, 1409 (2020)

    Google Scholar 

  36. Hosseinzadeh, K., Mardani, M.R., Salehi, S., et al.: Entropy generation of three-dimensionalBödewadtflow of water and hexanol base fluid suspendedby Fe3O4 and MoS2 hybrid nanoparticles. Pramana J. Phys. 95, 57 (2021)

    Article  Google Scholar 

  37. Mogharrebi, A.R., Ganji, A.R., Hosseinzadeh, K., Roghani, S., Asadi, A., Fazlollahtabar, A.: Investigation of magnetohydrodynamic nanofluid flow contain motile oxytactic microorganisms over rotating cone. Int. J. Numer. Methods Heat Fluid Flow (2021)

  38. Gulzar, M.M., Aslam, A., Waqas, M., Javed, M.A., Hosseinzadeh, K.: A nonlinear mathematical analysis for magneto-hyperbolic-tangent liquid featuring simultaneous aspects of magnetic field, heat source and thermal stratification. Appl. Nanosci. 10(12), 4513–4518 (2020)

    Article  Google Scholar 

  39. Hosseinzadeh, K., Roghani, S., Mogharrebi, A.R., Asadi, A., Ganji, D.D.: Optimization of hybrid nanoparticles with mixture fluid flow in an octagonal porous medium by effect of radiation and magnetic field. J. Therm. Anal. Calorim. 19, 1–2 (2020)

    Google Scholar 

  40. Bachok, N., Ishak, A., Nazar, R., Pop, I.: Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid. Phys. B 405(24), 4914–4918 (2010)

    Article  Google Scholar 

  41. Hosseinzadeh, K., Salehi, S., Mardani, M.R., Mahmoudi, F.Y., Waqas, M., Ganji, D.D.: Investigation of nano-Bioconvective fluid motile microorganism and nanoparticle flow by considering MHD and thermal radiation. Inf. Med. Unlocked 21, 100462 (2020)

    Article  Google Scholar 

  42. Bhattacharyya, K.: Boundary layer flow and heat transfer over an exponentially shrinking sheet. Chin. Phys. Lett. 28(7), 074701 (2011)

    Article  Google Scholar 

  43. Miklavčič, M., Wang, C.: Viscous flow due to a shrinking sheet. Q. Appl. Math. 64(2), 283–290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nazeer, M., Ali, N., Javed, T., Asghar, Z.: Natural convection through spherical particles of a micropolar fluid enclosed in a trapezoidal porous container. Eur. Phys. J. Plus 133(10), 423 (2018)

    Article  Google Scholar 

  45. Salehi, S., Nori, A., Hosseinzadeh, K., Ganji, D.D.: Hydrothermal analysis of MHD squeezing mixture fluid suspended by hybrid nanoparticles between two parallel plates. Case Stud. Thermal Eng. 21, 100650 (2020)

    Article  Google Scholar 

  46. McNaught, A.D.: Compendium of Chemical Terminology. Blackwell Science, Oxford (1997)

    Google Scholar 

  47. Masuda, H., Ebata, A., Teramae, K.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles

  48. Hosseinzadeh, K., Asadi, A., Mogharrebi, A.R., Azari, M.E., Ganji, D.D.: Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect. J. Therm. Anal. Calorim. 25, 1–5 (2020)

    Google Scholar 

  49. Ghadikolaei, S.S., Hosseinzadeh, K., Ganji, D.D.: Investigation on three dimensional squeezing flow of mixture base fluid (ethylene glycol-water) suspended by hybrid nanoparticle (Fe3O4–Ag) dependent on shape factor. J. Mol. Liq. 262, 376–388 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research doesn't have any funds.

Author information

Authors and Affiliations

Authors

Contributions

KH: Investigation, Methodology, Software. MRM: Data curation, Formal analysis. SS: Funding acquisition, Validation. MP: Writing—original draft, Writing—review and editing. DDG: Project administration, Supervision.

Corresponding author

Correspondence to Kh. Hosseinzadeh.

Ethics declarations

Conflict of interest

The authors don't have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, K., Mardani, M.R., Salehi, S. et al. Investigation of Micropolar Hybrid Nanofluid (Iron Oxide–Molybdenum Disulfide) Flow Across a Sinusoidal Cylinder in Presence of Magnetic Field. Int. J. Appl. Comput. Math 7, 210 (2021). https://doi.org/10.1007/s40819-021-01148-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01148-6

Keywords

Navigation