Skip to main content
Log in

Designing excellent mid-infrared nonlinear optical materials with fluorooxo-functional group of d0 transition metal oxyfluorides

基于氟化功能基团的d0过渡金属氟氧化物中红外非线性光学材料设计研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Exploration of new infrared (IR) nonlinear optical (NLO) materials is still in urgency owing to the indispensable roles in optoelectronic devices, resource exploration, and long-distance laser communication. The formidable challenge is to balance the contradiction between wide band gaps and large second harmonic generation (SHG) effects in IR NLO materials. In the present work, we proposed new kinds of NLO active units, d0 transition metal fluorooxo-functional groups for designing mid-IR NLO materials. By studying a series of d0 transition metal oxyfluorides (TMOFs), the influences of fluorooxo-functional groups with different d0 configuration cations on the band gap and SHG responses were explored. The results reveal that the fluorooxo-functional groups with different d0 configuration cations can enlarge band gaps in mid-IR NLO materials. The first-principles calculations demonstrate that the nine alkali/alkaline earth metals d0 TMOFs exhibit wide band gaps (all the band gaps > 3.0 eV), large birefringence Δn (> 0.07), and two W/Mo TMOFs also exhibit large SHG responses. Moreover, by comparing with other fluorooxo-functional groups, it is found that introducing fluorine into building units is an effective way to enhance optical performance. These d0 TMOFs with superior fluorooxo-functional groups represent a new exploration family of the mid-IR region, which sheds light on the design of mid-IR NLO materials possessing large band gap.

摘要

红外非线性光学晶体在光电器件、资源勘探和长距离激光通讯等领域具有极其重要的应用, 因此探索性能优异的新型红外非线性光学晶体材料已成为该领域的一个重要方向. 当前, 该领域面临的主要挑战之一是如何实现宽带隙和大倍频效应之间的平衡. 本文中, 我们提出一种设计策略, 即引入d0过渡金属的氟化功能基团作为活性基元, 设计中红外非线性光学晶体材料. 通过对含d0过 渡金属氟氧化物的系统研究, 我们探索了这类氟化功能基团对带隙和倍频响应的影响机制. 研究发现d0过渡金属的氟化功能基团有利于产生较大的带隙. 基于第一性原理计算, 我们分析了碱金属/碱土金属d0过渡金属氟氧化物的光学性能, 它们具有宽的带隙(> 3.0 eV)和大的双折射率(>0.07),其中2个分别含W和Mo的氟氧化物也呈现了较强的倍频效应. 此外, 我们对比分析了其他氟化功能基团, 发现在基本构筑基元中引入氟离子有利于光学性能的提升. 由此说明, 这种具有优异氟化功能基团的d0过渡金属氟氧化物, 可以作为探索新型中红外非线性光学的潜在体系.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen C, Sasaki T, Li R, et al. Nonlinear Optical Borate Crystals. Weinheim: Weily-VCH, 2012

    Google Scholar 

  2. Halasyamani PS, Poeppelmeier KR. Noncentrosymmetric oxides. Chem Mater, 1998, 10: 2753–2769

    CAS  Google Scholar 

  3. Hu CL, Mao JG. Recent advances on second-order NLO materials based on metal iodates. Coord Chem Rev, 2015, 288: 1–17

    CAS  Google Scholar 

  4. Wang Y, Pan S. Recent development of metal borate halides: Crystal chemistry and application in second-order NLO materials. Coord Chem Rev, 2016, 323: 15–35

    CAS  Google Scholar 

  5. Tran TT, Yu H, Rondinelli JM, et al. Deep ultraviolet nonlinear optical materials. Chem Mater, 2016, 28: 5238–5258

    CAS  Google Scholar 

  6. Pan Y, Guo SP, Liu BW, et al. Second-order nonlinear optical crystals with mixed anions. Coord Chem Rev, 2018, 374: 464–496

    CAS  Google Scholar 

  7. Zhou GJ, Guo S, Zhao J, et al. Unraveling the mechanochemical synthesis and luminescence in MnII-based two-dimensional hybrid perovskite (C4H9NH3)2PbCl4. Sci China Mater, 2019, 62: 1013–1022

    CAS  Google Scholar 

  8. Zou GH, Lin C, Jo H, et al. Pb2BO3Cl: A tailor-made polar lead borate chloride with very strong second harmonic generation. Angew Chem Int Ed, 2016, 55: 12078–12082

