Skip to main content
Log in

Analysis of Electroencephalography Event-Related Desynchronisation and Synchronisation Induced by Lower-Limb Stepping Motor Imagery

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Bilateral upper-limb motor imagery has been demonstrated to be a useful mental task in electroencephalography (EEG)-based brain–computer interfaces (BCIs). By contrast, few studies have examined bilateral lower-limb motor imagery, and all of them have focused on imaginary foot movements. The left–right classification accuracy reported in these studies based on the EEG mu rhythm (8–13 Hz) and beta band (13–30 Hz) remains unsatisfactory. The present study investigated the possibility of using lower-limb stepping motor imagery as the mental task and analysed the EEG difference between imaginary left-leg stepping (L-stepping) and right-leg stepping (R-stepping) movements. An experimental paradigm was designed to collect 5-s motor imagery EEG signals at nine recording sites around the vertex of the brain. Results from eight able-bodied participants indicated that the commonly used mu event-related desynchronisation (ERD) feature exhibited no significant difference between the two imaginary movements for all recording sites and all time intervals within the 5-s motor imagery period. Regarding the other commonly used feature, beta event-related synchronisation, no significant difference between the two imagery tasks was observed for most of the recording sites and time intervals. Instead, theta band (4–8 Hz) ERD significantly differed between the L- and R-stepping imagery tasks at five sites (FC4, C3, CP3, Cz, CPz) within the first 2 s after motor imagery cue onset. The findings from the present study may be a basis for further development of BCI systems for decoding left and right stepping during mental exercise where the two motions are alternately imagined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113, 767–791.

    Article  Google Scholar 

  2. Hyder, F., Kida, I., Behar, K. L., Kennan, R. P., Maciejewski, P. K., & Rothman, D. L. (2001). Quantitative functional imaging of the brain: Towards mapping neuronal activity by BOLD fMRI. NMR in Biomedicine, 14, 413–431.

    Article  Google Scholar 

  3. Weyand, S., Takehara-Nishiuchi, K., & Chau, T. (2015). Weaning off mental tasks to achieve voluntary self-regulatory control of a near-infrared spectroscopy brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(4), 548–561.

    Article  Google Scholar 

  4. Pfurtscheller, G. (2001). Functional brain imaging based on ERD/ERS. Vision Research, 41, 1257–1260.

    Article  Google Scholar 

  5. Pfurtscheller, G., Brunner, C., Schlogl, A., & Lopes da Silva, F. H. (2006). Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage, 31, 153–159.

    Article  Google Scholar 

  6. Gao, J., Tian, H., Yang, Y., Yu, X., Li, C., & Rao, N. (2014). A novel algorithm to enhance P300 in single trials: Application to lie detection using F-score and SVM. PLoS ONE, 9(11), e109700.

    Article  Google Scholar 

  7. Liu, Y. H., Wang, S. H., & Hu, M. R. (2016). A self-paced P300 healthcare brain-computer interface system with SSVEP-based switching control and kernel FDA + SVM-based detector. Applied Sciences, 6(5), 142.

    Article  Google Scholar 

  8. Liu, Y. H., Wu, C. T., Cheng, W. T., Hsiao, Y. T., Chen, P. M., & Teng, J. T. (2014). Emotion recognition from single-trial EEG based on kernel Fisher’s emotion pattern and imbalanced quasiconformal kernel support vector machine. Sensors, 14, 13361–13388.

    Article  Google Scholar 

  9. Qian, K., Nikolov, P., Huang, D., Fei, D. Y., Chen, X., & Bai, O. (2010). A motor imagery-based online interactive brain-controlled switch: Paradigm development and preliminary test. Clinical Neurophysiology, 121, 304–313.

    Article  Google Scholar 

  10. Chae, Y., Jeong, J., & Jo, S. (2012). Toward brain-actuated humanoid robots: Asynchronous direct control using an EEG-Based BCI. IEEE Transactions on Robotics, 28, 1131–1144.

