Skip to main content
Log in

A Non-Fourier’s and Non-Fick’s Approach to Study MHD Mixed Convective Copper Water Nanofluid Flow over Flat Plate Subjected to Convective Heating and Zero Wall Mass Flux Condition

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A theoretical model of MHD mixed convective Cu–water nanofluid boundary layer flow over flat vertical plate has been developed and investigated. As a novelty, firstly, modified Buongiorno’s model is utilized to include the effects of Brownian motion, thermophoresis and volume fraction for nanofluid. Secondly, thermal energy equation and concentration equation are modeled with the help of Cattaneo–Christov theory of heat and mass flux, respectively. Due to this non-Fourier’s and non-Fick’s approach, two parameters namely, thermal relaxation parameter and solutal relaxation parameter were introduced in thermal energy equation and concentration equation, respectively. In addition, the surface of flat plate is subjected to suction, convective heating and zero wall mass flux condition. Authors have used the similarity method and through analysis it is shown that transport equations can be converted to ODEs with the help of suitable similarity transformations. The analysis and computed results shows that various dimensional and non-dimensional parameters influence the velocity, temperature and concentration profiles. The pattern and behavior of boundary layer is depicted graphically. The results for skin friction coefficient and heat transfer coefficient are outlined in tabular form. The result of passive control of nanoparticles at the surface is that Brownian motion parameter does not influence the temperature profiles of nanofluid flow and heat transfer rate at the surface. Heat transfer coefficient is positively correlated to thermal relaxation parameter and Biot number, whereas thermophoresis parameter causes it to decrease. The flow of nanofluid is aided by buoyancy ratio parameter and thermophoresis parameter but contrary behavior is seen for magnetic parameter. The effect of volume fraction and suction parameter is to increase the value of skin friction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability Statement

All the data generated and materials during this study are included in this article.

Abbreviations

a :

Constant

\(A_{o} ,B_{o}\) :

Constant

\(B\) :

Magnetic field

Bi:

Biot number

C :

Concentration of the fluid

C f * :

Skin friction coefficient

\(C_{o} ,D_{o}\) :

Constant

\(D_{B}\) :

Brownian diffusion coefficient

\(D_{T}\) :

Thermophoretic diffusion coefficient

\(E_{o} ,F_{o}\) :

Constant

\(f^{{\prime}}\) :

Dimensionless velocity

\(\hbox{Gr}_{x}\) :

Local Grashof number

g :

Acceleration due to gravity

h :

Heat transfer coefficient of base fluid

j :

Mass flux

k :

Thermal conductivity

l :

Characteristic length

M :

Magnetic parameter

Nb :

Brownian motion parameter

Nr :

Buoyancy ratio parameter

Nt :

Thermophoretic parameter

\({\text{Nu}}_{x}^{*}\) :

Local Nusselt number

Pr:

Prandtl number

q :

Heat flux

\({\text{Re}}_{x}\) :

Local Reynolds number

s :

Wall temperature related parameter

Sc:

Schmidt number

Su:

Suction parameter

T :

Temperature of the fluid

u :

Velocity component in x-direction

v :

Velocity component in y-direction

v :

Velocity

v w :

Velocity of mass transfer

x, y :

Cartesian coordinate system

\(\beta\) :

Thermal expansion coefficient

\(\gamma_{t}\) :

Thermal relaxation time parameter

\(\gamma_{c}\) :

Solutal relaxation time parameter

\(\eta\) :

Similarity variable

\(\Theta\) :

Dimensionless temperature

\(\lambda\) :

Mixed convection parameter

\(\mu\) :

Dynamic viscosity

\(\nu\) :

Kinematic viscosity

\(\rho\) :

Effective density

\(\rho c_{p}\) :

Heat capacity

\(\sigma\) :

Electrical conductivity

\(\tau\) :

Ratio of the effective heat capacity of the nanomaterial and base fluid

\(\tau_{t}\) :

Heat flux relaxation time

\(\tau_{c}\) :

Mass flux relaxation time

\(\varphi\) :

Dimensionless concentration

\(\phi\) :

Volume fraction of nanoparticle

\(^{\prime}\) :

Derivative w.r.t η

f :

Base fluid

nf :

Nanofluid

p :

Solid particle

w :

Wall

\(\infty\) :

Ambient condition

References

  1. Choi, S.U., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135–29). Argonne National Lab., IL (1995)

  2. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)

    Article  Google Scholar 

  3. Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50(9–10), 2002–2018 (2007)

    Article  MATH  Google Scholar 

  4. Khan, M.R., Pan, K., Khan, A.U., Ullah, N.: Comparative study on heat transfer in CNTs-water nanofluid over a curved surface. Int Commun Heat Mass Transf 116, 104707 (2020)

    Article  Google Scholar 

  5. Khan, M.R., Li, M., Mao, S., Ali, R., Khan, S.: Comparative study on heat transfer and friction drag in the flow of various hybrid nanofluids effected by aligned magnetic field and nonlinear radiation. Sci. Rep. 11(1), 1–14 (2021)

