Skip to main content
Log in

Comparison of ANN and Analytical Models in Traffic Noise Modeling and Predictions

  • Technical Note
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

This paper demonstrates the applications of artificial neural networks to predict the equivalent continuous sound level \((L_\mathrm{Aeq})\) and 10 Percentile exceeded sound level \((L_\mathrm{10})\) generated due to traffic noise for various locations in Delhi. A Model based on back-propagation neural network was trained, validated, and tested using the measured data. The work shows that the model is able to produce accurate predictions of hourly traffic noise levels. A comparative study shows that neural networks out-perform the multiple linear regression models developed in terms of total traffic flow and equivalent traffic flow. The prediction model proposed in the study may serve as a vital tool for traffic noise forecasting and noise abatement measures to be undertaken for Delhi city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Rao, P., Rao, S.: Prediction of \(\text{ L }_{\rm AT}\) traffic noise levels in the city of Visakhapatnam India. Appl. Acoust. 34, 101–110 (1991)

    Article  Google Scholar 

  2. Nirjar, R.S., Jain, S.S., Parida, M., Katiyar, V.S., Mittal, N.: A study of transport related noise pollution in Delhi. J. Inst. Eng. Environ. 84, 6–15 (2003)

    Google Scholar 

  3. Rajakumara, H.N., Gowda, R.M.M.: Road traffic noise pollution model under interrupted traffic flow condition. Environ. Monit. Assess. 14, 251–257 (2009)

    Article  Google Scholar 

  4. Agarwal, S., Swami, B.L.: Comprehensive approach for the development of traffic noise prediction model for Jaipur City. Environ. Monit. Assess. 172, 113–120 (2011)

    Article  Google Scholar 

  5. Kalaiselvi, R., Ramachandraiah, A.: A model for traffic noise prediction in heterogeneous traffic conditions. Int. J. Curr. Res. 4, 180–184 (2012)

    Google Scholar 

  6. Mishra, R.K., Parida, M., Rangnekar, M.: Evaluation and analysis of traffic noise along bus rapid transit system corridor. Int. J. Environ. Sci. Tech. 7(4), 737–750 (2010)

    Article  Google Scholar 

  7. Kumar, P., Nigam, S.P., Kumar, N.: Vehicular traffic noise modelling using artificial neural network approach. Transport. Res. Part C 40, 111–122 (2014)

    Article  Google Scholar 

  8. Sharma, A., Bodhe, G.L., Schimak, G.: Development of a traffic noise prediction model for an urban environment. Noise Health 16, 63–67 (2014)

    Article  Google Scholar 

  9. Garg, N., Maji, S.: A crticial review of principal traffic noise models: strategies and implications. Environ. Impact Assess. Rev. 46, 68–81 (2014)

    Article  Google Scholar 

  10. Paul, P.K., Sarkar, P.K.: Determination of dynamic PCUs of different types of passenger vehciles on urban roads: a case study Delhi urban area. Indian Highw. 41(4), 37–47 (2013)

    Google Scholar 

  11. Tiwari, G., Fazio, J., Gaurav, S.: Traffic planning for non-homogeneous traffic. Sadhana 32(4), 309–328 (2007)

    Article  Google Scholar 

  12. Givargis, Sh, Karimi, H.: A basic neural traffic noise prediction model for Tehran’s roads. J. Environ. Manag. 91, 2529–2534 (2010)

    Article  Google Scholar 

  13. Parabat, K., Nagarnaik, P.B.: Assessment and ANN modeling of noise levels at major road intersections in an Indian intermediate city. J. Res. Sci. Comput. Eng. 4, 39–49 (2007)

    Google Scholar 

  14. Genaro, N., Torija, A., Ramos-Ridao, A., Requena, I., Ruiz, D.P., Zamorano, M.: A neural network model for urban traffic noise prediction. J. Acoust. Soc. Am. 128(4), 1738–1746 (2010)

    Article  Google Scholar 

  15. Torija, A.J., Rúiz, D.P., Ramos-Ridao, A.F.: Use of back-propagation neural networks to predict both level and temporal spectral composition of sound pressure in urban sound environments. Build. Environ. 52, 45–56 (2012)

    Article  Google Scholar 

  16. Taghavifar, H., Mardari, A.: Application of artificial neural networks for the prediction of traction parameters. J. Saud. Soc. Agric. Sci. 13, 35–43 (2004)

    Google Scholar 

  17. Cai, M., Yin, Y., Xie, M.: Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach. Transp. Res. Part D 14, 32–41 (2009)

