Skip to main content
Log in

Nanostructured CdS for efficient photocatalytic H2 evolution: A review

纳米结构硫化镉光催化分解水产氢综述

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Cadmium sulfide (CdS)-based photocatalysts have attracted extensive attention owing to their strong visible light absorption, suitable band energy levels, and excellent electronic charge transportation properties. This review focuses on the recent progress related to the design, modification, and construction of CdS-based photocatalysts with excellent photocatalytic H2 evolution performances. First, the basic concepts and mechanisms of photocatalytic H2 evolution are briefly introduced. Thereafter, the fundamental properties, important advancements, and bottlenecks of CdS in photocatalytic H2 generation are presented in detail to provide an overview of the potential of this material. Subsequently, various modification strategies adopted for CdS-based photocatalysts to yield solar H2 are discussed, among which the effective approaches aim at generating more charge carriers, promoting efficient charge separation, boosting interfacial charge transfer, accelerating charge utilization, and suppressing charge-induced self-photocorrosion. The critical factors governing the performance of the photocatalyst and the feasibility of each modification strategy toward shaping future research directions are comprehensively discussed with examples. Finally, the prospects and challenges encountered in developing nanostructured CdS and CdS-based nanocomposites in photocatalytic H2 evolution are presented.

摘要

太阳能驱动光催化分解水制氢实现可持续制氢气的一种有 效策略. 硫化镉半导体光催化剂基于其较强的可见光响应、适宜 的氧化还原反应带边位置以及优异的电荷传输性能而备受关注. 本文综述了近年来国内外在提高硫化镉基光催化剂制氢性能的设 计、改性和制备等方面的研究进展. 首先简要介绍了光催化制氢 的基本概念和机理, 阐述了硫化镉光催化制氢的基本性质、重要 进展和瓶颈, 综述了该材料的发展前景. 随后, 重点讨论了硫化镉 基光催化剂光催化分解水产氢的各种改性策略, 其中有效的策略 是产生更多的载流子, 促进电荷的有效分离, 促进界面电荷转移, 加速电荷利用, 以及抑制电荷诱导的自光腐蚀. 针对每一种改性策 略, 都详细讨论了影响光催化剂性能的重要因素和未来潜在的研 究方向. 最后介绍了纳米结构硫化镉和硫化镉基纳米复合材料在 光催化分解水产氢中的发展前景和面临的挑战. 本综述将为开发 镉基半导体光催化剂提供重要和及时的理论指导, 并促进其在太 阳能氢气生产中的应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia Y, Yu J. Reaction: Rational design of highly active photocatalysts for CO2 conversion. Chem, 2020, 6: 1039–1040

    CAS  Google Scholar 

  2. Fan X, Zhang L, Li M, et al. α-Ferrous oxalate dihydrate: a simple coordination polymer featuring photocatalytic and photoinitiated Fenton oxidations. Sci China Mater, 2016, 59: 574–580

    CAS  Google Scholar 

  3. Fan Y, Hu G, Yu S, et al. Recent advances in TiO2 nanoarrays/graphene for water treatment and energy conversion/storage. Sci China Mater, 2019, 62: 325–340

    CAS  Google Scholar 

  4. Li X, Yu J, Jaroniec M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev, 2019, 119: 3962–4179

    CAS  Google Scholar 

  5. Li X, Xie J, Jiang C, et al. Review on design and evaluation of environmental photocatalysts. Front Environ Sci Eng, 2018, 12: 14

    Google Scholar 

  6. Tang Y, Zhou P, Chao Y, et al. Face-to-face engineering of ultrathin Pd nanosheets on amorphous carbon nitride for efficient photocatalytic hydrogen production. Sci China Mater, 2019, 62: 351–358

    CAS  Google Scholar 

  7. Zhang Y, Zhang Q, Xia T, et al. The influence of reaction temperature on the formation and photocatalytic hydrogen generation of (001) faceted TiO2 nanosheets. ChemNanoMat, 2015, 1: 270–275

    CAS  Google Scholar 

  8. Ma Y, Wang X, Jia Y, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev, 2014, 114: 9987–10043

    CAS  Google Scholar 

  9. Chen X, Li C, Grätzel M, et al. Nanomaterials for renewable energy production and storage. Chem Soc Rev, 2012, 41: 7909–7937

    CAS  Google Scholar 

  10. Li X, Yu J, Low J, et al. Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A, 2015, 3: 2485–2534

    CAS  Google Scholar 

  11. Wen J, Xie J, Chen X, et al. A review on g-C3N4-based photocatalysts. Appl Surf Sci, 2017, 391: 72–123

    CAS  Google Scholar 

  12. Fu J, Yu J, Jiang C, et al. g-C3N4-based heterostructured photocatalysts. Adv Energy Mater, 2018, 8: 1701503

    Google Scholar 

  13. Liu L, Chen X. Titanium dioxide nanomaterials: Self-structural modifications. Chem Rev, 2014, 114: 9890–9918

    CAS  Google Scholar 

  14. Zhang Y, Zhao H, Zhao X, et al. Narrow-bandgap Nb2O5 nanowires with enclosed pores as high-performance photocatalyst. Sci China Mater, 2019, 62: 203–210

    CAS  Google Scholar 

  15. Zhao D, Sun B, Li X, et al. Promoting visible light-driven hydrogen evolution over CdS nanorods using earth-abundant CoP as a cocatalyst. RSC Adv, 2016, 6: 33120–33125

    CAS  Google Scholar 

  16. Cui X, Wang Y, Jiang G, et al. A photonic crystal-based CdS-Au-WO3 heterostructure for efficient visible-light photocatalytic hydrogen and oxygen evolution. RSC Adv, 2014, 4: 15689–15694

    CAS  Google Scholar 

  17. Cheng L, Xiang Q, Liao Y, et al. CdS-based photocatalysts. Energy Environ Sci, 2018, 11: 1362–1391

    CAS  Google Scholar 

  18. Jiang D, Sun Z, Jia H, et al. A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. J Mater Chem A, 2016, 4: 675–683

    CAS  Google Scholar 

  19. Chen X, Chen W, Lin P, et al. In situ photodeposition of nickel oxides on CdS for highly efficient hydrogen production via visiblelight-driven photocatalysis. Catal Commun, 2013, 36: 104–108

    CAS  Google Scholar 

  20. Zhang GQ, Ou W, Xu YS. Fluorescein supramolecular nanosheets: A novel organic photocatalyst for visible-light-driven H2 evolution from water. Sci China Mater, 2018, 61: 1001–1006

    CAS  Google Scholar 

  21. Yu Q, Lin R, Jiang L, et al. Fabrication and photocatalysis of ZnO nanotubes on transparent conductive graphene-based flexible substrates. Sci China Mater, 2018, 61: 1007–1011

    CAS  Google Scholar 

  22. Yang C, Chen JF, Zeng X, et al. Enhanced photochemical performance of hexagonal WO3 by metal-assisted S-O coupling for solar-driven water splitting. Sci China Mater, 2018, 61: 91–100

    CAS  Google Scholar 

  23. Zhou M, Hou Z, Chen X. Graphitic-C3N4 nanosheets: synergistic effects of hydrogenation and n/n junctions for enhanced photocatalytic activities. Dalton Trans, 2017, 46: 10641–10649

    CAS  Google Scholar 

  24. Zhang X, Zhang P, Wang L, et al. Template-oriented synthesis of monodispersed SnS2@SnO2 hetero-nanoflowers for Cr(VI) photoreduction. Appl Catal B-Environ, 2016, 192: 17–25

    CAS  Google Scholar 

  25. Zhang P, Wang T, Chang X, et al. Effective charge carrier utilization in photocatalytic conversions. Acc Chem Res, 2016, 49: 911–921

    CAS  Google Scholar 

  26. Zhang P, Li X, Shao C, et al. Hydrothermal synthesis of carbonrich graphitic carbon nitride nanosheets for photoredox catalysis. J Mater Chem A, 2015, 3: 3281–3284

    CAS  Google Scholar 

  27. Liu B, Ye L, Wang R, et al. Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity. ACS Appl Mater Interfaces, 2018, 10: 4001–4009

    CAS  Google Scholar 

  28. Ye S, Wang R, Wu MZ, et al. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl Surf Sci, 2015, 358: 15–27

    CAS  Google Scholar 

  29. Han C, Wu L, Ge L, et al. AuPd bimetallic nanoparticles decorated graphitic carbon nitride for highly efficient reduction of water to H2 under visible light irradiation. Carbon, 2015, 92: 31–40

    CAS  Google Scholar 

  30. Saha M, Ghosh S, De SK. Nanoscale Kirkendall effect driven Au decorated CdS/CdO colloidal nanocomposites for efficient hydrogen evolution, photocatalytic dye degradation and Cr(VI) reduction. Catal Today, 2020, 340: 253–267

    CAS  Google Scholar 

  31. Wang R, Yan J, Zu M, et al. Facile synthesis of interlocking g-C3N4/CdS photoanode for stable photoelectrochemical hydrogen production. Electrochim Acta, 2018, 279: 74–83

    CAS  Google Scholar 

  32. Wang Q, Li J, Bai Y, et al. Photochemical preparation of Cd/CdS photocatalysts and their efficient photocatalytic hydrogen production under visible light irradiation. Green Chem, 2014, 16: 2728–2735

    CAS  Google Scholar 

  33. Zhu S, Liang S, Bi J, et al. Photocatalytic reduction of CO2 with H2O to CH4 over ultrathin SnNb2O6 2D nanosheets under visible light irradiation. Green Chem, 2016, 18: 1355–1363

    CAS  Google Scholar 

  34. Li X, Wen J, Low J, et al. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci China Mater, 2014, 57: 70–100

    Google Scholar 

  35. Muhammad NA, Wang Y, Muhammad FE, et al. Photoreduction of carbon dioxide using strontium zirconate nanoparticles. Sci China Mater, 2015, 58: 634–639

    Google Scholar 

  36. Wang H, Naghadeh SB, Li C, et al. Enhanced photoelectrochemical and photocatalytic activities of CdS nanowires by surface modification with MoS2 nanosheets. Sci China Mater, 2018, 61: 839–850

    CAS  Google Scholar 

  37. Sun J, Xu J, Grafmueller A, et al. Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of pnitrophenol. Appl Catal B-Environ, 2017, 205: 1–10

    CAS  Google Scholar 

  38. Yang T, Peng J, Zheng Y, et al. Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO2 nanocomposites. Appl Catal B-Environ, 2018, 221: 223–234

    CAS  Google Scholar 

  39. Zou L, Wang H, Wang X. High efficient photodegradation and photocatalytic hydrogen production of CdS/BiVO4 heterostructure through Z-scheme process. ACS Sustain Chem Eng, 2017, 5: 303–309

    CAS  Google Scholar 

  40. Liu W, Liu Z, Wang G, et al. Carbon coated Au/TiO2 mesoporous microspheres: a novel selective photocatalyst. Sci China Mater, 2017, 60: 438–448

    CAS  Google Scholar 

  41. Shenoy S, Jang E, Park TJ, et al. Cadmium sulfide nanostructures: Influence of morphology on the photocatalytic degradation of erioglaucine and hydrogen generation. Appl Surf Sci, 2019, 483: 696–705

    CAS  Google Scholar 

  42. Xiao F, Zhou W, Sun B, et al. Engineering oxygen vacancy on rutile TiO2 for efficient electron-hole separation and high solardriven photocatalytic hydrogen evolution. Sci China Mater, 2018, 61: 822–830

    CAS  Google Scholar 

  43. Wang X, Peng W, Li X. Photocatalytic hydrogen generation with simultaneous organic degradation by composite CdS-ZnS nanoparticles under visible light. Int J Hydrogen Energy, 2014, 39: 13454–13461

    CAS  Google Scholar 

  44. Cui H, Li B, Zhang Y, et al. Constructing Z-scheme based CoWO4/CdS photocatalysts with enhanced dye degradation and H2 generation performance. Int J Hydrogen Energy, 2018, 43: 18242–18252

