Skip to main content
Log in

Convective Flow of Second Grade Fluid Over a Curved Stretching Sheet with Dufour and Soret Effects

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The present study investigates the flow of a second-grade liquid over a curved stretching sheet with the Soret, magnetic and Dufour effects. In addition, the Newtonian heating effect is taken into account in this simulation. The framed equations are transformed to a set of nonlinear ordinary differential equations using suitable similarity variables, and then numerically solved using Runge–Kutta–Fehlberg's fourth fifth order approach and the shooting technique. The impact of dimensionless factors on the flow, thermal, and concentration fields are interpreted and explained in detail by using suitable graphs. The increase in the Newtonian heating parameter increases the heat transfer coefficient which increases the heat transfer of both second grade and Newtonian fluids. Furthermore, Newtonian liquid is significantly influenced by Newtonian heating parameter and exhibits enhanced heat transfer. The concentration profile of Newtonian fluid is significantly influenced by Soret and Dufour numbers and rises quicker than the non-Newtonian fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\Pr\) :

Prandtl number

\(D_{m}\) :

Mass diffusivity

\(C_{p}\) :

Specific heat

\(Nu\) :

Nusselt number

\(C_{w}\) :

Surface concentration

\(C_{f}\) :

Skin friction coefficient

\(Sh\) :

Local Sherwood number

\(\left( {\rho C_{p} } \right)_{f}\) :

Specific heat capacitance of liquid

\(\kappa\) :

Dimensionless curvature parameter

\(\omega\) :

Stefan blowing parameter

\(B_{0}\) :

Magnetic field

\(Du\) :

Dufour number

\({\text{Re}}\) :

Local Reynolds number

\(M\) :

Magnetic parameter

\(\rho_{f}\) :

Density of liquid

\(Sr\) :

Soret number

\(\tau_{rs}\) :

Shear stress

\(\gamma\) :

Newtonian heating parameter

\(C\) :

Concentration

\(T_{\infty }\) :

Ambient temperature of a fluid

\(f^{\prime}\) :

Dimensionless velocity profile

\(\mu_{f}\) :

Dynamic viscosity of a liquid

\(h_{s}\) :

Heat transfer coefficient

\(u,\,v\) :

Velocity components

\(\sigma_{f}\) :

Electrical conductivity

\(h_{m}\) :

Wall mass flux

\(C_{s}\) :

Concentration susceptibility

\(p\) :

Pressure

\(C_{\infty }\) :

Ambient concentration

\(P\) :

Dimensionless pressure

\(\theta\) :

Dimensionless temperature profile

\(T\) :

Temperature of a liquid

\(k_{T}\) :

Thermal diffusion ratio

\(\nu_{f}\) :

Kinematic viscosity of a liquid

\(r,s\) :

Coordinates

\(T_{m}\) :

Mean temperature

\(Sc\) :

Schmidt number

\(\chi\) :

Non-dimensional concentration profile

\(q_{w}\) :

Wall heat flux

\(\alpha_{1}^{*}\) :

Second grade fluid parameter

\(a\) :

Stretching constant

\(R\) :

Distance

\(k_{f}\) :

Thermal conductivity

References

  1. Hayat, T., Sajid, M.: Analytic solution for axisymmetric flow and heat transfer of a second-grade fluid past a stretching sheet. Int. J. Heat Mass Transf. 50(1), 75–84 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.045

    Article  MATH  Google Scholar 

  2. Saif, R.S., Hayat, T., Ellahi, R., Muhammad, T., Alsaedi, A.: Stagnation-point flow of second grade nanofluid towards a nonlinear stretching surface with variable thickness. Res. Phys. 7, 2821–2830 (2017). https://doi.org/10.1016/j.rinp.2017.07.062

    Article  Google Scholar 

  3. Punith Gowda, R.J., Baskonus, H.M., Naveen Kumar, R., Prasannakumara, B.C., Prakasha, D.G.: Computational investigation of Stefan blowing effect on flow of second-grade fluid over a curved stretching sheet. Int. J. Appl. Comput. Math. 7(3), 109 (2021). https://doi.org/10.1007/s40819-021-01041-2

    Article  MathSciNet  Google Scholar 

  4. Jamshed, W., Nisar, K.S., Gowda, R.J.P., Kumar, R.N., Prasannakumara, B.C.: Radiative heat transfer of second grade nanofluid flow past a porous flat surface: a single-phase mathematical model. Phys. Scr. 96(6), 064006 (2021). https://doi.org/10.1088/1402-4896/abf57d

