Skip to main content
Log in

The Tympanal Recess of the Cetacean Cochlea: Function and Evolution

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

Cetaceans (whales and dolphins) primarily use sound to communicate and hunt for prey. Their auditory anatomy is highly specialised, but much about its function remains unknown. In particular, a feature of the cochlea known as the tympanal recess present in some mysticetes (baleen whales) and odontocetes (toothed whales) has defied functional explanation. Here, we present and discuss several hypotheses that may clarify the function and evolution of the tympanal recess. One potential function in particular, the vibroacoustic duct mechanism, seems most plausible although further work is needed to test the hypothesis, which hints at the possibility of sperm whales and beaked whales being able to detect both high and low frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pihlström, H.: Comparative anatomy and physiology of chemical senses in aquatic mammals. In: Thewissen, J.G.M., Nummela, S. (eds.) Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates, pp. 95–109. University of California Press, Berkeley (2008)

    Google Scholar 

  2. Norris, K.S.: Some problems of echolocation in cetaceans. In: Tavolga, W.N. (ed.) Marine Bioacoustics, pp. 316–336. Pergamon, New York (1964)

    Google Scholar 

  3. Hemilä, S., Nummela, S., Reuter, T.: A model of the odontocete middle ear. Hear. Res. 133, 82–97 (1999)

    Article  Google Scholar 

  4. Cranford, T.W., Krysl, P.: Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing. PLoS ONE 10, e0116222 (2015)

    Article  Google Scholar 

  5. Echteler, S.M., Fay, R.R., Popper, A.N.: Structure of the mammalian cochlea. In: Fay, R.R., Popper, A.N. (eds.) Comparative Hearing: Mammals, pp. 134–171. Springer, New York (1994)

    Chapter  Google Scholar 

  6. Manoussaki, D., Chadwick, R.S., Ketten, D.R., Arruda, J., Dimitriadis, E.K., O’Malley, J.T.: The influence of cochlear shape on low-frequency hearing. Proc. Natl. Acad. Sci. USA 105, 6162–6166 (2008)

    Article  Google Scholar 

  7. Fleischer, G.: Hearing in extinct cetaceans as determined by cochlear structure. J. Paleontol. 50, 133–152 (1976)

    Google Scholar 

  8. Ekdale, E.G.: Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS ONE 8, e66624 (2013)

    Article  Google Scholar 

  9. Ekdale, E.G., Racicot, R.A.: Anatomical evidence for low frequency sensitivity in an archaeocete whale: comparison of the inner ear of Zygorhiza kochii with that of crown Mysticeti. J. Anat. 226, 22–39 (2015)

    Article  Google Scholar 

  10. Churchill, M., Martínez-Cáceres, M., de Muizon, C., Mnieckowski, J., Geisler, J.H.: The origin of high-frequency hearing in whales. Curr. Biol. 26(16), 2144–2149 (2016)

    Article  Google Scholar 

  11. Ekdale, E.G.: Morphological diversity among the inner ears of extinct and extant baleen whales (Cetacea: Mysticeti). J. Morphol. 277, 1599–1615 (2016)

    Article  Google Scholar 

  12. Park, T., Fitzgerald, E.M.G., Gallagher, S.J., Evans, A.R.: Low frequency hearing preceded the evolution of giant body size and filter feeding in baleen whales. Proc. R. Soc. Lond. B. Bio. 284, 20162528 (2017)

    Article  Google Scholar 

  13. Park, T., Marx, F.G., Fitzgerald, E.M.G., Evans, A.R.: The cochlea of the enigmatic pygmy right whale Caperea marginata informs mysticete phylogeny. J. Morphol. 278(6), 801–809 (2017). doi:10.1002/jmor.20674

    Article  Google Scholar 

  14. Park, T., Fitzgerald, E.M.G., Evans, A.R.: Ultrasonic hearing and echolocation in the earliest toothed whales. Biol. Lett. 12, 20160060 (2016)

    Article  Google Scholar 

  15. Au, W.W.L., Hastings, H.C.: Principles of Marine Bioacoustics. Springer, New York (2008)

    Book  Google Scholar 

  16. March, D., Brown, D., Gray, R., Curthoys, I., Wong, C., Higgins, D.P.: Auditory anatomy of beaked whales and other odontocetes: Potential for cochlear stimulation via a “vibroacoustic duct mechanism”. Mar. Mamm. Sci. 32, 552–567 (2016)