    CAS  Google Scholar 

  45. Wen J, Xie J, Zhang H, et al. Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation. ACS Appl Mater Interfaces, 2017, 9: 14031–14042

    CAS  Google Scholar 

  46. Zhou P, Yu J, Jaroniec M. All-solid-state Z-Scheme photocatalytic systems. Adv Mater, 2014, 26: 4920–4935

    CAS  Google Scholar 

  47. Shen R, Xie J, Lu X, et al. Bifunctional Cu3P decorated g-C3N4 nanosheets as a highly active and robust visible-light photocatalyst for H2 production. ACS Sustain Chem Eng, 2018, 6: 4026–4036

    CAS  Google Scholar 

  48. Sun Z, Zhu M, Fujitsuka M, et al. Phase effect of NixPy hybridized with g-C3N4 for photocatalytic hydrogen generation. ACS Appl Mater Interfaces, 2017, 9: 30583–30590

    CAS  Google Scholar 

  49. Xiong T, Cen W, Zhang Y, et al. Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal, 2016, 6: 2462–2472

    CAS  Google Scholar 

  50. Gu Q, Gao Z, Yu S, et al. Constructing Ru/TiO2 heteronanostructures toward enhanced photocatalytic water splitting via a RuO2/TiO2 heterojunction and Ru/TiO2 Schottky junction. Adv Mater Interfaces, 2016, 3: 1500631

    Google Scholar 

  51. Cui X, Shi J. Sn-based catalysts for Baeyer-Villiger oxidations by using hydrogen peroxide as oxidant. Sci China Mater, 2016, 59: 675–700

    CAS  Google Scholar 

  52. Shen R, Xie J, Zhang H, et al. Enhanced solar fuel H2 generation over g-C3N4 nanosheet photocatalysts by the synergetic effect of noble metal-free Co2P cocatalyst and the environmental phosphorylation strategy. ACS Sustain Chem Eng, 2018, 6: 816–826

    CAS  Google Scholar 

  53. Xiang Q, Cheng B, Yu J. Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Appl Catal B-Environ, 2013, 138: 299–303

    Google Scholar 

  54. Zheng D, Zhang G, Hou Y, et al. Layering MoS2 on soft hollow g-C3N4 nanostructures for photocatalytic hydrogen evolution. Appl Catal A-General, 2016, 521: 2–8

    CAS  Google Scholar 

  55. Gu Q, Liao Y, Yin L, et al. Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability. Appl Catal B-Environ, 2015, 165: 503–510

    CAS  Google Scholar 

  56. Tian L, Yan X, Chen X. Electrochemical activity of iron phosphide nanoparticles in hydrogen evolution reaction. ACS Catal, 2016, 6: 5441–5448

    CAS  Google Scholar 

  57. Chen X, Chen W, Gao H, et al. In situ photodeposition of NiOx on CdS for hydrogen production under visible light: Enhanced activity by controlling solution environment. Appl Catal B-Environ, 2014, 152: 68–72

    Google Scholar 

  58. He Z, Fu J, Cheng B, et al. Cu2(OH)2CO3 clusters: Novel noblemetal-free cocatalysts for efficient photocatalytic hydrogen production from water splitting. Appl Catal B-Environ, 2017, 205: 104–111

    CAS  Google Scholar 

  59. Liu Y, Xiong J, Yang Y, et al. HNbxTa1−xWO6 monolayer nanosheets solid solutions: Tunable energy band structures and highly enhanced photocatalytic performances for hydrogen evolution. Appl Catal B-Environ, 2017, 203: 798–806

    CAS  Google Scholar 

  60. He K, Xie J, Li M, et al. In situ one-pot fabrication of g-C3N4 nanosheets/NiS cocatalyst heterojunction with intimate interfaces for efficient visible light photocatalytic H2 generation. Appl Surf Sci, 2018, 430: 208–217

    CAS  Google Scholar 

  61. Zhao Z, Xing Y, Li H, et al. Constructing CdS/Cd/doped TiO2 Z-scheme type visible light photocatalyst for H2 production. Sci China Mater, 2018, 61: 851–860

    CAS  Google Scholar 

  62. Akple MS, Low J, Wageh S, et al. Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Appl Surf Sci, 2015, 358: 196–203

    CAS  Google Scholar 

  63. Li N, Huang H, Bibi R, et al. Noble-metal-free MOF derived hollow CdS/TiO2 decorated with NiS cocatalyst for efficient photocatalytic hydrogen evolution. Appl Surf Sci, 2019, 476: 378–386

    CAS  Google Scholar 

  64. He J, Chen L, Yi ZQ, et al. Fabrication of two-dimensional porous CdS nanoplates decorated with C3N4 nanosheets for highly efficient photocatalytic hydrogen production from water splitting. Catal Commun, 2017, 99: 79–82

    CAS  Google Scholar 

  65. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    CAS  Google Scholar 

  66. Ma S, Xie J, Wen J, et al. Constructing 2D layered hybrid CdS nanosheets/MoS2 heterojunctions for enhanced visible-light photocatalytic H2 generation. Appl Surf Sci, 2017, 391: 580–591

    CAS  Google Scholar 

  67. Yu J, Yu Y, Zhou P, et al. Morphology-dependent photocatalytic H2-production activity of CdS. Appl Catal B-Environ, 2014, 156: 184–191

    Google Scholar 

  68. Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation. Chem Rev, 2010, 110: 6503–6570

    CAS  Google Scholar 

  69. Hu J, Wang L, Zhang P, et al. Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production. J Power Sources, 2016, 328: 28–36

    CAS  Google Scholar 

  70. Gao H, Zhang P, Hu J, et al. One-dimensional Z-scheme TiO2/WO3/Pt heterostructures for enhanced hydrogen generation. Appl Surf Sci, 2017, 391: 211–217

    CAS  Google Scholar 

  71. Liu Y, Zhang Y, Wang L, et al. Fast and large-scale anodizing synthesis of pine-cone TiO2 for solar-driven photocatalysis. Catalysts, 2017, 7: 229

    Google Scholar 

  72. Lin B, Li H, An H, et al. Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Appl Catal B-Environ, 2018, 220: 542–552

    CAS  Google Scholar 

  73. Zhou JJ, Wang R, Liu XL, et al. In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation. Appl Surf Sci, 2015, 346: 278–283

    CAS  Google Scholar 

  74. Li Q, Meng H, Yu J, et al. Enhanced photocatalytic hydrogen-production performance of graphene-ZnxCd1−xS composites by using an organic S source. Chem Eur J, 2014, 20: 1176–1185

    CAS  Google Scholar 

  75. Gao H, Zhang P, Zhao J, et al. Plasmon enhancement on photocatalytic hydrogen production over the Z-scheme photosynthetic heterojunction system. Appl Catal B-Environ, 2017, 210: 297–305

    CAS  Google Scholar 

  76. Zhao J, Zhang P, Wang Z, et al. Direct evidence of multichannel-improved charge-carrier mechanism for enhanced photocatalytic H2 evolution. Sci Rep, 2017, 7: 16116

    Google Scholar 

  77. He K, Xie J, Yang Z, et al. Earth-abundant WC nanoparticles as an active noble-metal-free co-catalyst for the highly boosted photocatalytic H2 production over g-C3N4 nanosheets under visible light. Catal Sci Technol, 2017, 7: 1193–1202

    CAS  Google Scholar 

  78. Zhou X, Li X, Gao Q, et al. Metal-free carbon nanotube-SiC nanowire heterostructures with enhanced photocatalytic H2 evolution under visible light irradiation. Catal Sci Technol, 2015, 5: 2798–2806

    CAS  Google Scholar 

  79. Yu J, Wang S, Cheng B, et al. Noble metal-free Ni(OH)2-g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2-production activity. Catal Sci Technol, 2013, 3: 1782–1789

    CAS  Google Scholar 

  80. Hong Y, Zhang J, Huang F, et al. Enhanced visible light photocatalytic hydrogen production activity of CuS/ZnS nanoflower spheres. J Mater Chem A, 2015, 3: 13913–13919

    CAS  Google Scholar 

  81. Jin J, Yu J, Liu G, et al. Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. J Mater Chem A, 2013, 1: 10927–10934

    CAS  Google Scholar 

  82. Shen S, Guo L, Chen X, et al. Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS. Int J Hydrogen Energy, 2010, 35: 7110–7115

    CAS  Google Scholar 

  83. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009, 38: 253–278

    CAS  Google Scholar 

  84. Li X, Yu J, Jaroniec M. Hierarchical photocatalysts. Chem Soc Rev, 2016, 45: 2603–2636

    CAS  Google Scholar 

  85. Li X, Yu J, Wageh S, et al. Graphene in photocatalysis: A review. Small, 2016, 12: 6640–6696

    CAS  Google Scholar 

  86. Tanveer M, Wu Y, Qadeer MA, et al. Atypical BiOCl/Bi2S3 hetero-structures exhibiting remarkable photo-catalyst response. Sci China Mater, 2018, 61: 101–111

    CAS  Google Scholar 

  87. Shen R, Jiang C, Xiang Q, et al. Surface and interface engineering of hierarchical photocatalysts. Appl Surf Sci, 2019, 471: 43–87

    CAS  Google Scholar 

  88. Li Y, Jin Z, Zhang L, et al. Controllable design of Zn-Ni-P on g-C3N4 for efficient photocatalytic hydrogen production. Chin J Catal, 2019, 40: 390–402

    CAS  Google Scholar 

  89. Li Z, Ma Y, Hu X, et al. Enhanced photocatalytic H2 production over dual-cocatalyst-modified g-C3N4 heterojunctions. Chin J Catal, 2019, 40: 434–445

    CAS  Google Scholar 

  90. Qi K, Lv W, Khan I, et al. Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating. Chin J Catal, 2020, 41: 114–121

    CAS  Google Scholar 

  91. Sun K, Shen J, Liu Q, et al. Synergistic effect of Co(II)-hole and Pt-electron cocatalysts for enhanced photocatalytic hydrogen evolution performance of P-doped g-C3N4. Chin J Catal, 2020, 41: 72–81

    CAS  Google Scholar 

  92. Xiao N, Li S, Liu S, et al. Novel PtPd alloy nanoparticle-decorated g-C3N4 nanosheets with enhanced photocatalytic activity for H2 evolution under visible light irradiation. Chin J Catal, 2019, 40: 352–361

    CAS  Google Scholar 

  93. Wen J, Xie J, Shen R, et al. Markedly enhanced visible-light photocatalytic H2 generation over g-C3N4 nanosheets decorated by robust nickel phosphide (Ni12P5) cocatalysts. Dalton Trans, 2017, 46: 1794–1802

    CAS  Google Scholar 

  94. Ma B, Zhao J, Ge Z, et al. 5 nm NiCoP nanoparticles coupled with g-C3N4 as high-performance photocatalyst for hydrogen evolution. Sci China Mater, 2020, 63: 258–266

    CAS  Google Scholar 

  95. Zhou X, Gao Q, Yang S, et al. Carbon nanotube@silicon carbide coaxial heterojunction nanotubes as metal-free photocatalysts for enhanced hydrogen evolution. Chin J Catal, 2020, 41: 62–71

    CAS  Google Scholar 

  96. Zhou X, Gao Q, Li X, et al. Ultra-thin SiC layer covered graphene nanosheets as advanced photocatalysts for hydrogen evolution. J Mater Chem A, 2015, 3: 10999–11005

    CAS  Google Scholar 

  97. Yuan YJ, Yu ZT, Li YH, et al. A MoS2/6,13-pentacenequinone composite catalyst for visible-light-induced hydrogen evolution in water. Appl Catal B-Environ, 2016, 181: 16–23

    CAS  Google Scholar 

  98. Wang WN, Huang CX, Zhang CY, et al. Controlled synthesis of upconverting nanoparticles/ZnxCd1−xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light. Appl Catal B-Environ, 2018, 224: 854–862