    CAS  Google Scholar 

  9. Zhang XY, Wu H, Yu H, et al. Ba4M(CO3)2(BO3)2 (M = Ba, Sr): two borate-carbonates synthesized by open high temperature solution method. Sci China Mater, 2019, 62: 1023–1032

    CAS  Google Scholar 

  10. Zheng Z, Gan L, Zhai T. Electrospun nanowire arrays for electronics and optoelectronics. Sci China Mater, 2016, 59: 200–216

    CAS  Google Scholar 

  11. Cyranoski D. Materials science: China’s crystal cache. Nature, 2009, 457: 953–955

    CAS  Google Scholar 

  12. Chen C, Wu B, Jiang A, et al. A new-type ultraviolet SHG crystal β-BaB2O4. Sci Sin B (Engl Ed), 1985, 28: 235–243

    Google Scholar 

  13. Chen C, Wu Y, Jiang A, et al. New nonlinear-optical crystal: LiB3O5. J Opt Soc Am B, 1989, 6: 616–621

    CAS  Google Scholar 

  14. Smith WL. KDP and ADP transmission in the vacuum ultraviolet. Appl Opt, 1977, 16: 1798

    CAS  Google Scholar 

  15. Kato K. Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm. IEEE J Quantum Electron, 1991, 27: 1137–1140

    CAS  Google Scholar 

  16. Boyd GD, Kasper H, McFee J, et al. Linear and nonlinear optical properties of some ternary selenides. IEEE J Quantum Electron, 1972, 8: 900–908

    CAS  Google Scholar 

  17. Boyd GD, Buehler E, Storz FG. Linear and nonlinear optical properties of ZnGeP2 and CdSe. Appl Phys Lett, 1971, 18: 301–304

    CAS  Google Scholar 

  18. Hu C, Zhang B, Lei BH, et al. Advantageous units in antimony sulfides: Exploration and design of infrared nonlinear optical materials. ACS Appl Mater Interfaces, 2018, 10: 26413–26421

    CAS  Google Scholar 

  19. Chang HY, Kim SH, Halasyamani PS, et al. Alignment of lone pairs in a new polar material: synthesis, characterization, and functional properties of Li2Ti(IO3)6. J Am Chem Soc, 2009, 131: 2426–2427

    CAS  Google Scholar 

  20. Jo H, Lee S, Choi KY, et al. Li6M(SeO3)4 (M = Co, Ni, and Cd) and Li2Zn(SeO3)2: Selenites with late transition-metal cations. Inorg Chem, 2018, 57: 3465–3473

    CAS  Google Scholar 

  21. Liang F, Kang L, Lin Z, et al. Mid-infrared nonlinear optical materials based on metal chalcogenides: Structure-property relationship. Cryst Growth Des, 2017, 17: 2254–2289

    CAS  Google Scholar 

  22. Mori Y, Kuroda I, Nakajima S, et al. New nonlinear optical crystal: Cesium lithium borate. Appl Phys Lett, 1995, 67: 1818–1820

    CAS  Google Scholar 

  23. Inaguma Y, Yoshida M, Katsumata T. A polar oxide ZnSnO3 with a LiNbO3-type structure. J Am Chem Soc, 2008, 130: 6704–6705

    CAS  Google Scholar 

  24. Jiang X, Zhao S, Lin Z, et al. The role of dipole moment in determining the nonlinear optical behavior of materials: ab initio studies on quaternary molybdenum tellurite crystals. J Mater Chem C, 2014, 2: 530–537

    CAS  Google Scholar 

  25. Liang ML, Hu CL, Kong F, et al. BiFSeO3: An excellent SHG material designed by aliovalent substitution. J Am Chem Soc, 2016, 138: 9433–9436

    CAS  Google Scholar 

  26. Mao FF, Hu CL, Chen J, et al. A series of mixed-metal germanium iodates as second-order nonlinear optical materials. Chem Mater, 2018, 30: 2443–2452

    CAS  Google Scholar 

  27. Zhang B, Shi G, Yang Z, et al. Fluorooxoborates: Beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. Angew Chem Int Ed, 2017, 56: 3916–3919

