Skip to main content

Advertisement

Log in

The Role of Isolation and Vector Control in the Prevention of Dengue: A Case Study of 2014 Dengue Outbreak in Singapore

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Isolation and quarantine play important role to control dengue outbreak but much attention has not yet been paid to develop dengue models with these control factors. In this paper, we have developed a \(SEIQR-SEI\) type compartmental dengue model with the effect of isolation. The model has one locally asymptotically stable disease free equilibrium (DFE) point when the basic reproduction number is less than unity. The model without dengue induced death has a globally asymptotically stable DFE point when the corresponding basic reproduction number is less than unity and a globally asymptotically stable endemic equilibrium point when the basic reproduction number is greater than unity. The model exhibits backward bifurcation when the basic production number is equal to one and the first bifurcation coefficient is greater than zero. The key model parameters have been estimated by fitting the model to the dengue outbreak data reported from Singapore during the period 18th week to 53th week,2014. The findings suggest that the total outbreak size reduces by 32.87%, 27.02% and 35.96% respectively when the isolation rate increases from 0 to 0.5, the mosquito biting rate reduces from 1.235 to 1.00 and the vector control rate increases from 0.038 to 0.090. Using sensitivity analysis, we have determined the most sensitive model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guzman, M.G., Harris, E.: Dengue. Lancet 385, 453–465 (2015)

    Article  Google Scholar 

  2. World Health Organization (WHO) (2018) Dengue and severe dengue. Accessed 2 Feb 2018. http://www.who.int/mediacentre/factsheet/fs117/en/

  3. Centres for Disease Control and prevention (CDC): Dengue. http://www.cdc.gov/Dengue/. Page last updated: January 19, 2016 (2016)

  4. Hossain, Md.S., Nayeem, J., Podder Dr, C.: Effect of migratory population and control strategies on the transmission dynamics of dengue fever. J. Appl. Math. Bioinform. 5, 43–80 (2015)

    MATH  Google Scholar 

  5. Varatharaj, A.: Encephalitis in the clinical spectrum of dengue infection. Neurology India, 58 (2010)

  6. European Centre for Disease Control and Prevention (ECDC): Sexual transmission of dengue in Spain-18. November, 2019 (2019)

  7. World Health Organisation Report: Dengue hemorrhagic fever, diagnosis, treatment and control. Geneva (1997)

  8. Noisakran, S., Perng, G.C.: Alternative hypothesis on the pathogenesis of dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS) in dengue virus infection. Exp. Biol. Med. 233(4), 401–408 (2008)

    Article  Google Scholar 

  9. Goh, K.T., Yamazaki, S.: Serological survey on dengue virus infection in Singapore. Trans. R. Soc. Trop. Med. Hyg. 81(4), 687–689 (1987)

    Article  Google Scholar 

  10. Committee on Epidemic Diseases, Singapore Ministry of Health: Dengue surveillance in Singapore, 1998. Epidemiol. News Bull. 25, 1–3 (1999)

  11. Singapore Ministry of Health. Dengue fever/dengue hemorrhagic fever (DF/DHF).In: Communicable Diseases Surveillance in Singapore 2007, pp. 22–33. Ministry of Health, Singapore (2008). https://www.moh.gov.sg

  12. Singapore Ministry of Health. Dengue fever/dengue hemorrhagic fever (DF/DHF). In: Communicable Diseases Surveillance in Singapore 2013, pp. 52–65. Ministry of Health, Singapore (2014). https://www.moh.gov.sg

  13. Hapuarachchi, H.C., Koo, C., Kek, R.: Intra-epidemic evolutionary dynamics of a dengue virus type 1 population reveal mutant spectra that correlate with disease transmission. Sci. Rep. 6, 22592 (2016)

    Article  Google Scholar 

  14. Hapuarachchi, H.C., Koo, C., Rajarethinam, J.: Epidemic resurgence of dengue fever Singapore in 2013–2014: a virological and entomological perspective. BMC Infect. Dis. 16, 1–13 (2016)

    Article  Google Scholar 

  15. Loo, Y.Y., Billa, L., Singh, A.: Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci. Front. 6, 817–823 (2015)

    Article  Google Scholar 

  16. Ooi, E.-E., Goh, K.-T., Gubler, D.J.: Dengue prevention and 35 years of years of vector control in Singapore. Emerg. Infect. Dis. 12, 887–893 (2006)

    Article  Google Scholar 

  17. World Health Organization (WHO): Factsheet no.117. Dengue and severe dengue (2016). http://www.who.int/mediacentre/factsheet/fs117

  18. Keeling, M.J., Rohani, P.: Modelling Infectious Diseases I Humans and Animals. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  19. Mutta, J.M., Wang, F.B., Vidya, N.K.: Modelling malaria and typhoid fever co-infection dynamics. Math. Biosci. 264, 128–144 (2015)

    Article  MathSciNet  Google Scholar 

  20. Vidya, N.K.: Modelling the epidemic spread of H1N1 influenza outbreak in rural university town. Epidemiol. Infect. 143, 1610–1620 (2015)

    Article  Google Scholar 

  21. Biswas, S.K., Ghosh, U., Sarkar, S.: Mathematical model of zika virus dynamics with vector control and sensitivity analysis. Infect. Dis. Model. 5, 23–41 (2020)

    Google Scholar 

  22. Focks, D.A., Daniels, E., Haile, D.G., Keeling, J.E.: A simulation model of the epidemiology of urban dengue fever; literature analysis, model development, preliminary validation, and samples simulation results. Am. J. Trop. Med. Hyg. 53, 489–506 (1995)

    Article  Google Scholar 

  23. Esteva, L., Vargas, C.: Influence of vertical and mechanical transmission on the dynamics of dengue disease. Math. Biosci. 167, 51–64 (2000)