    CAS  Google Scholar 

  99. Chen M, Wu P, Zhu Y, et al. Enhanced photocatalytic H2 production activity of CdZnS with stacking faults structure assisted by ethylenediamine and NiS. Int J Hydrogen Energy, 2018, 43: 10938–10949

    CAS  Google Scholar 

  100. Shi J, Islam IU, Chen W, et al. Two-dimensional ultrathin ZnxCd1−xS nanosheet with exposed polar facet by using layered double hydroxide template for photocatalytic hydrogen generation. Int J Hydrogen Energy, 2018, 43: 19481–19491

    CAS  Google Scholar 

  101. Gao R, Cheng B, Fan J, et al. ZnxCd1−xS quantum dot with enhanced photocatalytic H2-production performance. Chin J Catal, 2021, 42: 15–24

    CAS  Google Scholar 

  102. Shen R, Ding Y, Li S, et al. Constructing low-cost Ni3C/twincrystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chin J Catal, 2021, 42: 25–36

    CAS  Google Scholar 

  103. Xue W, Chang W, Hu X, et al. 2D mesoporous ultrathin Cd0.5Zn0.5S nanosheet: Fabrication mechanism and application potential for photocatalytic H2 evolution. Chin J Catal, 2021, 42: 152–163

    CAS  Google Scholar 

  104. Wang S, Guan BY, Wang X, et al. Formation of hierarchical Co9S8@ZnIn2S4heterostructured cages as an efficient photocatalyst for hydrogen evolution. J Am Chem Soc, 2018, 140: 15145–15148

    CAS  Google Scholar 

  105. Hou J, Yang C, Cheng H, et al. Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production. Phys Chem Chem Phys, 2013, 15: 15660–15668

    CAS  Google Scholar 

  106. Zhang Z, Liu K, Feng Z, et al. Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer. Sci Rep, 2016, 6: 19221

    CAS  Google Scholar 

  107. Wang B, Ding Y, Deng Z, et al. Rational design of ternary NiS/CQDs/ZnIn2S4 nanocomposites as efficient noble-metal-free photocatalyst for hydrogen evolution under visible light. Chin J Catal, 2019, 40: 335–342

    CAS  Google Scholar 

  108. Zhang S, Duan S, Chen G, et al. MoS2/Zn3In2S6 composite photocatalysts for enhancement of visible light-driven hydrogen production from formic acid. Chin J Catal, 2021, 42: 193–204

    CAS  Google Scholar 

  109. Yu J, Lei SL, Chen TC, et al. A new CdS/Bi1-InTaO4 heterostructured photocatalyst containing solid solutions for H2 evolution from water splitting. Int J Hydrogen Energy, 2014, 39: 13105–13113

    CAS  Google Scholar 

  110. Estahbanati MRK, Feilizadeh M, Iliuta MC. Photocatalytic valorization of glycerol to hydrogen: Optimization of operating parameters by artificial neural network. Appl Catal B-Environ, 2017, 209: 483–492

    CAS  Google Scholar 

  111. Li L, Liu GN, Qi SP, et al. Highly efficient colloidal MnxCd1−xS nanorod solid solution for photocatalytic hydrogen generation. J Mater Chem A, 2018, 6: 23683–23689

    CAS  Google Scholar 

  112. Higashi M, Abe R, Takata T, et al. Photocatalytic overall water splitting under visible light using ATaO2N (A = Ca, Sr, Ba) and WO3 in a IO3/I shuttle redox mediated system. Chem Mater, 2009, 21: 1543–1549

    CAS  Google Scholar 

  113. Higashi M, Abe R, Ishikawa A, et al. Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (A<500 nm). Chem Lett, 2008, 37: 138–139

    CAS  Google Scholar 

  114. Chen G, Li F, Fan Y, et al. A novel noble metal-free ZnS-WS2/CdS composite photocatalyst for H2 evolution under visible light irradiation. Catal Commun, 2013, 40: 51–54

    Google Scholar 

  115. Jiang Z, Zhang X, Yang G, et al. Hydrogel as a miniature hydrogen production reactor to enhance photocatalytic hydrogen evolution activities of CdS and ZnS quantum dots derived from modified gel crystal growth method. Chem Eng J, 2019, 373: 814–820

    CAS  Google Scholar 

  116. Li K, Chen R, Li SL, et al. Self-assembly of a mesoporous ZnS/mediating interface/CdS heterostructure with enhanced visible-light hydrogen-production activity and excellent stability. Chem Sci, 2015, 6: 5263–5268

    CAS  Google Scholar 

  117. Xie YP, Yu ZB, Liu G, et al. CdS-mesoporous ZnS core-shell particles for efficient and stable photocatalytic hydrogen evolution under visible light. Energy Environ Sci, 2014, 7: 1895–1901

    CAS  Google Scholar 

  118. Li C, Du S, Wang H, et al. Enhanced visible-light-driven photocatalytic hydrogen generation using NiCo2S4/CdS nanocomposites. Chem Eng J, 2019, 378: 122089

    CAS  Google Scholar 

  119. Yuan M, Wang JL, Zhou WH, et al. Cu2ZnSnS4-CdS heterostructured nanocrystals for enhanced photocatalytic hydrogen production. Catal Sci Technol, 2017, 7: 3980–3984

    CAS  Google Scholar 

  120. Iervolino G, Vaiano V, Sannino D, et al. Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Rudoped LaFeO3. Appl Catal B-Environ, 2017, 207: 182–194

    CAS  Google Scholar 

  121. Liu Y, Niu H, Gu W, et al. In-situ construction of hierarchical CdS/MoS2 microboxes for enhanced visible-light photocatalytic H2 production. Chem Eng J, 2018, 339: 117–124

    CAS  Google Scholar 

  122. Xu J, Cao X. Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light. Chem Eng J, 2015, 260: 642–648

    CAS  Google Scholar 

  123. Zhao J, Zhang P, Fan J, et al. Constructing 2D layered MoS2 nanosheets-modified Z-scheme TiO2/WO3 nanofibers ternary nanojunction with enhanced photocatalytic activity. Appl Surf Sci, 2018, 430: 466–474

    CAS  Google Scholar 

  124. Xu F, Zhang J, Zhu B, et al. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Appl Catal B-Environ, 2018, 230: 194–202

    CAS  Google Scholar 

  125. Hu P, Ngaw CK, Tay YY, et al. A “uniform” heterogeneous photocatalyst: integrated p-n type CuInS2/NaInS2 nanosheets by partial ion exchange reaction for efficient H2 evolution. Chem Commun, 2015, 51: 9381–9384

    CAS  Google Scholar 

  126. Liu B, Xue Y, Zhang J, et al. Study on photo-induced charge transfer in the heterointerfaces of CuInS2/CdS co-sensitized mesoporous TiO2 photoelectrode. Electrochim Acta, 2016, 192: 370–376

    CAS  Google Scholar 

  127. Luo J, Lin Z, Zhao Y, et al. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle. Chin J Catal, 2020, 41: 122–130

    CAS  Google Scholar 

  128. Wang W, Jin C, Qi L. Hierarchical CdS nanorod@SnO2 nanobowl arrays for efficient and stable photoelectrochemical hydrogen generation. Small, 2018, 14: 1801352

    Google Scholar 

  129. Cheng L, Zhang D, Liao Y, et al. One-step solid-phase synthesis of 2D ultrathin CdS nanosheets for enhanced visible-light photocatalytic hydrogen evolution. Sol RRL, 2019, 3: 1900062

    Google Scholar 

  130. Li X, Deng Y, Jiang Z, et al. Photocatalytic hydrogen production over CdS nanomaterials: An interdisciplinary experiment for introducing undergraduate students to photocatalysis and analytical chemistry. J Chem Educ, 2019, 96: 1224–1229

    CAS  Google Scholar 

  131. Meng R, Jiang J, Liang Q, et al. Design of graphene-like gallium nitride and WS2/WSe2 nanocomposites for photocatalyst applications. Sci China Mater, 2016, 59: 1027–1036

    CAS  Google Scholar 

  132. Mangiri R, Reddy DA, Subramanyam K, et al. Decorating MoS2 and CoSe2 nanostructures on 1D-CdS nanorods for boosting photocatalytic hydrogen evolution rate. J Mol Liquids, 2019, 289: 111164

    CAS  Google Scholar 

  133. Han HS, Han GS, Kim JS, et al. Indium-tin-oxide nanowire array based CdSe/CdS/TiO2 one-dimensional heterojunction photoelectrode for enhanced solar hydrogen production. ACS Sustain Chem Eng, 2016, 4: 1161–1168

    CAS  Google Scholar 

  134. Vaneski A, Schneider J, Susha AS, et al. Aqueous synthesis of CdS and CdSe/CdS tetrapods for photocatalytic hydrogen generation. APL Mater, 2014, 2: 012104

    Google Scholar 

  135. Chang YS, Choi M, Baek M, et al. CdS/CdSe co-sensitized brookite H:TiO2 nanostructures: Charge carrier dynamics and photoelectrochemical hydrogen generation. Appl Catal B-Environ, 2018, 225: 379–385

    CAS  Google Scholar 

  136. Chang Y, Yu K, Zhang C, et al. Ternary CdS/Au/3DOM-SrTiO3 composites with synergistic enhancement for hydrogen production from visible-light photocatalytic water splitting. Appl Catal B-Environ, 2017, 215: 74–84

    CAS  Google Scholar 

  137. Chang Y, Xuan Y, Zhang C, et al. Z-Scheme Pt@CdS/3DOM-SrTiO3 composite with enhanced photocatalytic hydrogen evolution from water splitting. Catal Today, 2019, 327: 315–322

    CAS  Google Scholar 

  138. Yin XL, Li LL, Li DC, et al. Room temperature synthesis of CdS/SrTiO3 nanodots-on-nanocubes for efficient photocatalytic H2 evolution from water. J Colloid Interface Sci, 2019, 536: 694–700

    CAS  Google Scholar 

  139. Yanagida T, Sakata Y, Imamura H. Photocatalytic decomposition of H2O into H2 and O2 over Ga2O3 loaded with NiO. Chem Lett, 2004, 33: 726–727

    CAS  Google Scholar 

  140. She X, Wu J, Xu H, et al. High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts. Adv Energy Mater, 2017, 7: 1700025

    Google Scholar 

  141. Preethi V, Kanmani S. Photocatalytic hydrogen production using Fe2O3-based core shell nano particles with ZnS and CdS. Int J Hydrogen Energy, 2014, 39: 1613–1622

    CAS  Google Scholar 

  142. Mahadik MA, Subramanian A, Chung HS, et al. CdS/Zr:Fe2O3 nanorod arrays with Al2O3 passivation layer for photoelectrochemical solar hydrogen generation. ChemSusChem, 2017, 10: 2030–2039

    CAS  Google Scholar 

  143. Wang L, Wang W, Chen Y, et al. Heterogeneous p-n junction CdS/Cu2O nanorod arrays: Synthesis and superior visible-light-driven photoelectrochemical performance for hydrogen evolution. ACS Appl Mater Interfaces, 2018, 10: 11652–11662

    CAS  Google Scholar 

  144. Cheng WY, Yu TH, Chao KJ, et al. Cu2O-decorated CdS nanostructures for high efficiency visible light driven hydrogen production. Int J Hydrogen Energy, 2013, 38: 9665–9672

    CAS  Google Scholar 

  145. Sasikala R, Shirole AR, Bharadwaj SR. Enhanced photocatalytic hydrogen generation over ZrO2-TiO2-CdS hybrid structure. J Colloid Interface Sci, 2013, 409: 135–140

    CAS  Google Scholar 

  146. Shen J, Wang R, Liu Q, et al. Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2. Chin J Catal, 2019, 40: 380–389