    Article  Google Scholar 

  6. Akram, J., Akbar, N.S., Tripathi, D.: Numerical simulation of electrokinetically driven peristaltic pumping of silver–water nanofluids in an asymmetric microchannel. Chin. J. Phys. 68, 745–763 (2020)

    Article  MathSciNet  Google Scholar 

  7. Mishra, A., Kumar, M.: Numerical analysis of MHD nanofluid flow over a wedge, including effects of viscous dissipation and heat generation/absorption, using Buongiorno model. Heat Transf. (2021). https://doi.org/10.1002/htj.22284

    Article  Google Scholar 

  8. Rawat, S.K., Mishra, A., Kumar, M.: Numerical study of thermal radiation and suction effects on copper and silver water nanofluids past a vertical Riga plate. Multidiscip. Model. Mater. Struct. 15(4), 714–736 (2019)

    Article  Google Scholar 

  9. Rawat, S.K., Upreti, H., Kumar, M.: Comparative study of mixed convective MHD Cu–water nanofluid flow over a cone and wedge using modified Buongiorno’s model in presence of thermal radiation and chemical reaction via Cattaneo–Christov double diffusion model. J. Appl. Comput. Mech. (2020)

  10. Khan, M.R., Pan, K., Khan, A.U., Nadeem, S.: Dual solutions for mixed convection flow of SiO2–Al2O3/water hybrid nanofluid near the stagnation point over a curved surface. Phys A Stat Mech Appl 547, 123959 (2020)

    Article  Google Scholar 

  11. Sohail, M., Naz, R., Shah, Z., Kumam, P., Thounthong, P.: Exploration of temperature dependent thermophysical characteristics of yield exhibiting non-Newtonian fluid flow under gyrotactic microorganisms. AIP Adv 9(12), 125016 (2019)

    Article  Google Scholar 

  12. Naz, R., Tariq, S., Sohail, M., Shah, Z.: Investigation of entropy generation in stratified MHD Carreau nanofluid with gyrotactic microorganisms under Von Neumann similarity transformations. Eur. Phys. J. Plus 135(2), 1–22 (2020)

    Article  Google Scholar 

  13. Naseem, T., Nazir, U., Sohail, M.: Contribution of Dufour and Soret effects on hydromagnetized material comprising temperature-dependent thermal conductivity. Heat Transf. 50, 7157–7175 (2021)

    Article  Google Scholar 

  14. Sohail, M., Nazir, U., Chu, Y.M., Al-Kouz, W., Thounthong, P.: Bioconvection phenomenon for the boundary layer flow of magnetohydrodynamic Carreau liquid over a heated disk. Scientia Iranica 28(3), 1896–1907 (2021)

    Google Scholar 

  15. Mishra, A., Kumar, M.: Viscous dissipation and Joule heating influences past a stretching sheet in a porous medium with thermal radiation saturated by silver–water and copper–water nanofluids. Special Top. Rev. Porous Media Int. J. 10(2), 171–186 (2019)

    Article  Google Scholar 

  16. Khan, M.R.: Numerical analysis of oblique stagnation point flow of nanofluid over a curved stretching/shrinking surface. Phys Scr. 95(10), 105704 (2020)

    Article  Google Scholar 

  17. Fourier, J.B.J.: Théorie analytique de la chaleur. Académie des Sciences, Paris (1822)

    MATH  Google Scholar 

  18. Fick, A.: Ueber diffusion. Ann. Phys. 170(1), 59–86 (1855)

    Article  Google Scholar 

  19. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  20. Christov, C.I.: On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36(4), 481–486 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Anjum, A., Mir, N.A., Farooq, M., Javed, M., Ahmad, S., Malik, M.Y., Alshomrani, A.S.: Physical aspects of heat generation/absorption in the second grade fluid flow due to Riga plate: application of Cattaneo–Christov approach. Results Phys 9, 955–960 (2018)

    Article  Google Scholar 

  22. Li, X., Khan, A.U., Khan, M.R., Nadeem, S., Khan, S.U.: Oblique stagnation point flow of nanofluids over stretching/shrinking sheet with Cattaneo–Christov heat flux model: existence of dual solution. Symmetry 11(9), 1070 (2019)

    Article  Google Scholar 

  23. Rawat, S.K., Kumar, M.: Cattaneo–Christov heat flux model in flow of copper water nanofluid through a stretching/shrinking sheet on stagnation point in presence of heat generation/absorption and activation energy. Int. J. Appl. Comput. Math. 6(4), 1–26 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sohail, M., Naz, R., Abdelsalam, S.I.: Application of non-Fourier double diffusions theories to the boundary-layer flow of a yield stress exhibiting fluid model. Phys. A Stat. Mech. Appl. 537, 122753 (2020)

    Article  MathSciNet  Google Scholar 

  25. Ali, B., Hussain, S., Nie, Y., Hussein, A.K., Habib, D.: Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo–Christov heat flux model. Powder Technol. 377, 439–452 (2021)

    Article  Google Scholar 

  26. Sohail, M., Naz, R.: Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder. Phys A Stat Mech Appl 549, 124088 (2020)