    Article  Google Scholar 

  11. Leeb, R., Lancelle, M., Kaiser, V., Fellner, D. W., & Pfurtscheller, G. (2013). Thinking penguin: Multi-modal brain-computer interface control of a VR game. IEEE Computational Intelligence and AI in Games, 5, 117–128.

    Article  Google Scholar 

  12. Yang, B., Li, H., Wang, Q., & Zhang, Y. (2016). Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces. Computer Methods and Programs in Biomedicine, 129, 21–28.

    Article  Google Scholar 

  13. Ghani, F., Sultan, H., Anwar, D., Farooq, O., & Khan, Y. U. (2013). Classification of wrist movements using EEG signals. Journal of Next Generation Information Technology, 4, 29–39.

    Article  Google Scholar 

  14. Liao, K., Xiao, R., Gonzalez, J., & Ding, L. (2014). Decoding individual finger movements from one hand using human EEG signals. PLoS ONE, 9(1), e85192.

    Article  Google Scholar 

  15. Yong, X., & Menon, C. (2015). EEG classification of different imaginary movements within the same limb. PLoS ONE, 10(4), e0121896.

    Article  Google Scholar 

  16. Neuper, C., & Pfurtscheller, G. (1996). Post-movement synchronization of beta rhythms in the EEG over the cortical foot area in man. Neuroscience Letters, 216, 17–20.

    Article  Google Scholar 

  17. Hashimoto, Y., & Ushiba, J. (2013). EEG-based classification of imaginary left and right foot movements using beta rebound. Clinical Neurophysiology, 124, 2153–2160.

    Article  Google Scholar 

  18. Xu, R., Jiang, N., Mrachacz-Kersting, N., Lin, C., Prieto, G. A., Moreno, J. C., et al. (2014). A closed-loop brain–computer interface triggering an active ankle–foot orthosis for inducing cortical neural plasticity. IEEE Transactions on Biomedical Engineering, 61, 2092–2101.

    Article  Google Scholar 

  19. Stippich, C., Ochmann, H., & Sartor, K. (2002). Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neuroscience Letters, 331, 50–54.

    Article  Google Scholar 

  20. Muller-Putz, G. R., Kaiser, V., Solis-Escalante, T., & Pfurtscheller, G. (2010). Fast set-up asynchronous brain-switch based on detection of foot motor imagery in 1-channel EEG. Medical & Biological Engineering & Computing, 48, 229–233.

    Article  Google Scholar 

  21. Pfurtscheller, G., & Solis-Escalante, T. (2009). Could the beta rebound in the EEG be suitable to realize a brain switch? Clinical Neurophysiology, 120, 24–29.

    Article  Google Scholar 

  22. Hsu, W. C., Lin, L. F., Chou, C. W., Hsiao, Y. T., & Liu, Y. H. (2017). EEG classification of imaginary lower limb stepping movements based on fuzzy support vector machine with kernel-induced membership function. International Journal of Fuzzy Systems, 19, 566–579.

    Article  MathSciNet  Google Scholar 

  23. Roosink, M., & Zijdewind, I. (2010). Corticospinal excitability during observation and imagery of simple and complex hand tasks: Implications for motor rehabilitation. Behavioural Brain Research, 213, 35–41.

    Article  Google Scholar 

  24. Kuhtz-Buschbeck, J. P., Mahnkopf, C., Holzknecht, C., Siebner, H., Ulmer, S., & Jansen, O. (2003). Effector-independent representations of simple and complex imagined finger movements: A combined fMRI and TMS study. European Journal of Neuroscience, 18, 3375–3387.

    Article  Google Scholar 

  25. Sadato, N., Campbell, G., Ibanez, V., Deiber, M. P., & Hallett, M. (1996). Complexity affects regional cerebral blood flow change during sequential finger movements. Journal of Neuroscience, 16, 2693–2700.