    CAS  Google Scholar 

  147. Zhu Y, Zhang Z, Lu N, et al. Prolonging charge-separation states by doping lanthanide-ions into {001}/{101} facets-coexposed TiO2 nanosheets for enhancing photocatalytic H2 evolution. Chin J Catal, 2019, 40: 413–423

    CAS  Google Scholar 

  148. Wang P, Xu S, Chen F, et al. Ni nanoparticles as electron-transfer mediators and NiS as interfacial active sites for coordinative enhancement of H2-evolution performance of TiO2. Chin J Catal, 2019, 40: 343–351

    CAS  Google Scholar 

  149. Zhang W, Zhang H, Xu J, et al. 3D flower-like heterostructured TiO2@Ni(OH)2 microspheres for solar photocatalytic hydrogen production. Chin J Catal, 2019, 40: 320–325

    CAS  Google Scholar 

  150. Ma D, Shi JW, Zou Y, et al. Highly efficient photocatalyst based on a CdS quantum dots/ZnO nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting. ACS Appl Mater Interfaces, 2017, 9: 25377–25386

    CAS  Google Scholar 

  151. Kuang PY, Su YZ, Xiao K, et al. Double-shelled CdS- and CdSe-cosensitized ZnO porous nanotube arrays for superior photoelectrocatalytic applications. ACS Appl Mater Interfaces, 2015, 7: 16387–16394

    CAS  Google Scholar 

  152. Zhao H, Dong Y, Jiang P, et al. Light-assisted preparation of a ZnO/CdS nanocomposite for enhanced photocatalytic H2 evolution: An insight into importance of in situ generated ZnS. ACS Sustain Chem Eng, 2015, 3: 969–977

    CAS  Google Scholar 

  153. Xu L, Shi W, Guan J. Preparation of crystallized mesoporous CdS/Ta2O5 composite assisted by silica reinforcement for visible light photocatalytic hydrogen evolution. Catal Commun, 2012, 25: 54–58

    CAS  Google Scholar 

  154. Xu L, Guan J, Shi W. Enhanced interfacial charge transfer and visible photocatalytic activity for hydrogen evolution from a Ta2O5-based mesoporous composite by the incorporation of quantum-sized CdS. ChemCatChem, 2012, 4: 1353–1359

    CAS  Google Scholar 

  155. Liu Y, Ding S, Shi Y, et al. Construction of CdS/CoOx core-shell nanorods for efficient photocatalytic H2 evolution. Appl Catal B-Environ, 2018, 234: 109–116

    CAS  Google Scholar 

  156. Wu Q, Xiong S, Shen P, et al. Exceptional activity of sub-nm Pt clusters on CdS for photocatalytic hydrogen production: a combined experimental and first-principles study. Catal Sci Technol, 2015, 5: 2059–2064

    CAS  Google Scholar 

  157. Yu H, Huang Y, Gao D, et al. Improved H2-generation performance of Pt/CdS photocatalyst by a dual-function TiO2 mediator for effective electron transfer and hole blocking. Ceramics Int, 2019, 45: 9807–9813

    CAS  Google Scholar 

  158. Yu G, Geng L, Wu S, et al. Highly-efficient cocatalyst-free H2-evolution over silica-supported CdS nanoparticle photocatalysts under visible light. Chem Commun, 2015, 51: 10676–10679

    CAS  Google Scholar 

  159. Zhang J, Zhu Z, Feng X. Construction of two-dimensional MoS2/CdS p-n nanohybrids for highly efficient photocatalytic hydrogen evolution. Chem Eur J, 2014, 20: 10632–10635

    CAS  Google Scholar 

  160. Ma B, Xu H, Lin K, et al. Mo2C as non-noble metal co-catalyst in Mo2C/CdS composite for enhanced photocatalytic H2 evolution under visible light irradiation. ChemSusChem, 2016, 9: 820–824

    CAS  Google Scholar 

  161. Wen J, Li X, Liu W, et al. Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin J Catal, 2015, 36: 2049–2070

    CAS  Google Scholar 

  162. Unni SM, George L, Bhange SN, et al. Valorization of coffee bean waste: a coffee bean waste derived multifunctional catalyst for photocatalytic hydrogen production and electrocatalytic oxygen reduction reactions. RSC Adv, 2016, 6: 82103–82111

    CAS  Google Scholar 

  163. Yang C, Li M, Zhang WH, et al. Controlled growth, properties, and application of CdS branched nanorod arrays on transparent conducting oxide substrate. Sol Energy Mater Sol Cells, 2013, 115: 100–107

    CAS  Google Scholar 

  164. Li Q, Li X, Wageh S, et al. CdS/graphene nanocomposite photocatalysts. Adv Energy Mater, 2015, 5: 1500010

    Google Scholar 

  165. Zhang Y, Hao X, Ma X, et al. Special Z-scheme CdS@WO3 heterojunction modified with CoP for efficient hydrogen evolution. Int J Hydrogen Energy, 2019, 44: 13232–13241

    CAS  Google Scholar 

  166. Zong X, Yan H, Wu G, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc, 2008, 130: 7176–7177

    CAS  Google Scholar 

  167. Kalyanasundaram K, Borgarello E, Gráutzel M. Visible light induced water cleavage in CdS dispersions loaded with Pt and RuO2, hole scavenging by RuO2. HCA, 1981, 64: 362–366

    CAS  Google Scholar 

  168. Jang JS, Joshi UA, Lee JS. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J Phys Chem C, 2007, 111: 13280–13287

    CAS  Google Scholar 

  169. Bao N, Shen L, Takata T, et al. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem Mater, 2008, 20: 110–117

    CAS  Google Scholar 

  170. Xu Y, Zhao W, Xu R, et al. Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem Commun, 2013, 49: 9803–9805

    CAS  Google Scholar 

  171. Bie C, Fu J, Cheng B, et al. Ultrathin CdS nanosheets with tunable thickness and efficient photocatalytic hydrogen generation. Appl Surf Sci, 2018, 462: 606–614

    CAS  Google Scholar 

  172. Xie YM, Liu XH, Zhang R, et al. Ultrathin cadmium sulfide nanosheets for visible-light photocatalytic hydrogen production. J Mater Chem A, 2020, 8: 3586–3589

    CAS  Google Scholar 

  173. Yan H, Yang J, Ma G, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal, 2009, 266: 165–168

    CAS  Google Scholar 

  174. Zhang W, Wang Y, Wang Z, et al. Highly efficient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic acid sacrificial solution under visible light. Chem Commun, 2010, 46: 7631–7633

    CAS  Google Scholar 

  175. Ran J, Yu J, Jaroniec M. Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation. Green Chem, 2011, 13: 2708–2713

    CAS  Google Scholar 

  176. Ma S, Deng Y, Xie J, et al. Noble-metal-free Ni3C cocatalysts decorated CdS nanosheets for high-efficiency visible-light-driven photocatalytic H2 evolution. Appl Catal B-Environ, 2018, 227: 218–228

    CAS  Google Scholar 

  177. Wang X, Liu G, Chen ZG, et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem Commun, 2009, 23: 3452

    Google Scholar 

  178. Zhang LJ, Li S, Liu BK, et al. Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal, 2014, 4: 3724–3729

    CAS  Google Scholar 

  179. Shen R, Zhang L, Chen X, et al. Integrating 2D/2D CdS/α-Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic β-NiS nanosheet-based ohmic-junction for efficient photocatalytic H2 evolution. Appl Catal B-Environ, 2020, 266: 118619

    CAS  Google Scholar 

  180. Li Q, Guo B, Yu J, et al. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc, 2011, 133: 10878–10884

    CAS  Google Scholar 

  181. Yuan YJ, Chen D, Yu ZT, et al. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. J Mater Chem A, 2018, 6: 11606–11630

    CAS  Google Scholar 

  182. Lian Z, Xu P, Wang W, et al. C60-decorated CdS/TiO2 mesoporous architectures with enhanced photostability and photocatalytic activity for H2 evolution. ACS Appl Mater Interfaces, 2015, 7: 4533–4540

    CAS  Google Scholar 

  183. Zhang LJ, Zheng R, Li S, et al. Enhanced photocatalytic H2 generation on cadmium sulfide nanorods with cobalt hydroxide as cocatalyst and insights into their photogenerated charge transfer properties. ACS Appl Mater Interfaces, 2014, 6: 13406–13412

    CAS  Google Scholar 

  184. Qian XB, Peng W, Huang JH. Fluorescein-sensitized Au/g-C3N4 nanocomposite for enhanced photocatalytic hydrogen evolution under visible light. Mater Res Bull, 2018, 102: 362–368

    CAS  Google Scholar 

  185. Song T, Zhang P, Zeng J, et al. Boosting the photocatalytic H2 evolution activity of Fe2O3 polymorphs (α-, γ- and β-Fe2O3) by fullerene [C60]-modification and dye-sensitization under visible light irradiation. RSC Adv, 2017, 7: 29184–29192

    CAS  Google Scholar 

  186. Shen R, Xie J, Ding Y, et al. Carbon nanotube-supported Cu3P as high-efficiency and low-cost cocatalysts for exceptional semiconductor-free photocatalytic H2 evolution. ACS Sustain Chem Eng, 2019, 7: 3243–3250

    CAS  Google Scholar 

  187. Wang L, Gao Z, Li Y, et al. Photosensitization of CdS by acid red-94 modified alginate: Dual ameliorative effect upon photocatalytic hydrogen evolution. Appl Surf Sci, 2019, 492: 598–606

    CAS  Google Scholar 

  188. Zhang X, Xiao J, Hou M, et al. Robust visible/near-infrared light driven hydrogen generation over Z-scheme conjugated polymer/CdS hybrid. Appl Catal B-Environ, 2018, 224: 871–876

    CAS  Google Scholar 

  189. Lei Y, Yang C, Hou J, et al. Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: Unraveling the essential roles of graphene quantum dots. Appl Catal B-Environ, 2017, 216: 59–69

    CAS  Google Scholar 

  190. Ma L, Chen YL, Yang DJ, et al. Multi-interfacial plasmon coupling in multigap (Au/AgAu)@CdS core-shell hybrids for efficient photocatalytic hydrogen generation. Nanoscale, 2020, 12: 4383–4392

    CAS  Google Scholar 

  191. Chiu YH, Naghadeh SB, Lindley SA, et al. Yolk-shell nanostructures as an emerging photocatalyst paradigm for solar hydrogen generation. Nano Energy, 2019, 62: 289–298

    CAS  Google Scholar 

  192. Li S, Zhang L, Jiang T, et al. Construction of shallow surface states through light Ni doping for high-efficiency photocatalytic hydrogen production of CdS nanocrystals. Chem Eur J, 2014, 20: 311–316

    Google Scholar 

  193. Wang P, Pu Z, Li Y, et al. Iron-doped nickel phosphide nanosheet arrays: An efficient bifunctional electrocatalyst for water splitting. ACS Appl Mater Interfaces, 2017, 9: 26001–26007

    CAS  Google Scholar 

  194. Murphy JR, Delikanli S, Scrace T, et al. Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets. Appl Phys Lett, 2016, 108: 242406

    Google Scholar 

  195. Li H, Wang Z, He Y, et al. Rational synthesis of MnxCd1−xS for enhanced photocatalytic H2 evolution: Effects of S precursors and the feed ratio of Mn/Cd on its structure and performance. J Colloid Interface Sci, 2019, 535: 469–480

    CAS  Google Scholar 

  196. Xue C, Li H, An H, et al. NiSx quantum dots accelerate electron transfer in Cd0.8Zn0.2S photocatalytic system via an rGO nanosheet “bridge” toward visible-light-driven hydrogen evolution. ACS Catal, 2018, 8: 1532–1545

    CAS  Google Scholar 

  197. Wu Y, Yue Z, Liu A, et al. p-Type Cu-doped Zn0.3Cd0.7S/graphene photocathode for efficient water splitting in a photoelectrochemical tandem cell. ACS Sustain Chem Eng, 2016, 4: 2569–2577