    Article  Google Scholar 

  5. Punith Gowda, R.J., Naveen Kumar, R., Jyothi, A.M., Prasannakumara, B.C., Sarris, I.E.: Impact of binary chemical reaction and activation energy on heat and mass transfer of Marangoni driven boundary layer flow of a non-Newtonian nanofluid. Processes (2021). https://doi.org/10.3390/pr9040702

    Article  Google Scholar 

  6. Hayat, T., Saif, R.S., Ellahi, R., Muhammad, T., Ahmad, B.: Numerical study for Darcy-Forchheimer flow due to a curved stretching surface with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Res. Phys. 7, 2886–2892 (2017). https://doi.org/10.1016/j.rinp.2017.07.068

    Article  Google Scholar 

  7. Hayat, T., Sajjad, R., Ellahi, R., Alsaedi, A., Muhammad, T.: Homogeneous-heterogeneous reactions in MHD flow of micropolar fluid by a curved stretching surface. J. Mol. Liq. 240, 209–220 (2017). https://doi.org/10.1016/j.molliq.2017.05.054

    Article  Google Scholar 

  8. Saif, R.S., Hayat, T., Ellahi, R., Muhammad, T., Alsaedi, A.: Darcy–Forchheimer flow of nanofluid due to a curved stretching surface. Int. J. Numer. Methods Heat Fluid Flow 29(1), 2–20 (2018). https://doi.org/10.1108/HFF-08-2017-0301

    Article  Google Scholar 

  9. Imtiaz, M., Mabood, F., Hayat, T., Alsaedi, A.: Homogeneous-heterogeneous reactions in MHD radiative flow of second grade fluid due to a curved stretching surface. Int. J. Heat Mass Transf. 145, 118781 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118781

    Article  Google Scholar 

  10. Saif, R.S., Muhammad, T., Sadia, H., Ellahi, R.: Hydromagnetic flow of Jeffrey nanofluid due to a curved stretching surface. Phys. Stat. Mech. Its Appl. 551, 124060 (2020). https://doi.org/10.1016/j.physa.2019.124060

    Article  MathSciNet  Google Scholar 

  11. Reddy, P.S., Chamkha, A.J.: Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv. Powder Technol. 27(4), 1207–1218 (2016). https://doi.org/10.1016/j.apt.2016.04.005

    Article  Google Scholar 

  12. Reddy, J.V.R., Sugunamma, V., Sandeep, N.: Dual solutions for nanofluid flow past a curved surface with nonlinear radiation, Soret and Dufour effects. J. Phys. Conf. Ser. 1000, 012152 (2018). https://doi.org/10.1088/1742-6596/1000/1/012152

    Article  Google Scholar 

  13. Shehzad, S.A., Abbas, Z., Rauf, A., Abdelmalek, Z.: Dynamics of fluid flow through Soret-Dufour impacts subject to upward and downward motion of rotating disk. Int. Commun. Heat Mass Transf. 120, 105025 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2020.105025

    Article  Google Scholar 

  14. Kumar, R.N., Gowda, R.J.P., Madhukesh, J.K., Prasannakumara, B.C., Ramesh, G.K.: Impact of thermophoretic particle deposition on heat and mass transfer across the dynamics of Casson fluid flow over a moving thin needle. Phys. Scr. 96(7), 075210 (2021). https://doi.org/10.1088/1402-4896/abf802

    Article  Google Scholar 

  15. Jyothi, A.M., Kumar, R.N., Gowda, R.J.P., Prasannakumara, B.C.: Significance of Stefan blowing effect on flow and heat transfer of Casson nanofluid over a moving thin needle. Commun. Theor. Phys. 73(9), 095005 (2021). https://doi.org/10.1088/1572-9494/ac0a65

    Article  MathSciNet  Google Scholar 

  16. Merkin, J.H.: Natural-convection boundary-layer flow on a vertical surface with Newtonian heating. Int. J. Heat Fluid Flow 15(5), 392–398 (1994). https://doi.org/10.1016/0142-727X(94)90053-1

    Article  Google Scholar 

  17. Hayat, T., Iqbal, Z., Mustafa, M.: Flow of a second-grade fluid over a stretching surface with Newtonian heating. J. Mech. 28(1), 209 (2012)