    Article  Google Scholar 

  26. Calmels, Claire, Hars, Magaly, Holmes, Paul, Jarry, Gilbert, & Stam, Cornelis J. (2008). Non-linear EEG synchronization during observation and execution of simple and complex sequential finger movements. Experimental Brain Research, 190, 389–400.

    Article  Google Scholar 

  27. Manganotti, P., Gerloff, C., Toro, C., Katsuta, H., Sadato, N., Zhuang, P. A., et al. (1998). Task-related coherence and task-related spectral power changes during sequential finger movements. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 109(1), 50–62.

    Article  Google Scholar 

  28. Hummel, Friedhelm, Kirsammer, Rolf, & Gerlof, Christian. (2003). Ipsilateral cortical activation during finger sequences of increasing complexity: Representation of movement difficulty or memory load? Clinical Neurophysiology, 114, 605–613.

    Article  Google Scholar 

  29. Yi, W., Qiu, S., Qi, H., Zhang, L., Wan, B., & Ming, D. (2013). EEG feature comparison and classification of simple and compound limb motor imagery. Journal of Neuroengineering and Rehabilitation, 10(1), 106.

    Article  Google Scholar 

  30. Muthuraman, M., Tamás, G., Hellriegel, H., Deuschl, G., & Raethjen, J. (2012). Source analysis of beta-synchronisation and cortico-muscular coherence after movement termination based on high resolution electroencephalography. PLoS ONE, 7(3), e33928.

    Article  Google Scholar 

  31. Saladin, K. (2007). Anatomy and physiology: The unity of form and function. Ohio: McGraw-Hill.

    Google Scholar 

  32. Dickstein, R., & Deutsch, J. E. (2007). Motor imagery in physical therapist practice. Physical Therapy, 87(7), 942–953.

    Article  Google Scholar 

  33. Dickstein, R., Dunsky, A., & Marcovitz, E. (2004). Motor imagery for gait rehabilitation in post-stroke hemiparesis. Physical Therapy, 84(12), 1167–1177.

    Google Scholar 

  34. Dunsky, A., Dickstein, R., Ariav, C., Deutsch, J., & Marcovitz, E. (2006). Motor imagery practice in gait rehabilitation of chronic post-stroke hemiparesis: Four case studies. International Journal of Rehabilitation Research, 29(4), 351–356.

    Article  Google Scholar 

  35. Malouin, F., & Richards, C. L. (2010). Mental practice for relearning locomotor skills. Physical Therapy, 90(2), 240–251.

    Article  Google Scholar 

  36. Vourvopoulos, A., & Badia, S. B. (2016). Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: A within-subject analysis. Journal of Neuroengineering and Rehabilitation, 13(1), 69.

    Article  Google Scholar 

  37. Schacter, D. L. (1977). EEG theta waves and psychological phenomena: A review and analysis. Biological Psychology, 5(1), 47–82.

    Article  Google Scholar 

  38. Erfani, A. & Erfanian, A. (2004, September). The effects of mental practice and concentration skills on EEG brain dynamics during motor imagery using independent component analysis. In Engineering in Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the IEEE (Vol. 1, pp. 242–239).

  39. Weber, E., & Doppelmayr, M. (2016). Kinesthetic motor imagery training modulates frontal midline theta during imagination of a dart throw. International Journal of Psychophysiology, 110, 137–145.

    Article  Google Scholar 

  40. Bui, D. C., Maddox, G. B., & Balota, D. A. (2013). The roles of working memory and intervening task difficulty in determining the benefits of repetition. Psychonomic Bulletin & Review, 20(2), 341–347.

    Article  Google Scholar 

  41. Pfurtscheller, G., & Neuper, C. (2001). Motor imagery and direct brain-computer communication. Proceedings of the IEEE, 89(7), 1123–1134.