    CAS  Google Scholar 

  198. Zhang J, Qi L, Ran J, et al. Ternary NiS/ZnxCd1−xS/reduced graphene oxide nanocomposites for enhanced solar photocatalytic H2-production activity. Adv Energy Mater, 2014, 4: 1301925

    Google Scholar 

  199. Dai D, Xu H, Ge L, et al. In-situ synthesis of CoP co-catalyst decorated Zn0.5Cd0.5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation Appl Catal B-Environ, 2017, 217: 429–436

    CAS  Google Scholar 

  200. Ye L, Han C, Ma Z, et al. Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light. Chem Eng J, 2017, 307: 311–318

    CAS  Google Scholar 

  201. Zhang J, Xu Q, Qiao SZ, et al. Enhanced visible-light hydrogen-production activity of copper-modified ZnxCd1−xS. ChemSusChem, 2013, 6: 2009–2015

    CAS  Google Scholar 

  202. Moradlou O, Tedadi N, Banazadeh A, et al. Effect of RGO/ZnxCd1−xS crystalline phase on solar photoactivation processes. RSC Adv, 2016, 6: 46282–46290

    CAS  Google Scholar 

  203. Li Y, Ruan Q, Lin H, et al. Unique Cd1−xZnxS@WO3−x and Cd1−x-ZnxS@WO3−x/CoOx/NiOx Z-scheme photocatalysts for efficient visible-light-induced H2 evolution. Sci China Mater, 2020, 63: 75–90

    Google Scholar 

  204. Mei F, Li Z, Dai K, et al. Step-scheme porous g-C3N4/Zn0.2Cd0.8S-DETA composites for efficient and stable photocatalytic H2 production. Chin J Catal, 2020, 41: 41–49

    CAS  Google Scholar 

  205. Wang P, Geng Z, Gao J, et al. ZnxCd1−xS/bacterial cellulose bionanocomposite foams with hierarchical architecture and enhanced visible-light photocatalytic hydrogen production activity J Mater Chem A, 2015, 3: 1709–1716

    CAS  Google Scholar 

  206. Lingampalli SR, Gautam UK, Rao CNR. Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures. Energy Environ Sci, 2013, 6: 3589–3594

    CAS  Google Scholar 

  207. Han Z, Chen G, Li C, et al. Preparation of 1D cubic Cd0.8Zn0.2S solid-solution nanowires using levelling effect of TGA and improved photocatalytic H2-production activity. J Mater Chem A, 2015, 3: 1696–1702

    CAS  Google Scholar 

  208. Zhang X, Jing D, Liu M, et al. Efficient photocatalytic H2 production under visible light irradiation over Ni doped Cd1−xZnxS microsphere photocatalysts Catal Commun, 2008, 9: 1720–1724

    CAS  Google Scholar 

  209. Jiang Z, Qian K, Zhu C, et al. Carbon nitride coupled with CdS-TiO2 nanodots as 2D/0D ternary composite with enhanced photocatalytic H2 evolution: A novel efficient three-level electron transfer process. Appl Catal B-Environ, 2017, 210: 194–204

    CAS  Google Scholar 

  210. Lv JX, Zhang ZM, Wang J, et al. In situ synthesis of CdS/graphdiyne heterojunction for enhanced photocatalytic activity of hydrogen production. ACS Appl Mater Interfaces, 2019, 11: 2655–2661

    CAS  Google Scholar 

  211. Shi W, Guo F, Li M, et al. N-doped carbon dots/CdS hybrid photocatalyst that responds to visible/near-infrared light irradiation for enhanced photocatalytic hydrogen production. Separation Purification Tech, 2019, 212: 142–149

    CAS  Google Scholar 

  212. Cheng F, Yin H, Xiang Q. Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity. Appl Surf Sci, 2017, 391: 432–439

    CAS  Google Scholar 

  213. Jiang L, Wang L, Xu G, et al. A microwave-assisted thermolysis route to single-step preparation of MoS2/CdS composite photocatalysts for active hydrogen generation. Sustain Energy Fuels, 2018, 2: 430–435

    CAS  Google Scholar 

  214. Kang H, Kim JH. Utilization of a ZnS(en)0.5 photocatalyst hybridized with a CdS component for solar energy conversion to hydrogen. Adv Powder Tech, 2017, 28: 2438–2444

    CAS  Google Scholar 

  215. Tian L, Min S, Wang F. Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution. Appl Catal B-Environ, 2019, 259: 118029

    CAS  Google Scholar 

  216. Zhao J, Li W, Liu H, et al. Yolk-shell CdS@void@TiO2 composite particles with photocorrosion resistance for enhanced dye removal and hydrogen evolution. Adv Powder Tech, 2019, 30: 1965–1975

    CAS  Google Scholar 

  217. Hu Y, Hao X, Cui Z, et al. Enhanced photocarrier separation in conjugated polymer engineered CdS for direct Z-scheme photocatalytic hydrogen evolution. Appl Catal B-Environ, 2020, 260: 118131

    CAS  Google Scholar 

  218. Yue X, Yi S, Wang R, et al. Cadmium sulfide and nickel synergetic co-catalysts supported on graphitic carbon nitride for visible-light-driven photocatalytic hydrogen evolution. Sci Rep, 2016, 6: 22268

    CAS  Google Scholar 

  219. Jia X, Tahir M, Pan L, et al. Direct Z-scheme composite of CdS and oxygen-defected CdWO4: An efficient visible-light-driven photocatalyst for hydrogen evolution. Appl Catal B-Environ, 2016, 198: 154–161

    CAS  Google Scholar 

  220. Xu J, Yan X, Qi Y, et al. Novel phosphidated MoS2 nanosheets modified CdS semiconductor for an efficient photocatalytic H2 evolution. Chem Eng J, 2019, 375: 122053

    CAS  Google Scholar 

  221. Song L, Li T, Zhang S, et al. Synthesis of rhodium phosphide cocatalyst and remarkably enhanced photocatalytic hydrogen evolution over CdS under visible light radiation. Chem Eng J, 2017, 314: 498–507

    CAS  Google Scholar 

  222. Li F, Hou Y, Yu Z, et al. Oxygen deficiency introduced to Z-scheme CdS/WO3−x nanomaterials with MoS2 as the cocatalyst towards enhancing visible-light-driven hydrogen evolution. Nanoscale, 2019, 11: 10884–10895

    CAS  Google Scholar 

  223. Nekouei F, Nekouei S, Pouzesh M, et al. Porous-CdS/Cu2O/graphitic-C3N4 dual p-n junctions as highly efficient photo/catalysts for degrading ciprofloxacin and generating hydrogen using solar energy. Chem Eng J, 2020, 385: 123710

    Google Scholar 

  224. Ai Z, Zhang K, Shi D, et al. Band-matching transformation between CdS and BCNNTs with tunable p-n homojunction for enhanced photocatalytic pure water splitting. Nano Energy, 2020, 69: 104408

    CAS  Google Scholar 

  225. Lin Y, Zhang Q, Li Y, et al. The evolution from a typical type-I CdS/ZnS to type-II and Z-scheme hybrid structure for efficient and stable hydrogen production under visible light. ACS Sustain Chem Eng, 2020, 8: 4537–4546

    CAS  Google Scholar 

  226. Qin Y, Li H, Lu J, et al. Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem Eng J, 2020, 384: 123275

    CAS  Google Scholar 

  227. Jiang C, Zhang L, Gao F, et al. Promoting photocatalytic hydrogen production by a core-shell CdS@MoOx photocatalyst connected by an S-Mo “bridge”. Catal Sci Technol, 2020, 10: 1368–1375

    CAS  Google Scholar 

  228. Zhang J, Wang Y, Jin J, et al. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl Mater Interfaces, 2013, 5: 10317–10324

    CAS  Google Scholar 

  229. Li C, Wang H, Naghadeh SB, et al. Visible light driven hydrogen evolution by photocatalytic reforming of lignin and lactic acid using one-dimensional NiS/CdS nanostructures. Appl Catal B-Environ, 2018, 227: 229–239

    CAS  Google Scholar 

  230. Zhang L, Fu X, Meng S, et al. Ultra-low content of Pt modified CdS nanorods: one-pot synthesis and high photocatalytic activity for H2 production under visible light. J Mater Chem A, 2015, 3: 23732–23742

    CAS  Google Scholar 

  231. Hong S, Kumar DP, Reddy DA, et al. Excellent photocatalytic hydrogen production over CdS nanorods via using noble metalfree copper molybdenum sulfide (Cu2MoS4) nanosheets as cocatalysts. Appl Surf Sci, 2017, 396: 421–429

    CAS  Google Scholar 

  232. Liu S, Guo Z, Qian X, et al. Sonochemical deposition of ultrafine metallic Pt nanoparticles on CdS for efficient photocatalytic hydrogen evolution. Sustain Energy Fuels, 2019, 3: 1048–1054

    CAS  Google Scholar 

  233. Fang X, Cui L, Pu T, et al. Core-shell CdS@MnS nanorods as highly efficient photocatalysts for visible light driven hydrogen evolution. Appl Surf Sci, 2018, 457: 863–869

    CAS  Google Scholar 

  234. Zhang J, Qiao SZ, Qi L, et al. Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys Chem Chem Phys, 2013, 15: 12088–12094

    CAS  Google Scholar 

  235. Chen H, Sun Z, Ye S, et al. Molecular cobalt-salen complexes as novel cocatalysts for highly efficient photocatalytic hydrogen production over a CdS nanorod photosensitizer under visible light. J Mater Chem A, 2015, 3: 15729–15737

    CAS  Google Scholar 

  236. Zhu C, Liu C, Fu Y, et al. Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Appl Catal B-Environ, 2019, 242: 178–185

    CAS  Google Scholar 

  237. Li Q, Shi T, Li X, et al. Remarkable positive effect of Cd(OH)2 on CdS semiconductor for visible-light photocatalytic H2 production. Appl Catal B-Environ, 2018, 229: 8–14

    CAS  Google Scholar 

  238. Xiao R, Zhao C, Zou Z, et al. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl Catal B-Environ, 2020, 268: 118382

    CAS  Google Scholar 

  239. Zhou X, Fang Y, Cai X, et al. In situ photodeposited construction of Pt-CdS/g-C3N4-MnOx composite photocatalyst for efficient visible-light-driven overall water splitting. ACS Appl Mater Interfaces, 2020, 12: 20579–20588

    CAS  Google Scholar 

  240. Xiang Q, Cheng F, Lang D. Hierarchical layered WS2/graphenemodified CdS nanorods for efficient photocatalytic hydrogen evolution. ChemSusChem, 2016, 9: 996–1002

    CAS  Google Scholar 

  241. Chen Z, Gong H, Liu Q, et al. NiSe2 nanoparticles grown in situ on CdS nanorods for enhanced photocatalytic hydrogen evolution. ACS Sustain Chem Eng, 2019, 7: 16720–16728

    CAS  Google Scholar 

  242. Rangappa AP, Kumar DP, Gopannagari M, et al. Highly efficient hydrogen generation in water using 1D CdS nanorods integrated with 2D SnS2 nanosheets under solar light irradiation. Appl Surf Sci, 2020, 508: 144803

    CAS  Google Scholar 

  243. Li K, Han M, Chen R, et al. Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability. Adv Mater, 2016, 28: 8906–8911

    CAS  Google Scholar 

  244. Chava RK, Son N, Kim YS, et al. Controlled growth and bandstructure properties of one dimensional cadmium sulfide nanorods for visible photocatalytic hydrogen evolution reaction. Nanomaterials, 2020, 10: 619

    CAS  Google Scholar 

  245. Li Z, Zhang L, Liu Y, et al. Surface-polarity-induced spatial charge separation boosts photocatalytic overall water splitting on GaN nanorod arrays. Angew Chem Int Ed, 2020, 59: 935–942

    CAS  Google Scholar 

  246. Ren D, Shen R, Jiang Z, et al. Highly efficient visible-light photocatalytic H2 evolution over 2D-2D CdS/Cu7S4 layered heterojunctions. Chin J Catal, 2020, 41: 31–40