    Article  MathSciNet  Google Scholar 

  27. Nazir, U., Saleem, S., Nawaz, M., Sadiq, M.A., Alderremy, A.A.: Study of transport phenomenon in Carreau fluid using Cattaneo-Christov heat flux model with temperature dependent diffusion coefficients. Phys. A Stat. Mech. Appl. 554, 123921 (2020)

    Article  MathSciNet  Google Scholar 

  28. Hafeez, A., Khan, M., Ahmed, A., Ahmed, J.: Rotational flow of Oldroyd-B nanofluid subject to Cattaneo–Christov double diffusion theory. Appl. Math. Mech. 41, 1083–1094 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bilal, S., Sohail, M., Naz, R.: Heat transport in the convective Casson fluid flow with homogeneous-heterogeneous reactions in Darcy-Forchheimer medium. Multidiscip. Model. Mater. Struct. 15, 1170–1189 (2019)

    Article  Google Scholar 

  30. Hafeez, A., Khan, M., Ahmed, J.: Flow of Oldroyd-B fluid over a rotating disk with Cattaneo-Christov theory for heat and mass fluxes. Comput. Methods Programs Biomed. 191, 105374 (2020)

    Article  Google Scholar 

  31. Shankar, U., Naduvinamani, N.B., Basha, H.: A generalized perspective of Fourier and Fick’s laws: magnetized effects of Cattaneo–Christov models on transient nanofluid flow between two parallel plates with Brownian motion and thermophoresis. Nonlinear Eng. 9(1), 201–222 (2020)

    Article  Google Scholar 

  32. Muhammad, T., Rafique, K., Asma, M., Alghamdi, M.: Darcy-Forchheimer flow over an exponentially stretching curved surface with Cattaneo-Christov double diffusion. Phys. A Stat. Mech. Appl. 556, 123968 (2020)

    Article  MathSciNet  Google Scholar 

  33. Mishra, A., Kumar, M.: Thermal performance of MHD nanofluid flow over a stretching sheet due to viscous dissipation, Joule heating and thermal radiation. Int. J. Appl. Comput. Math. 6(4), 1–17 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nadeem, S., KhanM, R., Khan, A.U.: MHD stagnation point flow of viscous nanofluid over a curved surface. Phys Scr 94(11), 115207 (2019)

    Article  Google Scholar 

  35. Qaiser, D., Zheng, Z., Khan, M.R.: Numerical assessment of mixed convection flow of Walters-B nanofluid over a stretching surface with Newtonian heating and mass transfer. Therm. Sci. Eng. Prog 22, 100801 (2020)

    Article  Google Scholar 

  36. Li, Y.X., Alshbool, M.H., Lv, Y.P., Khan, I., Khan, M.R., Issakhov, A.: Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface. Case Stud Therm Eng 26, 100975 (2021)

    Article  Google Scholar 

  37. Nadeem, S., Khan, A.U.: MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions. Phys Scr 94(7), 075204 (2019)

    Article  Google Scholar 

  38. Mishra, A., Kumar, M.: Ohmic–viscous dissipation and heat generation/absorption effects on MHD nanofluid flow over a stretching cylinder with suction/injection. In: Advanced Computing and Communication Technologies, pp. 45–55. Springer, Singapore (2019)

  39. Mishra, A., Kumar, M.: Influence of viscous dissipation and heat generation/absorption on Ag-water nanofluid flow over a Riga plate with suction. Int J Fluid Mech Res 46(2), 113–125 (2019)

    Article  Google Scholar 

  40. Rawat, S.K., Upreti, H., Kumar, M.: Thermally stratified nanofluid flow over porous surface cone with Cattaneo–Christov heat flux approach and heat generation (or) absorption. SN Appl. Sci. 2(2), 1–18 (2020)

    Article  Google Scholar 

  41. Yaseen, M., Rawat, S.K., Kumar, M.: Hybrid nanofluid (MoS2–SiO2/water) flow with viscous dissipation and Ohmic heating on an irregular variably thick convex/concave‐shaped sheet in a porous medium. Heat Transf. (2021)

  42. Babu, M.J., Sandeep, N., Saleem, S.: Free convective MHD Cattaneo–Christov flow over three different geometries with thermophoresis and Brownian motion. Alex. Eng. J. 56(4), 659–669 (2017)

    Article  Google Scholar 

  43. Vajravelu, K., Nayfeh, J.: Hydromagnetic convection at a cone and a wedge. Int. Commun. Heat Mass Transf. 19(5), 701–710 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by UGC, Government of India (F. No. 16-6 (Dec. 2017)/2018 (NET/CSIR)) and thankfully recognized by the first author.

Funding

This research was supported by UGC, Government of India (F. No. 16-6 (Dec. 2017)/2018 (NET/CSIR)) and thankfully recognized by the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sawan Kumar Rawat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, S.K., Negi, S., Upreti, H. et al. A Non-Fourier’s and Non-Fick’s Approach to Study MHD Mixed Convective Copper Water Nanofluid Flow over Flat Plate Subjected to Convective Heating and Zero Wall Mass Flux Condition. Int. J. Appl. Comput. Math 7, 246 (2021). https://doi.org/10.1007/s40819-021-01190-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01190-4

Keywords

Navigation