    Article  Google Scholar 

  42. C. Neuper & G. Pfurtscheller. (1999). Motor imagery and ERD in event-related desynchronization In G. Pfurtscheller & F. H. L. da Silva (Eds.), Handbook of electroencephraphy and clinical. neurophysiology, rev. ed, (Vol. 6, pp. 303–325). Amsterdam, The Netherlands: Elsevier.

  43. Ginter, J., Jr., Blinowska, K. J., Kamin, M., Durka, P. J., Pfurtscheller, G., & Neuper, C. (2005). Propagation of EEG activity in the beta and gamma band during movement imagery in humans. Methods Archive, 44(1), 106–113.

    Google Scholar 

  44. Pfurtscheller, G., & Neuper, C. (1997). Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters, 239(2), 65–68.

    Article  Google Scholar 

  45. Grosse-Wentrup, M. (2009). Understanding brain connectivity patterns during motor imagery for brain-computer interfacing. In Advances in neural information processing systems (pp. 561–568).

  46. Hamedi, Mahyar, Salleh, Sh-Hussain, & Noor, Alias Mohd. (2016). Electroencephalographic motor imagery brain connectivity analysis for BCI: A review. Neural Computation, 28, 999–1041.

    Article  MathSciNet  MATH  Google Scholar 

  47. Ramoser, H., Muller-Gerking, J., & Pfurtscheller, G. (2000). Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 8(4), 441–446.

    Article  Google Scholar 

  48. Li, M., & Lu, B. L. (2009). Emotion classification based on gamma-band EEG. In Engineering in medicine and biology society, 2009. EMBC 2009. Annual international conference of the IEEE (pp. 1223–1226).

  49. Wang, X. W., Nie, D., & Lu, B. L. (2011). EEG-based emotion recognition using frequency domain features and support vector machines. In International conference on neural information processing (pp. 734–743).

  50. Tomida, N., Tanaka, T., Ono, S., Yamagishi, M., & Higashi, H. (2015). EEG datasets for motor imagery brain–computer interface. IEEE Transactions on Biomedical Engineering, 62, 458–467.

    Article  Google Scholar 

  51. Liu, Y. H., Huang, C. W., & Hsiao, Y. T. (2013). Controlling the false positive rate of a two-state self-paced brain-computer interface. In Systems, man, and cybernetics (SMC), 2013 IEEE international conference (pp. 1476–1481).

  52. Pfurtscheller, G., & Da Silva, F. L. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842–1857.

    Article  Google Scholar 

  53. Braun, S. M., Beurskens, A. J., Borm, P. J., Schack, T., & Wade, D. T. (2006). The effects of mental practice in stroke rehabilitation: A systematic review. Archives of Physical Medicine and Rehabilitation, 87(6), 842–852.

    Article  Google Scholar 

  54. Page, S. J., Levine, P., & Leonard, A. (2007). Mental practice in chronic stroke. Stroke, 38(4), 1293–1297.

    Article  Google Scholar 

  55. Ietswaart, M., Johnston, M., Dijkerman, H. C., Joice, S., Scott, C. L., MacWalter, R. S., et al. (2011). Mental practice with motor imagery in stroke recovery: Randomized controlled trial of efficacy. Brain, 134(5), 1373–1386.

    Article  Google Scholar 

  56. Flansbjer, U. B., Holmbäck, A. M., Downham, D., Patten, C., & Lexell, J. (2005). Reliability of gait performance tests in men and women with hemiparesis after stroke. Journal of Rehabilitation Medicine, 37(2), 75–82.

    Article  Google Scholar 

  57. Perry, Jacquelin, & Davids, Jon R. (1992). Gait analysis: Normal and pathological function. Journal of Pediatric Orthopaedics, 12, 815.

    Article  Google Scholar 

  58. Malfait, B., Staes, F., de Vries, A., Smeets, A., Hawken, M., Robinson, M. A., et al. (2015). Dynamic neuromuscular control of the lower limbs in response to unexpected single-planar versus multi-planar support perturbations in young, Active Adults. PLoS ONE, 10(7), e0133147.