    CAS  Google Scholar 

  247. Dai K, Hu T, Zhang J, et al. Carbon nanotube exfoliated porous reduced graphene oxide/CdS-diethylenetriamine heterojunction for efficient photocatalytic H2 production. Appl Surf Sci, 2020, 512: 144783

    Google Scholar 

  248. Abbood HA, Alabadi A, Al-Hawash AB, et al. Square CdS micro/nanosheets as efficient photo/piezo-bi-catalyst for hydrogen production. Catal Lett, 2020, 150: 3059–3070

    CAS  Google Scholar 

  249. Pan Z, Li J, Zhou K. Wrinkle-free atomically thin CdS nanosheets for photocatalytic hydrogen evolution. Nanotechnology, 2018, 29: 215402

    Google Scholar 

  250. Sun K, Shen J, Yang Y, et al. Highly efficient photocatalytic hydrogen evolution from 0D/2D heterojunction of FeP nanoparticles/CdS nanosheets. Appl Surf Sci, 2020, 505: 144042

    CAS  Google Scholar 

  251. Lv J, Zhang J, Liu J, et al. Bi SPR-promoted Z-scheme Bi2MoO6/CdS-diethylenetriamine composite with effectively enhanced visible light photocatalytic hydrogen evolution activity and stability. ACS Sustain Chem Eng, 2018, 6: 696–706

    CAS  Google Scholar 

  252. Wu A, Tian C, Jiao Y, et al. Sequential two-step hydrothermal growth of MoS2/CdS core-shell heterojunctions for efficient visible light-driven photocatalytic H2 evolution. Appl Catal B-Environ, 2017, 203: 955–963

    CAS  Google Scholar 

  253. Yu H, Zhong W, Huang X, et al. Suspensible cubic-phase CdS nanocrystal photocatalyst: facile synthesis and highly efficient H2-evolution performance in a sulfur-rich system. ACS Sustain Chem Eng, 2018, 6: 5513–5523

    CAS  Google Scholar 

  254. Chen J, Wu XJ, Yin L, et al. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew Chem Int Ed, 2015, 54: 1210–1214

    CAS  Google Scholar 

  255. Chai B, Xu M, Yan J, et al. Remarkably enhanced photocatalytic hydrogen evolution over MoS2 nanosheets loaded on uniform CdS nanospheres. Appl Surf Sci, 2018, 430: 523–530

    CAS  Google Scholar 

  256. Yin XL, Li LL, Han SR, et al. Green and in-situ synthesis of noblemetal-free Ni2P/CdS nanoheterostructure for enhanced photocatalytic H2 generation activity. J Taiwan Institute Chem Engineers, 2019, 103: 110–117

    CAS  Google Scholar 

  257. Wei RB, Huang ZL, Gu GH, et al. Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl Catal B-Environ, 2018, 231: 101–107

    CAS  Google Scholar 

  258. Zubair M, Svenum IH, Rønning M, et al. Facile synthesis approach for core-shell TiO2-CdS nanoparticles for enhanced photocatalytic H2 generation from water. Catal Today, 2019, 328: 15–20

    CAS  Google Scholar 

  259. Yao X, Liu T, Liu X, et al. Loading of CdS nanoparticles on the (101) surface of elongated TiO2 nanocrystals for efficient visible-light photocatalytic hydrogen evolution from water splitting. Chem Eng J, 2014, 255: 28–39

    CAS  Google Scholar 

  260. Zhou FQ, Fan JC, Xu QJ, et al. BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation. Appl Catal B-Environ, 2017, 201: 77–83

    CAS  Google Scholar 

  261. Du J, Wang H, Yang M, et al. Pyramid-like CdS nanoparticles grown on porous TiO2 monolith: An advanced photocatalyst for H2 production. Electrochim Acta, 2017, 250: 99–107

    CAS  Google Scholar 

  262. Zhao L, Jia J, Yang Z, et al. One-step synthesis of CdS nanoparticles/MoS2 nanosheets heterostructure on porous molybdenum sheet for enhanced photocatalytic H2 evolution. Appl Catal B-Environ, 2017, 210: 290–296

    CAS  Google Scholar 

  263. Lei Y, Hou J, Wang F, et al. Boosting the catalytic performance of MoSx cocatalysts over CdS nanoparticles for photocatalytic H2 evolution by Co doping via a facile photochemical route. Appl Surf Sci, 2017, 420: 456–464

    CAS  Google Scholar 

  264. Girginer B, Galli G, Chiellini E, et al. Preparation of stable CdS nanoparticles in aqueous medium and their hydrogen generation efficiencies in photolysis of water. Int J Hydrogen Energy, 2009, 34: 1176–1184

    CAS  Google Scholar 

  265. Wang D, Li X, Zheng LL, et al. Size-controlled synthesis of CdS nanoparticles confined on covalent triazine-based frameworks for durable photocatalytic hydrogen evolution under visible light. Nanoscale, 2018, 10: 19509–19516

    CAS  Google Scholar 

  266. Weng B, Liu S, Zhang N, et al. A simple yet efficient visible-light-driven CdS nanowires-carbon nanotube 1D-1D nanocomposite photocatalyst. J Catal, 2014, 309: 146–155

    CAS  Google Scholar 

  267. Wu K, Zhu H, Lian T. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Acc Chem Res, 2015, 48: 851–859

    CAS  Google Scholar 

  268. Appell D. Wired for success. Nature, 2002, 419: 553–555

    CAS  Google Scholar 

  269. Bierman MJ, Jin S. Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ Sci, 2009, 2: 1050–1059

    CAS  Google Scholar 

  270. Shieh F, Saunders AE, Korgel BA. General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J Phys Chem B, 2005, 109: 8538–8542

    CAS  Google Scholar 

  271. Fatahi P, Roy A, Bahrami M, et al. Visible-light-driven efficient hydrogen production from CdS nanorods anchored with cocatalysts based on transition metal alloy nanosheets of NiPd, NiZn, and NiPdZn. ACS Appl Energy Mater, 2018, 1: 5318–5327

    CAS  Google Scholar 

  272. Han B, Liu S, Zhang N, et al. One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light. Appl Catal B-Environ, 2017, 202: 298–304

    CAS  Google Scholar 

  273. Li Q, Qiao XQ, Jia Y, et al. Noble-metal-free amorphous CoMoSx modified CdS core-shell nanowires for dramatically enhanced photocatalytic hydrogen evolution under visible light irradiation. Appl Surf Sci, 2019, 498: 143863

    CAS  Google Scholar 

  274. Shabaev A, Efros AL. 1D exciton spectroscopy of semiconductor nanorods. Nano Lett, 2004, 4: 1821–1825

    CAS  Google Scholar 

  275. Sitt A, Salant A, Menagen G, et al. Highly emissive nano rod-in-rod heterostructures with strong linear polarization. Nano Lett, 2011, 11: 2054–2060

    CAS  Google Scholar 

  276. Peng CY, Manning L, Albertson R, et al. The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature, 2000, 408: 596–600

    CAS  Google Scholar 

  277. Tongying P, Vietmeyer F, Aleksiuk D, et al. Double heterojunction nanowire photocatalysts for hydrogen generation. Nanoscale, 2014, 6: 4117–4124

    CAS  Google Scholar 

  278. Wu K, Rodríguez-Córdoba W, Lian T. Exciton localization and dissociation dynamics in CdS and CdS-Pt quantum confined nanorods: Effect of nonuniform rod diameters. J Phys Chem B, 2014, 118: 14062–14069

    CAS  Google Scholar 

  279. Park J, Lee E, Hwang NM, et al. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed, 2005, 44: 2872–2877

    CAS  Google Scholar 

  280. Pileni MP. Self-assemblies of nanocrystals: fabrication and collective properties. Appl Surf Sci, 2001, 171: 1–14

    CAS  Google Scholar 

  281. Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature, 2005, 437: 121–124

    CAS  Google Scholar 

  282. Gai Q, Zheng X, Liu W, et al. 2D-2D heterostructured CdS-CoP photocatalysts for efficient H2 evolution under visible light irradiation. Int J Hydrogen Energy, 2019, 44: 27412–27420

    CAS  Google Scholar 

  283. Liu C, Xiong M, Chai B, et al. Construction of 2D/2D Ni2P/CdS heterojunctions with significantly enhanced photocatalytic H2 evolution performance. Catal Sci Technol, 2019, 9: 6929–6937

    CAS  Google Scholar 

  284. Li C, Han L, Liu R, et al. Controlled synthesis of CdS micro/nano leaves with (0001) facets exposed: enhanced photocatalytic activity toward hydrogen evolution. J Mater Chem, 2012, 22: 23815–23820

    CAS  Google Scholar 

  285. Low J, Cao S, Yu J, et al. Two-dimensional layered composite photocatalysts. Chem Commun, 2014, 50: 10768–10777

    CAS  Google Scholar 

  286. Ren D, Liang ZZ, Ng YH, et al. Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution. Chem Eng J, 2020, 390: 124496

    CAS  Google Scholar 

  287. Cui X, Jiang G, Zhu M, et al. TiO2/CdS composite hollow spheres with controlled synthesis of platinum on the internal wall for the efficient hydrogen evolution. Int J Hydrogen Energy, 2013, 38: 9065–9073

    CAS  Google Scholar 

  288. Xu M, Wei Z, Liu J, et al. One-pot synthesized visible-light-responsive MoS2@CdS nanosheets-on-nanospheres for hydrogen evolution from the antibiotic wastewater: Waste to energy insight. Int J Hydrogen Energy, 2019, 44: 21577–21587

    CAS  Google Scholar 

  289. Yuan W, Zhang Z, Cui X, et al. Fabrication of hollow mesoporous CdS@TiO2@Au microspheres with high photocatalytic activity for hydrogen evolution from water under visible light. ACS Sustain Chem Eng, 2018, 6: 13766–13777

    CAS  Google Scholar 

  290. Zheng XL, Song JP, Ling T, et al. Strongly coupled nafion molecules and ordered porous CdS networks for enhanced visible-light photoelectrochemical hydrogen evolution. Adv Mater, 2016, 28: 4935–4942

    CAS  Google Scholar 

  291. Bie C, Zhu B, Xu F, et al. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction. Adv Mater, 2019, 31: 1902868

    CAS  Google Scholar 

  292. Wu K, Wu P, Zhu J, et al. Synthesis of hollow core-shell CdS@TiO2/Ni2P photocatalyst for enhancing hydrogen evolution and degradation of MB. Chem Eng J, 2019, 360: 221–230

    CAS  Google Scholar 

  293. Chen Z, Xu YJ. Ultrathin TiO2 layer coated-CdS spheres coreshell nanocomposite with enhanced visible-light photoactivity. ACS Appl Mater Interfaces, 2013, 5: 13353–13363

    CAS  Google Scholar 

  294. Yoo I, Kalanur SS, Seo H. A nanoscale p-n junction photoelectrode consisting of an NiOx layer on a TiO2/CdS nanorod core-shell structure for highly efficient solar water splitting. Appl Catal B-Environ, 2019, 250: 200–212

    CAS  Google Scholar 

  295. Wang M, Cui Z, Yang M, et al. Core/shell structured CdS/polydopamine/TiO2 ternary hybrids as highly active visible-light photocatalysis. J Colloid Interface Sci, 2019, 544: 1–7

    CAS  Google Scholar 

  296. Wu H, Meng S, Zhang J, et al. Construction of two-dimensionally relative p-n heterojunction for efficient photocatalytic redox reactions under visible light. Appl Surf Sci, 2020, 505: 144638

    CAS  Google Scholar 

  297. Wang Y, Zhang X, Liu Y, et al. Crystallinity and phase controlling of g-C3N4/CdS hetrostructures towards high efficient photocatalytic H2 generation. Int J Hydrogen Energy, 2019, 44: 30151–30159