    Article  Google Scholar 

  18. Kumar, K., Parida, M, Katiyar, V.K.: Short term traffic flow prediction in heterogeneous condition using Artificial Neural Network, Transport (2013). iFirst: 1-9. http://www.tandfonline.com/doi/pdf/10.3846/16484142.2013.818057

  19. Chon, K.H., Cohen, R.J.: Linear and nonlinear ARMA model parameter estimation using an artificial neural network. IEEE Trans. Biomed. Eng. 44, 168–174 (1997)

    Article  Google Scholar 

  20. Garg, N., Sharma, O.: Measurement accuracy of secondary standards of sound pressure in comparison to primary standards. J. Metrol. Soc. I.-MAPAN 27(4), 219–229 (2012)

    Google Scholar 

  21. Garg, N.: Establishing a traceability chain for sound pressure and vibration amplitude measurements. NCSLI Meas. J. Meas. Sci. 10, 64–74 (2015)

  22. https://www.google.co.in/maps. Accessed 1 April 2015

  23. Kumar, K., Jain, V.K., Rao, D.N.: A predictive model of noise for Delhi. J. Acoust. Soc. Am. 103(3), 1677–1679 (1998)

    Article  Google Scholar 

  24. To, W.M., Ip Rodney, C.W., Lam, G.C.K., Yau, C.T.H.: A multiple regression model for urban traffic noise in Hongkong. J. Acoust. Soc. Am. 112(2), 551–556 (2002)

    Article  Google Scholar 

  25. Chi, T.H., Wang Y. M.: Using multiple regression and Artificial Neural Networks approach for modelling Airport visibility, International Conference on Agricultural and Biosystems Engg., ICABE, Advances in Biomedical Engineering, vol. 1, pp. 428-431, (2011)

  26. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by backpropagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  27. Ghaffari, A., Abdollahi, H., Khoshayand, M.R., Bozchalooi, I.S., Dadgar, A., Rafiee-Tehrani, M.: performance comparison of neural network training algorithms in modeling of bimodal drug delivery. Int. J. Pharm. 327, 126–138 (2006)

    Article  Google Scholar 

  28. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artifical neural networks: the state of the art. Int. J. Forecast. 14, 35–62 (1998)

    Article  Google Scholar 

  29. Battiti, R.: First- and second-order methods for learning: between steepest descent and newton’s method. Neural Comput. 4, 141–166 (1992)

    Article  Google Scholar 

  30. http://www.mathworks.in/help/nnet/ug/choose-a-multilayer-neural-networktraining-function.html. Accessed 4 Dec 2015

  31. Sivanandam, S.N., Sumathi, S., Deepa, S.N.: Introduction to Neural Networks Using Matlab 6.0. Tata Mc Graw Hill, Delhi (2006)

    Google Scholar 

  32. Kaastra, I., Boyd, M.: Designing a neural network for forecasting financial and economic time series. Neurocomputing 10, 215–236 (1996)

    Article  Google Scholar 

  33. Hush, D.R., Horne, B.G.: Progress in supervised neural networks. EEE Signal Process. Mag. 10, 8–39 (1993)

    Article  Google Scholar 

  34. Srinivasan, D., Liew, A.C., Chang, C.S.: A neural network short-term load forecaster. Electric. Power Syst. Res. 28, 227–234 (1994)

    Article  Google Scholar 

  35. Goyal, P., Chan, A.T., Jaiswal, N.: Statistical models for the prediction of respirable suspended particulate matter in urban cities. Atmos. Environ. 40, 2068–2077 (2006)

    Article  Google Scholar 

  36. Díaz-Robles, L.A., Ortega, J.C., Fu, J.S., Reed, G.D., Chow, J.C., Watson, J.G., Moncada-Herrera, J.A.: A hybrid ARIMA and artifcial neural networks model to forecast particulate matter in urban areas: the case of Temuco Chile. Atmos. Environ. 42, 8331–8340 (2008)

    Article  Google Scholar 

  37. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003)

    Article  MATH  Google Scholar 

  38. Pamanikabud, P., Vivitjinda, P.: Noise prediction for highways in Thailand. Transp. Res. Part D 7, 441–449 (2002)

    Article  Google Scholar 

  39. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers, 5th edn, pp. 351–351. John Wiley and Sons Inc., Hoboken (2011)

    Google Scholar 

  40. Kumar, K., Parida, M., Katiyar, V.K.: Artificial neural network modeling for road traffic noise prediction, Published in Third International Conference on Computing Communication and Network technologies (ICCCNT), Coimbatore, (2012)

  41. Jain, S.S., Parida, M., Mittal, N.: Urban transport environment interaction- Defining a National level Action plan, AICTE Nationally coordinated project, New Delhi, (2004). http://www.codatu.org/wp-content/uploads/Urban-transport-environment-interaction-defining-a-national-level-action-plan-S.S.-JAIN-M.-PARIDA-Namita-MITTAL.pdf