    Article  Google Scholar 

  24. Andraud, M., Hens, N., Beutels, P.: A simple periodic-forced model for dengue fitted to incidence data in Singapore. Math. Biosci. 244, 22–28 (2013)

    Article  MathSciNet  Google Scholar 

  25. Katri, P.: Modeling the transmission dynamics of the dengue virus. Ph.D. Thesis. University of Miami. Open Access Dissertations (2010). http://scholarlyrepository.miami.edu

  26. Stoddard, S.T., Wearing, H.J., Reiner, R.C.: Long-term and seasonal dynamics of Dengue in Iquitos. Peru. Plos Negl Trop Dis 8(7), e3003 (2014)

    Article  Google Scholar 

  27. Chowell, G., Fuentes, R., Olea, A., Aguilera, X., Nesse, H., Hyman, J.M.: The basic reproduction number and effectiveness of reactive intervention during dengue epidemic: the 2002 dengue outbreak in Easter Island, Chile. Math. Biosci. Eng. 10, 1455–1474 (2013)

    Article  MathSciNet  Google Scholar 

  28. Robert, M.A., Christofferson, R.C., Silva, N.J.B., Vasquez, C., Mores, C.N., Wearing, H.J.: Modelling mosquito-borne disease spread in U.S. urbanized areas: the case of dengue in Miami. PLOS ONE 11(8), e0161365 (2016)

    Article  Google Scholar 

  29. Feng, Z., Velasco-Hernandez, J.X.: Competitive exclusion in a vector-host model for the dengue fever. J. Math. Biol. 35, 523–544 (1997)

    Article  MathSciNet  Google Scholar 

  30. Wearing, H.J., Rohani, P.: Ecological and immunological determinants of dengue epidemics. Proc. Natl. Acad. Sci. U.S.A. 103, 11802–11807 (2006)

    Article  Google Scholar 

  31. Atkinson, M.P., Zheng, S., Alphey, N., Alphey, L.S., Coleman, P.G., Wein, L.M.: Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system. Proc. Natl. Acad. Sci. U.S.A. 104(22), 9540–9545 (2007)

    Article  Google Scholar 

  32. Pinho, S.T.R., Ferreira, C.P., Esteva, L.: Modelling the dynamics of dengue of real epidemics. Phil. Trans. R. Soc. A 368, 5679–5693 (2010)

    Article  MathSciNet  Google Scholar 

  33. Cho, D.L., Longini, I.M., Jr., Halloran, M.E.: The effects of vector movement and distribution in a mathematical model of dengue transmission. PLOS ONE 8(10), e76044 (2013)

    Article  Google Scholar 

  34. Pongsumpun, P., Tang, I.-M., Wongvanich, N.: Optimal control of the dengue dynamical transmission with vertical transmission. Adv. Differ. Equ. 176 (2019)

  35. Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Stability Analysis of Nonlinear System. Marcel Dekker. Inc., New York (1989)

    MATH  Google Scholar 

  36. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  37. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  38. Shuai, Z., Vanden Driessche, P.: Global stability of infectious disease models using Lyapunov functions. SIAM J. Appl. Math. 73(4), 1513–1532 (2013)

    Article  MathSciNet  Google Scholar 

  39. LaSalle, J.P.: The Stability of Dynamical System: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 25. SIAM, Philadelphia (1986)

    Google Scholar 

  40. Castillo-Chavez, C., Song, B.: Dynamical model of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361–404 (2004)

    Article  MathSciNet  Google Scholar 

  41. Chitnis, N., Hyman, J.M., Cushing, J.M.: Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70(5), 1272–1296 (2008)

    Article  MathSciNet  Google Scholar 

  42. Weekly number of dengue and dengue haemarrhagic fever cases from 2014 to 2018, Ministry of Health, Singapore, data.gov.sg/dataset

  43. Saad-Roy, C.M., Ma, J., Van den Driessche, P.: The effect of sexual transmission on Zika virus dynamics. J. Math. Biol. 77, 1917–1941 (2018)

    Article  MathSciNet  Google Scholar 

  44. Garba, S.M., Gumel, A.B., Bakar, M.R.A.: Backward Bifurcation in Dengue transmission Dynamics. Math. Biosci. 215(1), 11–25 (2008). https://doi.org/10.1016/j.mbs.2008.05.002

    Article  MathSciNet  MATH  Google Scholar 

  45. Ojo, M.M., Gbadamosi, B., Olukayode, A., Oluwaseun, O.: Sensitivity analysis of dengue model with saturated incidence rate. Open Access Lib. J. (2018). https://doi.org/10.4236/oalib.1104413

    Article  Google Scholar 

  46. Liu, T., Zhu, G., He, J., Song, T., Zhang, M., Lin, H., Xiao, J., Zeng, W., Li, X., Li, Z., Xie, R., Zhong, H.: Early rigorous control interventions can largely reduce dengue outbreak magnitude: experience from Chaozhou, China. BMC Public Health 18, 90 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the constructive comments of the referees concerning this paper.

Author information

Authors and Affiliations

Authors

Contributions

SKB: Formulated the model, performed computations and numerical simulations; SS: Supervise overall; UG: Formulated the model and help in different stages of analytical and numerical computations.

Ethics declarations

Conflict of interest

The authors declare that there are no conict of interests with publication of this work and no nancial support from any agency.

Ethical approval

This article does not contain any with human participants or animal performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S.K., Sarkar, S. & Ghosh, U. The Role of Isolation and Vector Control in the Prevention of Dengue: A Case Study of 2014 Dengue Outbreak in Singapore. Int. J. Appl. Comput. Math 7, 224 (2021). https://doi.org/10.1007/s40819-021-01167-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01167-3

Keywords

Mathematics Subject Classification

Navigation