    CAS  Google Scholar 

  28. Shi G, Wang Y, Zhang F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J Am Chem Soc, 2017, 139: 10645–10648

    CAS  Google Scholar 

  29. Li H, Li G, Wu K, et al. BaB2S4: An efficient and air-stable thioborate as infrared nonlinear optical material with high laser damage threshold. Chem Mater, 2018, 30: 7428–7432

    CAS  Google Scholar 

  30. Chung I, Kanatzidis MG. Metal chalcogenides: A rich source of nonlinear optical materials. Chem Mater, 2014, 26: 849–869

    CAS  Google Scholar 

  31. Liang F, Kang L, Lin Z, et al. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures. Coord Chem Rev, 2017, 333: 57–70

    CAS  Google Scholar 

  32. Isaenko LI, Yelisseyev AP. Recent studies of nonlinear chalcogenide crystals for the mid-IR. Semicond Sci Technol, 2016, 31: 123001–123025

    Google Scholar 

  33. Wu K, Pan S. A review on structure-performance relationship toward the optimal design of infrared nonlinear optical materials with balanced performances. Coord Chem Rev, 2018, 377: 191–208

    CAS  Google Scholar 

  34. Kang L, Ramo DM, Lin Z, et al. First principles selection and design of mid-IR nonlinear optical halide crystals. J Mater Chem C, 2013, 1: 7363–7370

    CAS  Google Scholar 

  35. Guo SP, Chi Y, Guo GC. Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord Chem Rev, 2017, 335: 44–57

    CAS  Google Scholar 

  36. Gong P, Liang F, Kang L, et al. Recent advances and future perspectives on infrared nonlinear optical metal halides. Coord Chem Rev, 2019, 380: 83–102

    CAS  Google Scholar 

  37. Li YY, Wang WJ, Wang H, et al. Mixed-anion inorganic compounds: A favorable candidate for infrared nonlinear optical materials. Cryst Growth Des, 2019, 19: 4172–4192

    CAS  Google Scholar 

  38. Zhang H, Zhang M, Pan S, et al. Pb17O8Cl18: A promising IR nonlinear optical material with large laser damage threshold synthesized in an open system. J Am Chem Soc, 2015, 137: 8360–8363

    CAS  Google Scholar 

  39. Yang Z, Hu C, Mutailipu M, et al. Oxyhalides: Prospecting ore for optical functional materials with large laser damage thresholds. J Mater Chem C, 2018, 6: 2435–2442

    CAS  Google Scholar 

  40. Zhu T, Chen X, Qin J. Research progress on mid-IR nonlinear optical crystals with high laser damage threshold in China. Front Chem China, 2011, 6: 1–8

    Google Scholar 

  41. Wu BL, Hu C, Tang R, et al. Fluoroborophosphates: A family of potential deep ultraviolet NLO materials. Inorg Chem Front, 2019, 6: 723–730

    CAS  Google Scholar 

  42. Han G, Lei BH, Yang Z, et al. A fluorooxosilicophosphate with an unprecedented SiO2F4 species. Angew Chem Int Ed, 2018, 57: 9828–9832

    CAS  Google Scholar 

  43. Zhang BB, Tikhonov E, Xie C, et al. Prediction of fluorooxoborates with colossal second harmonic generation (SHG) coefficients and extremely wide band gaps: towards modulating properties by tuning the BO3/BO3F ratio in layers. Angew Chem Int Ed, 2019, 58: 11726–11730

    CAS  Google Scholar 

  44. Wang XF, Wang Y, Zhang B, et al. CsB4O6F: A congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units. Angew Chem Int Ed, 2017, 56: 14119–14123

    CAS  Google Scholar 

  45. Mutailipu M, Zhang M, Zhang B, et al. SrB5O7F3 functionalized with [B5O9F3]6− chromophores: Accelerating the rational design of deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 6095–6099

    CAS  Google Scholar 

  46. Luo M, Liang F, Song Y, et al. Rational design of the first lead/tin fluorooxoborates MB2O3F2 (M = Pb, Sn), containing flexible two-dimensional [B6O12F6] single layers with widely divergent second harmonic generation effects. J Am Chem Soc, 2018, 140: 6814–6817

    CAS  Google Scholar 

  47. Jantz SG, Dialer M, Bayarjargal L, et al. Sn[B2O3F2]-the first tin fluorooxoborate as possible NLO material. Adv Opt Mater, 2018, 6: 1800497–1800505