  42. Garg, N., Sharma, O., Mohanan, V., Maji, S.: Passive noise control measures for traffic noise abatement in Delhi. India J. Sci. Ind. Res. 71, 226–234 (2012)

    Google Scholar 

  43. The Noise Pollution (Regulation and Control) rules, Ministry of Environment & Forests, India, (2000). http://envfor.nic.in/downloads/public-information/noise-pollution-rules-en.pdf

  44. Jamir, L., Nongkyrnuh, B., Gupta, S.K.: Community noise pollution in Urban India: need for public heath action. Indian J. Commun. Med. 39, 8–12 (2014)

    Article  Google Scholar 

  45. Naish, D.: A method of developing regional road traffic noise management strategies. Appl. Acoust. 71, 640–652 (2010)

    Article  Google Scholar 

  46. Mohanan, V., Sharma, O., Singh, M., Garg, N.: Noise control measures for proposed Commonwealth Games Village near Noida Morr, NPL Tech. Report No. AC.C.07(4)-01, (2009)

  47. Kumar, K., Parida, M., Katiyar, V.K.: Optimized height of noise barrier for non-urban highway using artificial neural network. Int. J. Environ. Sci. Technol. 11, 719–730 (2014)

    Article  Google Scholar 

  48. Senthil Kumar, G., Murugappan, A.: Analysis of urban transport noise level- A case study of Chidambaran town, Tamil Nadu. J. Environ. Sci. Comput. Sci. Eng. Technol. 2, 1185–1195 (2013)

    Google Scholar 

  49. Mishra, R.K., Shukla, A., Parida, M., Rangnekar, S.: EIA based comparitive urban traffic noise analysis between operational and under construction phase public transport corridor. Int. J. Traffic Trans. Eng. 4(3), 352–362 (2014)

    Article  Google Scholar 

  50. Garg, N., Saxena, T.K., Maji, S.: Long-term versus short-term noise monitoring: strategies and Implications in India. Noise Control Engg. J. 63(1), 26–35 (2015)

    Article  Google Scholar 

  51. Garg, N., Soni, K., Saxena, T.K., Maji, S.: pplications of autoregressive integrated moving average (ARIMA) approach in time-series prediction of traffIc noise pollution. Noise Control Eng. J. 63(2), 1–13 (2015)

    Article  Google Scholar 

  52. Nucara A, Pietrafesa M, Scaccianoce G, Staltari G, A comparsion between analytical models and Artificial neural networks in the evaluation of traffc noise levels, Proceedings 17th International Congress on Acoustics, ICA Rome, pp. 208–209, (2002)

  53. King, E.A., Rice, H.J.: The development of a practical framework for strategic noise mapping. Appl. Acoust. 70, 1116–1127 (2009)

    Article  Google Scholar 

  54. Vijay, R., Sharma, A., Chakrabarti, T., Gupta, R.: Assessment of honking impact on traffic noise in urban traffic environment of Nagpur. India. J. Environ. Health Sci. Eng. 13(10), 1–9 (2015)

    Google Scholar 

  55. Abo-Qudais, S., Alhiary, A.: Effect of traffic charactersitics and road geomteric parameters on developed traffic noise levels. Can. Acoust. 32(3), 43–50 (2004)

    Google Scholar 

  56. Zheng P.: Mike McDonad, An investigation on the manual traffic count accuracy, 8th International Conference on Traffic and Transportation Studies, China, August 1–3, 2012, Procedia-Social and Behavioral Sciences, vol. 43, pp. 226–231 (2012)

Download references

Acknowledgments

Authors are extremely thankful to the anonymous reviewers for their helpful comments and suggestions especially pertaining to ANN modeling. Authors thank M.Tech scholars-Manoj and Rahul; B.Tech students: Mr. Fahed, Mr. Zaimul and Mr. Ateeq; M. Tech student-Mr. Sumit for helping in traffic noise monitoring from May, 2014 to June, 2015. Authors also thank Late Dr. T. K. Saxena for his support in this study. Author thanks Mrs. Vishesh, Amity Engg. College, New Delhi for her help in Matlab use & analysis. Financial allocation by CSIR under project OLP 071132 for procurement of a Noise Monitoring System is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Garg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, N., Mangal, S.K., Saini, P.K. et al. Comparison of ANN and Analytical Models in Traffic Noise Modeling and Predictions. Acoust Aust 43, 179–189 (2015). https://doi.org/10.1007/s40857-015-0018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-015-0018-3

Keywords

Navigation