    CAS  Google Scholar 

  298. Liu H, Yan T, Jin Z, et al. CoP nanoparticles as cocatalyst modified the CdS/NiWO4 p-n heterojunction to produce hydrogen efficiently. New J Chem, 2020, 44: 1426–1438

    CAS  Google Scholar 

  299. Zhang Y, Jin Z. Accelerated charge transfer via a nickel tungstate modulated cadmium sulfide p-n heterojunction for photocatalytic hydrogen evolution. Catal Sci Technol, 2019, 9: 1944–1960

    CAS  Google Scholar 

  300. Majhi D, Das K, Mishra A, et al. One pot synthesis of CdS/BiOBr/Bi2O2CO3: A novel ternary double Z-scheme heterostructure photocatalyst for efficient degradation of atrazine. Appl Catal B-Environ, 2020, 260: 118222

    CAS  Google Scholar 

  301. Hu T, Li P, Zhang J, et al. Highly efficient direct Z-scheme WO3/CdS-diethylenetriamine photocatalyst and its enhanced photocatalytic H2 evolution under visible light irradiation. Appl Surf Sci, 2018, 442: 20–29

    CAS  Google Scholar 

  302. Wei W, Tian Q, Sun H, et al. Efficient visible-light-driven photocatalytic H2 evolution over MoO2-C/CdS ternary heterojunction with unique interfacial microstructures. Appl Catal B-Environ, 2020, 260: 118153

    CAS  Google Scholar 

  303. Tang Y, Traveerungroj P, Tan HL, et al. Scaffolding an ultrathin CdS layer on a ZnO nanorod array using pulsed electrodeposition for improved photocharge transport under visible light illumination. J Mater Chem A, 2015, 3: 19582–19587

    CAS  Google Scholar 

  304. Ma D, Shi JW, Zou Y, et al. Rational design of CdS@ZnO core-shell structure via atomic layer deposition for drastically enhanced photocatalytic H2 evolution with excellent photostability. Nano Energy, 2017, 39: 183–191

    CAS  Google Scholar 

  305. Wu H, Zheng Z, Tang Y, et al. Pulsed electrodeposition of CdS on ZnO nanorods for highly sensitive photoelectrochemical sensing of copper(II) ions. Sustain Mater Technol, 2018, 18: e00075

    CAS  Google Scholar 

  306. Wang S, Zhu B, Liu M, et al. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl Catal B-Environ, 2019, 243: 19–26

    CAS  Google Scholar 

  307. Hoseini AA, Farhadi S, Zabardasti A, et al. A novel n-type CdS nanorods/p-type LaFeO3 heterojunction nanocomposite with enhanced visible-light photocatalytic performance. RSC Adv, 2019, 9: 24489–24504

    CAS  Google Scholar 

  308. Han X, Wang D, Guo Z, et al. Excellent visible light absorption by adopting mesoporous SiC in SiC/CdS for enhanced photocatalytic hydrogen generation. mat express, 2019, 9: 65–72

    CAS  Google Scholar 

  309. Arif M, Min Z, Yuting L, et al. A Bi2WO6-based hybrid heterostructures photocatalyst with enhanced photodecomposition and photocatalytic hydrogen evolution through Z-scheme process. J Industrial Eng Chem, 2019, 69: 345–357

    CAS  Google Scholar 

  310. Zhang Y, Jin Z, Yuan H, et al. Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS p-n heterojunction for efficient photocatalytic hydrogen evolution. Appl Surf Sci, 2018, 462: 213–225

    CAS  Google Scholar 

  311. Xu Q, Zhang L, Yu J, et al. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater Today, 2018, 21: 1042–1063

    CAS  Google Scholar 

  312. Li X, Shen R, Ma S, et al. Graphene-based heterojunction photocatalysts. Appl Surf Sci, 2018, 430: 53–107

    CAS  Google Scholar 

  313. Zhong W, Shen S, He M, et al. The pulsed laser-induced Schottky junction via in-situ forming Cd clusters on CdS surfaces toward efficient visible light-driven photocatalytic hydrogen evolution. Appl Catal B-Environ, 2019, 258: 117967

    CAS  Google Scholar 

  314. Shang L, Tong B, Yu H, et al. CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv Energy Mater, 2016, 6: 1501241

    Google Scholar 

  315. Lang D, Shen T, Xiang Q. Roles of MoS2 and graphene as cocatalysts in the enhanced visible-light photocatalytic H2 production activity of multiarmed CdS nanorods. ChemCatChem, 2015, 7: 943–951

    CAS  Google Scholar 

  316. Xu J, Wang L, Cao X. Polymer supported graphene-CdS composite catalyst with enhanced photocatalytic hydrogen production from water splitting under visible light. Chem Eng J, 2016, 283: 816–825

    CAS  Google Scholar 

  317. Kuang P, Sayed M, Fan J, et al. 3D graphene-based H2-production photocatalyst and electrocatalyst. Adv Energy Mater, 2020, 10: 1903802

    CAS  Google Scholar 

  318. Xia Y, Cheng B, Fan J, et al. Unraveling photoexcited charge transfer pathway and process of CdS/graphene nanoribbon composites toward visible-light photocatalytic hydrogen evolution. Small, 2019, 15: 1902459

    Google Scholar 

  319. Xia Y, Cheng B, Fan J, et al. Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci China Mater, 2020, 63: 552–565

    CAS  Google Scholar 

  320. Wang Y, Chen J, Liu L, et al. Novel metal doped carbon quantum dots/CdS composites for efficient photocatalytic hydrogen evolution. Nanoscale, 2019, 11: 1618–1625

    CAS  Google Scholar 

  321. Qiu S, Shen Y, Wei G, et al. Carbon dots decorated ultrathin CdS nanosheets enabling in-situ anchored Pt single atoms: A highly efficient solar-driven photocatalyst for hydrogen evolution. Appl Catal B-Environ, 2019, 259: 118036

    CAS  Google Scholar 

  322. Ma S, Xu X, Xie J, et al. Improved visible-light photocatalytic H2 generation over CdS nanosheets decorated by NiS2 and metallic carbon black as dual earth-abundant cocatalysts. Chin J Catal, 2017, 38: 1970–1980

    CAS  Google Scholar 

  323. Kim YK, Lim SK, Park H, et al. Trilayer CdS/carbon nanofiber (CNF) mat/Pt-TiO2 composite structures for solar hydrogen production: Effects of CNF mat thickness. Appl Catal B-Environ, 2016, 196: 216–222

    CAS  Google Scholar 

  324. Zhang J, Huang F. Enhanced visible light photocatalytic H2 production activity of g-C3N4via carbon fiber. Appl Surf Sci, 2015, 358: 287–295

    CAS  Google Scholar 

  325. Kim YK, Kim M, Hwang SH, et al. CdS-loaded flexible carbon nanofiber mats as a platform for solar hydrogen production. Int J Hydrogen Energy, 2015, 40: 136–145

    CAS  Google Scholar 

  326. Gopannagari M, Kumar DP, Park H, et al. Influence of surface-functionalized multi-walled carbon nanotubes on CdS nanohybrids for effective photocatalytic hydrogen production. Appl Catal B-Environ, 2018, 236: 294–303

    CAS  Google Scholar 

  327. Li H, Xiao S, Zhou J, et al. A flexible CdS nanorods-carbon nanotubes/stainless steel mesh photoanode for boosted photoelectrocatalytic hydrogen evolution. Chem Commun, 2019, 55: 2741–2744

    CAS  Google Scholar 

  328. Kim YK, Park H. Light-harvesting multi-walled carbon nanotubes and CdS hybrids: Application to photocatalytic hydrogen production from water. Energy Environ Sci, 2011, 4: 685–694

    CAS  Google Scholar 

  329. Meng A, Zhu B, Zhong B, et al. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl Surf Sci, 2017, 422: 518–527

    CAS  Google Scholar 

  330. Yu W, Zhang S, Chen J, et al. Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H2 evolution. J Mater Chem A, 2018, 6: 15668–15674

    CAS  Google Scholar 

  331. He F, Meng A, Cheng B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin J Catal, 2020, 41: 9–20

    CAS  Google Scholar 

  332. He K, Xie J, Luo X, et al. Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts. Chin J Catal, 2017, 38: 240–252

    CAS  Google Scholar 

  333. Low J, Jiang C, Cheng B, et al. A review of direct Z-scheme photocatalysts. Small Methods, 2017, 1: 1700080

    Google Scholar 

  334. Di T, Xu Q, Ho WK, et al. Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem, 2019, 11: 1394–1411

    CAS  Google Scholar 

  335. Zhang L, Hao X, Jian Q, et al. Ferrous oxalate dehydrate over CdS as Z-scheme photocatalytic hydrogen evolution. J Solid State Chem, 2019, 274: 286–294

    CAS  Google Scholar 

  336. Peng J, Shen J, Yu X, et al. Construction of LSPR-enhanced 0D/2D CdS/MoO3-S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chin J Catal, 2021, 42: 87–96

    CAS  Google Scholar 

  337. Ren Y, Zeng D, Ong WJ. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chin J Catal, 2019, 40: 289–319

    CAS  Google Scholar 

  338. Ren D, Zhang W, Ding Y, et al. In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D-2D step-scheme heterojunctions for highly active H2 evolution. Sol RRL, 2020, 4: 1900423

    CAS  Google Scholar 

  339. Yang R, Zhu R, Fan Y, et al. Construction of an artificial inorganic leaf CdS-BiVO4 Z-scheme and its enhancement activities for pollutant degradation and hydrogen evolution. Catal Sci Technol, 2019, 9: 2426–2437

    CAS  Google Scholar 

  340. Low J, Dai B, Tong T, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv Mater, 2019, 31: 1802981

    Google Scholar 

  341. Ge H, Xu F, Cheng B, et al. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst. ChemCatChem, 2019, 11: 6301–6309

    CAS  Google Scholar 

  342. Cui H, Li B, Li Z, et al. Z-scheme based CdS/CdWO4 heterojunction visible light photocatalyst for dye degradation and hydrogen evolution. Appl Surf Sci, 2018, 455: 831–840

    CAS  Google Scholar 

  343. Yin C, Cui L, Pu T, et al. Facile fabrication of nano-sized hollow-CdS@g-C3N4 core-shell spheres for efficient visible-light-driven hydrogen evolution. Appl Surf Sci, 2018, 456: 464–472

    CAS  Google Scholar 

  344. Yu G, Wang X, Cao J, et al. Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution. Chem Commun, 2016, 52: 2394–2397

    CAS  Google Scholar 

  345. Oros-Ruiz S, Hernández-Gordillo A, García-Mendoza C, et al. Comparative activity of CdS nanofibers superficially modified by Au, Cu, and Ni nanoparticles as co-catalysts for photocatalytic hydrogen production under visible light. J Chem Technol Biotechnol, 2016, 91: 2205–2210

    CAS  Google Scholar 

  346. Zhou X, Chen H, Sun Y, et al. Highly efficient light-induced hydrogen evolution from a stable Pt/CdS NPs-co-loaded hierarchically porous zeolite beta. Appl Catal B-Environ, 2014, 152: 271–279

    Google Scholar 

  347. Feng J, An C, Dai L, et al. Long-term production of H2 over Pt/CdS nanoplates under sunlight illumination. Chem Eng J, 2016, 283: 351–357

    CAS  Google Scholar 

  348. Di T, Cheng B, Ho W, et al. Hierarchically CdS-Ag2S nanocomposites for efficient photocatalytic H2 production. Appl Surf Sci, 2019, 470: 196–204

    CAS  Google Scholar 

  349. Yin J, Zhan F, Jiao T, et al. Facile preparation of self-assembled MXene@Au@CdS nanocomposite with enhanced photocatalytic hydrogen production activity. Sci China Mater, 2020, 63: 2228–2238