    Google Scholar 

  48. Halasyamani PS. Asymmetric cation coordination in oxide materials: Influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Chem Mater, 2004, 16: 3586–3592

    CAS  Google Scholar 

  49. Ok KM, Halasyamani PS, Casanova D, et al. Distortions in octahedrally coordinated d0 transition metal oxides: A continuous symmetry measures approach. Chem Mater, 2006, 18: 3176–3183

    CAS  Google Scholar 

  50. Gautier R, Gautier R, Chang KB, et al. On the origin of the differences in structure directing properties of polar metal oxyfluoride [MOxF6−x]2− (x = 1, 2) building units. Inorg Chem, 2015, 54: 1712–1719

    CAS  Google Scholar 

  51. Marvel MR, Lesage J, Baek J, et al. Cation-anion interactions and polar structures in the solid state. J Am Chem Soc, 2007, 129: 13963–13969

    CAS  Google Scholar 

  52. Welk ME, Norquist AJ, Arnold FP, et al. Out-of-center distortions in d0 transition metal oxide fluoride anions. Inorg Chem, 2002, 41: 5119–5125

    CAS  Google Scholar 

  53. Marvel MR, Pinlac RAF, Lesage J, et al. Chemical hardness and the adaptive coordination behavior of the d0 transition metal oxide fluoride anions. Z Anorg Allg Chem, 2009, 635: 869–877

    CAS  Google Scholar 

  54. Mishra AK, Marvel MR, Poeppelmeier KR, et al. Competing cation anion interactions and noncentrosymmetry in metal oxide-fluorides: A first-principles theoretical study. Cryst Growth Des, 2014, 14: 131–139

    CAS  Google Scholar 

  55. Pauling L. The principles determining the structure of complex ionic crystals. J Am Chem Soc, 1929, 51: 1010–1026

    CAS  Google Scholar 

  56. Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z für Kristallographie-Crystline Mater, 2005, 220: 567–570

    CAS  Google Scholar 

  57. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    CAS  Google Scholar 

  58. Lin JS, Qteish A, Payne MC, et al. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys Rev B, 1993, 47: 4174–4180

    CAS  Google Scholar 

  59. Aversa C, Sipe JE. Nonlinear optical susceptibilities of semi-conductors: Results with a length-gauge analysis. Phys Rev B, 1995, 52: 14636–14645

    CAS  Google Scholar 

  60. Rashkeev SN, Lambrecht WRL, Segall B. Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors. Phys Rev B, 1998, 57: 3905–3919

    CAS  Google Scholar 

  61. Zhang B, Lee MH, Yang Z, et al. Simulated pressure-induced blue-shift of phase-matching region and nonlinear optical mechanism for K3B6O10X (X = Cl, Br). Appl Phys Lett, 2015, 106: 031906

    Google Scholar 

  62. Lin J, Lee MH, Liu ZP, et al. Mechanism for linear and nonlinear optical effects in β-BaB2O4 crystals. Phys Rev B, 1999, 60: 13380–13389

    CAS  Google Scholar 

  63. Stomberg R. ChemInform abstract: the crystal structure of a-sodium hexafluorooxoniobate(V), α-Na3(NBF6O). Chemischer Infsdienst, 1984, 15

  64. Gerasimenko AV, Bukvetskii BV, Chernyshov BN, et al. ChemInform abstract: Crystal structure of K3TiF3(O2)2. ChemInform, 1990, 21

  65. Vasiliev AD, Laptash NM. Polymorphism of KNaNbOF5 crystals. J Struct Chem, 2012, 53: 902–906

    CAS  Google Scholar 

  66. Yu ZQ, Wang JQ, Huang YX, et al. Polymorphism of NaVO2F2: a P21/c superstructure with pseudosymmetry of P21/m in the subcell. Acta Crystlogr C Struct Chem, 2015, 71: 440–447

    CAS  Google Scholar 

  67. Sheng J, Tang K, Cheng W, et al. Controllable solvothermal synthesis and photocatalytic properties of complex (oxy)fluorides K2TiOF4, K3TiOF5, K7Ti4O4F7 and K2TiF6. J Hazard Mater, 2009, 171: 279–287

    CAS  Google Scholar 

  68. Crosnier MP, Fourquet JL. Synthesis and crystal structure of a new acentric oxyfluoride: Ba2TiOF6. J Solid State Chem, 1992, 99: 355–363