    Article  Google Scholar 

  18. Olanrewaju, M.A.: Flow and heat transfer analysis of a second grade fluid with Newtonian heating in the presence of elastic deformation in a Porous medium. Number 17(1), 19 (2016)

    Google Scholar 

  19. Hayat, T., Saif, R.S., Ellahi, R., Muhammad, T., Ahmad, B.: Numerical study of boundary-layer flow due to a nonlinear curved stretching sheet with convective heat and mass conditions. Res. Phys. 7, 2601–2606 (2017). https://doi.org/10.1016/j.rinp.2017.07.023

    Article  Google Scholar 

  20. Saif, R.S., Muhammad, T., Sadia, H., Ellahi, R.: Boundary layer flow due to a nonlinear stretching curved surface with convective boundary condition and homogeneous-heterogeneous reactions. Phys. Stat. Mech. Its Appl. 551, 123996 (2020). https://doi.org/10.1016/j.physa.2019.123996

    Article  MathSciNet  Google Scholar 

  21. Sarada, K., Gowda, R.J.P., Sarris, I.E., Kumar, R.N., Prasannakumara, B.C.: Effect of magnetohydrodynamics on heat transfer behaviour of a non-Newtonian fluid flow over a stretching sheet under local thermal non-equilibrium condition. Fluids (2021). https://doi.org/10.3390/fluids6080264

    Article  Google Scholar 

  22. Aslani, Κ-E., Sarris, I.E.: Effect of micromagnetorotation on magnetohydrodynamic Poiseuille micropolar flow: analytical solutions and stability analysis. J. Fluid Mech. (2021). https://doi.org/10.1017/jfm.2021.437

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Y.-X., et al.: Dynamics of aluminum oxide and copper hybrid nanofluid in nonlinear mixed Marangoni convective flow with entropy generation: applications to renewable energy. Chin. J. Phys. 73, 275–287 (2021). https://doi.org/10.1016/j.cjph.2021.06.004

    Article  MathSciNet  Google Scholar 

  24. Yusuf, T.A., Mabood, F., Prasannakumara, B.C., Sarris, I.E.: Magneto-bioconvection flow of Williamson nanofluid over an inclined plate with gyrotactic microorganisms and entropy generation. Fluids (2021). https://doi.org/10.3390/fluids6030109

    Article  Google Scholar 

  25. Benos, L.T., Sarris, I.E.: The interfacial nanolayer role on magnetohydrodynamic natural convection of an Al2O3-water nanofluid. Heat Transf. Eng. 42(2), 89–105 (2021). https://doi.org/10.1080/01457632.2019.1692487

    Article  Google Scholar 

  26. Tan, W., Masuoka, T.: Stokes’ first problem for a second-grade fluid in a porous half-space with heated boundary. Int. J. Non-Linear Mech. 40(4), 515–522 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.07.016

    Article  MATH  Google Scholar 

  27. Fetecǎu, C., Fetecǎu, C., Zierep, J.: Decay of a potential vortex and propagation of a heat wave in a second-grade fluid. Int. J. Non Linear Mech. 37(6), 1051–1056 (2002). https://doi.org/10.1016/S0020-7462(01)00028-2

    Article  MATH  Google Scholar 

  28. Fetecau, C., Fetecau, C.: Starting solutions for some unsteady unidirectional flows of a second-grade fluid. Int. J. Eng. Sci. 43(10), 781–789 (2005). https://doi.org/10.1016/j.ijengsci.2004.12.009

    Article  MathSciNet  MATH  Google Scholar 

  29. Mabood, F., Das, K.: Melting heat transfer on hydromagnetic flow of a nanofluid over a stretching sheet with radiation and second-order slip. Eur. Phys. J. Plus. 131, 3 (2016)

    Article  Google Scholar 

  30. Imtiaz, M., Hayat, T., Alsaedi, A.: MHD convective flow of Jeffrey fluid due to a curved stretching surface with homogeneous-heterogeneous reactions. PLoS ONE 11(9), e0161641 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Sarris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punith Gowda, R.J., Jyothi, A.M., Naveen Kumar, R. et al. Convective Flow of Second Grade Fluid Over a Curved Stretching Sheet with Dufour and Soret Effects. Int. J. Appl. Comput. Math 7, 226 (2021). https://doi.org/10.1007/s40819-021-01164-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01164-6

Keywords

Navigation