    Google Scholar 

  350. Ran J, Gao G, Li FT, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun, 2017, 8: 13907

    CAS  Google Scholar 

  351. Li K, Zhang S, Li Y, et al. MXenes as noble-metal-alternative cocatalysts in photocatalysis. Chin J Catal, 2021, 42: 3–14

    CAS  Google Scholar 

  352. Cheng L, Li X, Zhang H, et al. Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation. J Phys Chem Lett, 2019, 10: 3488–3494

    CAS  Google Scholar 

  353. Liu W, Wang X, Yu H, et al. Direct photoinduced synthesis of amorphous CoMoSx cocatalyst and its improved photocatalytic H2-evolution activity of CdS. ACS Sustain Chem Eng, 2018, 6: 12436–12445

    CAS  Google Scholar 

  354. Lu X, Toe CY, Ji F, et al. Light-induced formation of MoOxSy clusters on CdS nanorods as cocatalyst for enhanced hydrogen evolution. ACS Appl Mater Interfaces, 2020, 12: 8324–8332

    CAS  Google Scholar 

  355. Zhang ZW, Li QH, Qiao XQ, et al. One-pot hydrothermal synthesis of willow branch-shaped MoS2/CdS heterojunctions for photocatalytic H2 production under visible light irradiation. Chin J Catal, 2019, 40: 371–379

    CAS  Google Scholar 

  356. Liang Z, Shen R, Ng YH, et al. A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J Mater Sci Tech, 2020, 56: 89–121

    Google Scholar 

  357. Wei Z, Xu M, Liu J, et al. Simultaneous visible-light-induced hydrogen production enhancement and antibiotic wastewater degradation using MoS2@ZnxCd1−xS: Solid-solution-assisted photocatalysis. Chin J Catal, 2020, 41: 103–113

    CAS  Google Scholar 

  358. Chai B, Liu C, Wang C, et al. Photocatalytic hydrogen evolution activity over MoS2/ZnIn2S4 microspheres. Chin J Catal, 2017, 38: 2067–2075

    CAS  Google Scholar 

  359. Hu T, Dai K, Zhang J, et al. Noble-metal-free Ni2P as cocatalyst decorated rapid microwave solvothermal synthesis of inorganicorganic CdS-DETA hybrids for enhanced photocatalytic hydrogen evolution. Appl Surf Sci, 2019, 481: 1385–1393

    CAS  Google Scholar 

  360. Dai D, Wang L, Xiao N, et al. In-situ synthesis of Ni2P co-catalyst decorated Zn0.5Cd0.5S nanorods for high-quantum-yield photocatalytic hydrogen production under visible light irradiation. Appl Catal B-Environ, 2018, 233: 194–201

    CAS  Google Scholar 

  361. Yuan J, Wen J, Zhong Y, et al. Enhanced photocatalytic H2 evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/g-C3N4 heterojunctions. J Mater Chem A, 2015, 3: 18244–18255

    CAS  Google Scholar 

  362. Song L, Zhang S. A novel cocatalyst of NiCoP significantly enhances visible-light photocatalytic hydrogen evolution over cadmium sulfide. J Industr Eng Chem, 2018, 61: 197–205

    CAS  Google Scholar 

  363. Li S, Wang L, Liu S, et al. In situ synthesis of strongly coupled Co2P-CdS nanohybrids: An effective strategy to regulate photocatalytic hydrogen evolution activity. ACS Sustain Chem Eng, 2018, 6: 9940–9950

    CAS  Google Scholar 

  364. Zong X, Han J, Ma G, et al. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J Phys Chem C, 2011, 115: 12202–12208

    CAS  Google Scholar 

  365. Zou Y, Shi JW, Ma D, et al. WS2/graphitic carbon nitride heterojunction nanosheets decorated with CdS quantum dots for photocatalytic hydrogen production. ChemSusChem, 2018, 11: 1187–1197

    CAS  Google Scholar 

  366. Moniruddin M, Oppong E, Stewart D, et al. Designing CdS-based ternary heterostructures consisting of co-metal and CoOx cocatalysts for photocatalytic H2 evolution under visible light. Inorg Chem, 2019, 58: 12325–12333

    CAS  Google Scholar 

  367. Shen R, Xie J, Xiang Q, et al. Ni-based photocatalytic H2-production cocatalysts. Chin J Catal, 2019, 40: 240–288

    CAS  Google Scholar 

  368. Zhang H, Dong Y, Zhao S, et al. Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Appl Catal B-Environ, 2020, 261: 118233

    CAS  Google Scholar 

  369. Meng A, Zhang L, Cheng B, et al. Dual cocatalysts in TiO2 photocatalysis. Adv Mater, 2019, 31: 1807660

    Google Scholar 

  370. Huang L, Wang X, Yang J, et al. Dual cocatalysts loaded type I CdS/ZnS core/shell nanocrystals as effective and stable photocatalysts for H2 evolution. J Phys Chem C, 2013, 117: 11584–11591

    CAS  Google Scholar 

  371. Di T, Zhu B, Zhang J, et al. Enhanced photocatalytic H2 production on CdS nanorod using cobalt-phosphate as oxidation cocatalyst. Appl Surf Sci, 2016, 389: 775–782

    CAS  Google Scholar 

  372. Ba Q, Jia X, Huang L, et al. Alloyed Pd Ni hollow nanoparticles as cocatalyst of CdS for improved photocatalytic activity toward hydrogen production. Int J Hydrogen Energy, 2019, 44: 5872–5880

    CAS  Google Scholar 

  373. Ba Q, Jia X, Huang L, et al. Hollow structured PtNi alloy as cocatalyst of CdS for hydrogen generation under visible light irradiation. Int J Hydrogen Energy, 2019, 44: 28104–28112

    CAS  Google Scholar 

  374. Zhang F, Zhuang HQ, Zhang W, et al. Noble-metal-free CuS/CdS photocatalyst for efficient visible-light-driven photocatalytic H2 production from water. Catal Today, 2019, 330: 203–208

    CAS  Google Scholar 

  375. Liu G, Zhao G, Zhou W, et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production. Adv Funct Mater, 2016, 26: 6822–6829

    CAS  Google Scholar 

  376. Wang X, Yu H, Yang L, et al. A highly efficient and noble metalfree photocatalytic system using NixB/CdS as photocatalyst for visible light H2 production from aqueous solution. Catal Commun, 2015, 67: 45–48

    CAS  Google Scholar 

  377. Wen T, Zhang L, Schmitt W. A Mn13-cluster based coordination polymer as a co-catalyst of CdS for enhanced visible-light driven H2 evolution. Dalton Trans, 2018, 47: 10857–10860

    CAS  Google Scholar 

  378. Iqbal S. Spatial charge separation and transfer in L-cysteine capped NiCoP/CdS nano-heterojunction activated with intimate covalent bonding for high-quantum-yield photocatalytic hydrogen evolution. Appl Catal B-Environ, 2020, 274: 119097

    CAS  Google Scholar 

  379. Lian J, Qi Y, Bao Y, et al. Reversed configuration of photocatalyst to exhibit improved properties of basic processes compared to conventional one. Sci China Chem, 2020, 63: 771–776

    CAS  Google Scholar 

  380. You F, Wan J, Qi J, et al. Lattice distortion in hollow multi-shelled structures for efficient visible-light CO2 reduction with a SnS2/SnO2 junction. Angew Chem Int Ed, 2020, 59: 721–724

    CAS  Google Scholar 

  381. Li J, Liu X, Zhang J. Smart assembly of sulfide heterojunction photocatalysts with well-defined interfaces for direct Z-scheme water splitting under visible light. ChemSusChem, 2020, 13: 2996–3004

    CAS  Google Scholar 

  382. Ai Z, Zhang K, Chang B, et al. Construction of CdS@Ti3C2@CoO hierarchical tandem p-n heterojunction for boosting photocatalytic hydrogen production in pure water. Chem Eng J, 2020, 383: 123130

    CAS  Google Scholar 

  383. Ning X, Zhen W, Wu Y, et al. Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation. Appl Catal B-Environ, 2018, 226: 373–383

    CAS  Google Scholar 

  384. Qian L, Hou Y, Yu Z, et al. Metal-induced Z-scheme CdS/Ag/g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light: The synergy of MIP effect and electron mediator of Ag. Mol Catal, 2018, 458: 43–51

    CAS  Google Scholar 

  385. Peng T, Zhang X, Zeng P, et al. Carbon encapsulation strategy of Ni co-catalyst: Highly efficient and stable Ni@C/CdS nanocomposite photocatalyst for hydrogen production under visible light. J Catal, 2013, 303: 156–163

    CAS  Google Scholar 

  386. Xiong J, Liu Y, Cao C, et al. An architecture of CdS/H2Ti5O11 ultrathin nanobelt for photocatalytic hydrogenation of 4-nitroaniline with highly efficient performance. J Mater Chem A, 2015, 3: 6935–6942

    CAS  Google Scholar 

  387. Hou Y, Laursen AB, Zhang J, et al. Layered nanojunctions for hydrogen-evolution catalysis. Angew Chem Int Ed, 2013, 52: 3621–3625

    CAS  Google Scholar 

Download references

Acknowledgements

Li X thanks the National Natural Science Foundation of China (21975084 and 51672089) and the Ding Ying Talent Project of South China Agricultural University for their support. Ng Y thanks the Hong Kong Research Grant Council (RGC) General Research Fund GRF1305419 for financial support. Zhang P thanks the National Natural Science Foundation of China (51972287 and 51502269).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Hau Ng  (吴永豪), Peng Zhang  (张鹏) or Xin Li  (李鑫).

Additional information

Author contributions

Shen R and Li X proposed the topic and outline of the manuscript. Shen R, Ren D, Ding Y and Guan Y collected the related information needed in writing the paper; Shen R and Li X cowrote the manuscript. Ng Y and Zhang P revised and polished this manuscript. All authors discussed and commented on the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Rongchen Shen received his Bachelor degree from Huaibei Normal University in 2016 and Master degree from South China Agricultural University in 2019. He is a PhD candidate at South China Agricultural University. His research interests mainly focus on two-dimensional materials for photocatalytic application.

Yun Hau Ng is an associate professor at the School of Energy and Environment, City University of Hong Kong. He received his PhD from Osaka University in 2009. Before joining the City University of Hong Kong, he was a lecturer (2014) and senior lecturer (2016) in the School of Chemical Engineering, University of New South Wales. His research is focused on the development of novel photoactive semiconductors for solar energy conversion. He received the APEC ASPIRE Prize in 2019, Distinguished Lectureship Award from the Chemical Society of Japan in 2018, and Honda-Fujishima Prize by the Electrochemical Society of Japan in 2013.

Peng Zhang received his PhD in materials physics and chemistry from Northeast Normal University, China (2014). After postdoctoral research at Helmholtz-Zentrum Berlin, Germany, he joined the School of Materials Science and engineering at Zhengzhou University. His current research interests focus on micro- and nanotechnology including low-dimensional carbon-based materials (graphene, CNF, carbon layer, etc.) and their applications in the fields of environment remediation and energy storage. He has published more than 60 SCI papers in the above fields such as Adv. Mater., Adv. Func. Mater., Energy Storage Mater. His work has been cited more than 4,000 times, and his H-index is 33.

Xin Li received his BS and PhD degrees in chemical engineering from Zhengzhou University in 2002 and South China University of Technology in 2007, respectively. Then, he joined South China Agricultural University as a faculty staff member, and became an associate professor of applied chemistry in 2011. In 2017, he became a Professor at South China Agricultural University. During 2012–2013, he worked as a visiting scholar at the Electrochemistry Center, the University of Texas at Austin, USA. His research interests include photocatalysis, photoelectrochemistry, adsorption, and the development of nanomaterials and devices (see http://www.researcherid.com/rid/A-2698-2011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, R., Ren, D., Ding, Y. et al. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Sci. China Mater. 63, 2153–2188 (2020). https://doi.org/10.1007/s40843-020-1456-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1456-x

Keywords

Navigation