    Article  Google Scholar 

  59. Hall, C. R., & Martin, K. A. (1997). Measuring movement imagery abilities: A revision of the movement imagery questionnaire. Journal of Mental Imagery, 21(1–2), 143–154.

    Google Scholar 

  60. Presacco, A., Forrester, L., & Contreras-Vidal, J. L. (2011). Towards a non-invasive brain-machine interface system to restore gait function in humans. In Engineering in medicine and biology society, EMBC, 2011 annual international conference of the IEEE (pp. 4588–4591).

  61. Belda-Lois, J. M., Mena-del Horno, S., Bermejo-Bosch, I., Moreno, J. C., Pons, J. L., Farina, D., et al. (2011). Rehabilitation of gait after stroke: A review towards a top-down approach. Journal of Neuroengineering and Rehabilitation, 8(1), 66.

    Article  Google Scholar 

  62. Wada, F., Nakanishi, Y., & Hachisuka, K. (2012). Effects of gait-related imagery and mirror visual feedback on cortical activation during robot-assisted gait training. In Complex medical engineering (CME), 2012 ICME international conference (pp. 629–633).

  63. Velu, P., & de Sa, V. R. (2013). Single-trial classification of gait and point movement preparation from human EEG. Frontiers in Neuroscience, 7, 84.

    Article  Google Scholar 

  64. English, R., Brannock, M., Chik, W. T., Eastwood, L. S., & Uhl, T. (2006). The relationship between lower extremity isokinetic work and single-leg functional hop-work test. Journal of Sport Rehabilitation, 15(2), 95–104.

    Article  Google Scholar 

  65. Velotta, J., Weyer, J., Ramirez, A., Winstead, J., & Bahamonde, R. (2011). Relationship between leg dominance tests and type of task. Portuguese Journal of Sports Science, 11(1035–1038), 25.

    Google Scholar 

  66. Zulfikri, N., & Justine, M. (2017). Effects of kinesio® taping on dynamic balance following fatigue: A randomized controlled trial. Physical Therapy Research, 20(1), 16–22.

    Article  Google Scholar 

  67. Beisteiner, R., Höllinger, P., Lindinger, G., Lang, W., & Berthoz, A. (1995). Mental representations of movements. Brain potentials associated with imagination of hand movements. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 96(2), 183–193.

    Article  Google Scholar 

  68. Lang, W., Cheyne, D., Höllinger, P., Gerschlager, W., & Lindinger, G. (1996). Electric and magnetic fields of the brain accompanying internal simulation of movement. Cognitive Brain Research, 3(2), 125–129.

    Article  Google Scholar 

  69. Pfurtscheller, G., Neuper, C., Andrew, C., & Edlinger, G. (1997). Foot and hand area mu rhythms. International Journal of Psychophysiology, 26, 121–135.

    Article  Google Scholar 

  70. Yuan, H., Liu, T., Szarkowski, R., Rios, C., Ashe, J., & He, B. (2010). Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: An EEG and fMRI study of motor imagery and movements. Neuroimage, 49, 1–21.

    Article  Google Scholar 

  71. Pfurtscheller, G., Neuper, C., Brunner, C., & Da Silva, F. L. (2005). Beta rebound after different types of motor imagery in man. Neuroscience Letters, 378(3), 156–159.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology (MOST), Taiwan, under Grant No. 103-2923-E-027-001-MY3. The Authors would like to thank Dr. Chien-Te Wu, National Taiwan University, and Mr. Shiuan Huang, National Taipei University of Technology, Taipei, Taiwan, for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chun Hsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YH., Lin, LF., Chou, CW. et al. Analysis of Electroencephalography Event-Related Desynchronisation and Synchronisation Induced by Lower-Limb Stepping Motor Imagery. J. Med. Biol. Eng. 39, 54–69 (2019). https://doi.org/10.1007/s40846-018-0379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-018-0379-9

Keywords

Navigation