Skip to main content
Log in

Computing the arrows of chemical reactions

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

The use of curved arrows to describe the movement of electrons in chemical reaction schemes is widespread in several areas of chemistry, especially organic chemistry. The drawing of such arrows is guided by chemical intuition on the nature of nucleophiles and electrophiles. Here we show that it is actually possible to compute arrows from single-determinant computational quantum chemistry calculations. The procedure, which is outlined for the aldol reaction, is based on the computation of localized orbitals and their centroids along the intrinsic reaction coordinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Levy DE (2008) Arrow pushing in organic chemistry: an easy approach to understanding reaction mechanisms. Wiley, Hoboken

    Book  Google Scholar 

  2. Brisbois RG (1992) J Chem Educ 69:971

    Article  Google Scholar 

  3. Penn JH, Al-Shammari AG (2008) J Chem Educ 85:1291

    Article  CAS  Google Scholar 

  4. Ruder SM, Straumanis AR (2009) J Chem Educ 86:1392

    Article  CAS  Google Scholar 

  5. Straumanis AR, Ruder SM (2009) J Chem Educ 86:1389

    Article  CAS  Google Scholar 

  6. Berg S, Ghosh AJ (2011) Chem Educ 88:1663

    Article  CAS  Google Scholar 

  7. Berg S, Ghosh AJ (2013) Chem Educ 90:1446

    Article  CAS  Google Scholar 

  8. Foster JM, Boys SF (1960) Rev Mod Phys 32:300

    Article  CAS  Google Scholar 

  9. Coulson CA (1942) Trans Faraday Soc 38:433

    Article  CAS  Google Scholar 

  10. Edmiston C, Ruedenberg K (1965) J Chem Phys 43:S97

    Article  CAS  Google Scholar 

  11. Magnasco V, Perico A (1967) J Chem Phys 47:971

  12. Knizia G, Klein JEMN (2015) Angew Chem Int Ed 54:1

    Article  Google Scholar 

  13. Boys SF (1960) Rev Mod Phys 32:296

    Article  CAS  Google Scholar 

  14. Edmiston C, Ruedenberg K (1963) Rev Mod Phys 35:457

    Article  CAS  Google Scholar 

  15. Pipek J, Mezey PG (1989) J Chem Phys 90:4916

    Article  CAS  Google Scholar 

  16. Gallup GA (1988) J Chem Educ 65:671

    Article  CAS  Google Scholar 

  17. Martin RB (1988) J Chem Educ 65:668

    Article  CAS  Google Scholar 

  18. Bernett WAJ (1969) Chem Educ, 46:746

    Article  CAS  Google Scholar 

  19. Hoffman DK, Ruedenberg K, Verkade JG (1977) J Chem Educ 54:590

    Article  CAS  Google Scholar 

  20. Autschbach J (2012) J Chem Educ 89:1032

    Article  CAS  Google Scholar 

  21. Marzari N, Mostofi AA, Yates JR, Souza I, Vanderbilt D (2012) Rev Mod Phys 84:1419

    Article  CAS  Google Scholar 

  22. Abu-Farsakh H, Qteish A (2007) Phys Rev B 75:085201

    Article  Google Scholar 

  23. Alber F, Folkers G, Carloni P (1999) J Phys Chem B 103:6121

    Article  CAS  Google Scholar 

  24. Sit PHL, Zipoli F, Chen J, Car R, Cohen MH, Selloni A (2011) Chem Eur J 17:12136

    Article  CAS  Google Scholar 

  25. Silvestrelli PL, Marzari N, Vanderbilt D, Parrinello M (1998) Solid State Commun 107:7

    Article  CAS  Google Scholar 

  26. Moyano A, Pericas MA, Serratosa F, Valenti E (1987) J Org Chem 52:5532

    Article  CAS  Google Scholar 

  27. Burke LA, Leroy G, Sana M (1975) Theor Chim Acta 40:313

    Article  CAS  Google Scholar 

  28. Vidossich P, Lledos A (2014) Dalton Trans 43:11145

    Article  CAS  Google Scholar 

  29. Vidossich P, Ujaque G, Lledos A (2012) Chem Commun 48:1979

    Article  CAS  Google Scholar 

  30. Salem L (1978) Nouv J Chim 2:559

    CAS  Google Scholar 

  31. Salem L (1979) Int J Quantum Chem 13:321

    CAS  Google Scholar 

  32. Ponec R (1997) Int J Quantum Chem 62:171

    Article  CAS  Google Scholar 

  33. Ponec R (2017) J Phys Org Chem. https://doi.org/10.1002/poc3706

    Google Scholar 

  34. Zhang X, Houk KN (2005) J Org Chem 70:9712

    Article  CAS  Google Scholar 

  35. Csizmar CM, Daniels JP, Davis LE, Hoovis TP, Hammond KA, McDougal OM, Warner DL (2013) J Chem Educ 90:1235

    Article  CAS  Google Scholar 

  36. Montgomery CD (2013) J Chem Educ 90:1396

    Article  CAS  Google Scholar 

  37. Shaik S (2007) New J Chem 31:2015

  38. Mulliken RS (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

  39. Lowdin PO (1955) Phys Rev 97:1474

    Article  Google Scholar 

  40. Bader RFW (1985) Acc Chem Res 18:9

    Article  CAS  Google Scholar 

  41. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Spanish Ministerio de Economía y Competitividad (project CTQ2014-54071-P) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Vidossich.

Additional information

The topic treated here is appropriate for undergraduate students with a background in computational quantum chemistry and organic chemistry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 150 KB)

Description of the procedure for computing and visualizing localized orbitals and the associated centroids. Input files for Gaussian09. A movie showing centroids displacements along the reaction path. (MPG 331 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidossich, P., Lledós, A. Computing the arrows of chemical reactions. ChemTexts 3, 17 (2017). https://doi.org/10.1007/s40828-017-0054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-017-0054-8

Keywords

Navigation