    CAS  Google Scholar 

  69. Wingefeld G, Hoppe R. Zur Konstitution von Ba2WO3F4 und Ba2MoO3F4. Z Anorg Allg Chem, 1984, 518: 149–160

    CAS  Google Scholar 

  70. Torardi CC, Brixner LH. Structure and luminescence of Ba2WO3F4. Mater Res Bull, 1985, 20: 137–145

    CAS  Google Scholar 

  71. Bian Q, Yang Z, Dong L, et al. First principle assisted prediction of the birefringence values of functional inorganic borate materials. J Phys Chem C, 2014, 118: 25651–25657

    CAS  Google Scholar 

  72. Jiang X, Luo S, Kang L, et al. First-principles evaluation of the alkali and/or alkaline earth beryllium borates in deep ultraviolet nonlinear optical applications. ACS Photonics, 2015, 2: 1183–1191

    CAS  Google Scholar 

  73. Yu H, Zhang W, Halasyamani PS. Large birefringent materials, Na6Te4W6O29 and Na2TeW2O9: Synthesis, structure, crystal growth, and characterization. Cryst Growth Des, 2016, 16: 1081–1087

    CAS  Google Scholar 

  74. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian09, RevisionD.01, Gaussian, Inc, Wallingford CT, 2009

    Google Scholar 

  75. Charles N, Saballos RJ, Rondinelli JM. Structural diversity from anion order in heteroanionic materials. Chem Mater, 2018, 30: 3528–3537

    CAS  Google Scholar 

  76. Krukau AV, Vydrov OA, Izmaylov AF, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys, 2006, 125: 224106–224111

    Google Scholar 

Download references

Acknowledgements

This work is supported by Tianshan Innovation Team Program (2018D14001), the National Natural Science Foundation of China (51922014 and 11774414), Shanghai Cooperation Organization Science and Technology Partnership Program (2017E01013), Xinjiang Program of Introducing High-Level Talents, Fujian Institute of Innovation, Chinese Academy of Sciences (FJCXY18010202), and the Western Light Foundation of CAS (2017-XBQNXZ-B-006 and 2016-QNXZ-B-9).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Huang J, Guo S and Zhang Z performed the theoretical data analysis; Huang J and Yang Z wrote the paper; Yang Z and Pan S designed the concept and supervised the theoretical data. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Zhihua Yang  (杨志华) or Shilie Pan  (潘世烈).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Junben Huang received his BSc degree in Hexi University in 2014 and MSc degree in Xinjiang University in 2017. From 2018 to 2019, he was a research assistant in Technical Institute of Physics & Chemistry (XTIPC), Chinese Academy of Sciences (CAS). Now, he joined Professor Gemei Cai’s research group as a PhD student at Central South University. He is currently focusing on the optical materials.

Zhihuang Yang completed her PhD under the supervision of Professor Jianhui Dai in Zhejiang University in 2008. From 2009 to 2011, she was a post-doctoral fellow at Sungkyunkwan University in Korea. From 2011, she worked as a full professor at XTIPC, CAS. Her current research interests focus on the response mechanism, structure prediction, design and synthesis of new optical functional materials.

Shilie Pan completed his PhD under the supervision of Professor Yicheng Wu (Academician) at the University of Science & Technology of China in 2002. From 2002 to 2004, he was a postdoctoral fellow at Technical Institute of Physics & Chemistry of CAS in the laboratory of Professor Chuangtian Chen (Academician). From 2004 to 2007, he was a post-doctoral fellow at Northwestern University in the laboratory of Professor Kenneth R. Poeppelmeier in USA. Since 2007, he has worked as a full professor at XTIPC, CAS. His current research interests include the design, synthesis, crystal growth and evaluation of new optical-electronic functional materials.

Electronic supplementary material

40843_2019_1201_MOESM1_ESM.pdf

Designing excellent mid-infrared nonlinear optical materials with fluorooxo-functional group of d0 transition metal oxyfluorides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Guo, S., Zhang, Z. et al. Designing excellent mid-infrared nonlinear optical materials with fluorooxo-functional group of d0 transition metal oxyfluorides. Sci. China Mater. 62, 1798–1806 (2019). https://doi.org/10.1007/s40843-019-1201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-1201-5

Keywords

Navigation