    Article  Google Scholar 

  17. Berta, A., Sumich, J.L., Kovacs, K.M.: Marine Mammals Evolutionary Biology, 3rd edn. Academic Press, London (2015)

    Google Scholar 

  18. Watkins, W.A., Daher, M.A., Fristrup, K.M., Howald, T.J.: Sperm whales tagged with transponders and tracked underwater by sonar. Mar. Mamm. Sci. 9, 55–67 (1993)

    Article  Google Scholar 

  19. Schorr, G.S., Falcone, E.A., Moretti, D.J., Andrews, R.D.: First long-term behavioral records from Cuvier’s beaked whales ( Ziphius cavirostris) reveal record-breaking dives. PLoS ONE 9, e92633 (2014)

    Article  Google Scholar 

  20. Curry, B.E., Brownell Jr., R.L.: Balaenidae. In: Wilson, D.E., Mittermeier, R.A. (eds.) Handbook of the Mammals of the World 4: Sea Mammals, pp. 186–213. Lynx Publishing, Barcelona (2014)

    Google Scholar 

  21. McAlpine, D.F.: Kogiidae. In: Wilson, D.E., Mittermeier, R.A. (eds.) Handbook of the Mammals of the World 4: Sea Mammals, pp. 318–325. Lynx Publishing, Barcelona (2014)

    Google Scholar 

  22. Yamato, M., Pyenson, N.D.: Early development and orientation of the acoustic funnel provides insight into the evolution of sound reception pathways in cetaceans. PLoS ONE 10, e0118582 (2015)

    Article  Google Scholar 

  23. Lambertsen, R.H., Ulrich, N., Straley, J.: Functional morphology of the mouth of the bowhead whale and its implications for conservation. J. Mamm. 82, 342–353 (2005)

    Article  Google Scholar 

  24. Goldbogen, J.A., Calambokidis, J., Shadwick, R.E., Oleson, E.M., McDonald, M.A., Hildebraud, J.A.: Kinematics of foraging dives and lunge-feeding in fin whales. J. Exp. Biol. 209, 1231–1244 (2006)

    Article  Google Scholar 

  25. Goldbogen, J.A., Pyenson, N.D., Shadwick, R.E.: Big gulps require high drag for fin whale lunge feeding. Mar. Ecol. Prog. Ser. 349, 289–301 (2007)

    Article  Google Scholar 

  26. Norris, K.S.: The evolution of acoustic mechanisms in odontocete cetaceans. In: Drake, E.T. (ed.) Evolution and Environment, pp. 297–324. Yale University Press, New Haven (1968)

    Google Scholar 

  27. Mead, J.G., Fordyce, R.E.: The therian skull: a lexicon with emphasis on the odontocetes. Smithsonian Contrib. Zool. 627, 1–248 (2009)

    Article  Google Scholar 

  28. El Adli, J.J., Deméré, T.A., Boessenecker, R.W.: Herpetocetus morrowi (Cetacea: Mysticeti), a new species of diminutive baleen whale from the Upper Pliocene (Piacenzian) of California, USA, with observations on the evolution and relationships of the Cetotheriidae. Zool. J. Linn. Soc. Lond. 170, 400–466 (2014)

  29. Fordyce, R.E., Marx, F.G.: The pygmy right whale Caperea marginata: the last of the cetotheres. Proc. R. Soc. Lond. B. Bio. 280, 20122645 (2013)

    Article  Google Scholar 

  30. McGowen, M.R., Spaulding, M., Gatesy, J.: Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol. Phylogenet. Evol. 53, 891–906 (2009)

    Article  Google Scholar 

  31. Marx, F.G., Fordyce, R.E.: Baleen boom and bust: a synthesis of mysticete phylogeny, diversity and disparity. R. Soc. Open Sci. 2, 140434 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Karen Roberts, Katie Date and David Pickering (Museums Victoria) for access to Museums Victoria collections, as well as Will Gates (Monash University X-ray Microscopy Facility for Imaging Geo-materials) and Rob Williams (Melbourne Brain Centre Imaging Unit) for their help in digitising the specimens. Felix Marx (Monash University) is also thanked for helpful discussions. This research was supported by an Australian Research Council Linkage Project LP150100403 to A.R.E. and E.M.G.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, T., Fitzgerald, E.M.G. & Evans, A.R. The Tympanal Recess of the Cetacean Cochlea: Function and Evolution. Acoust Aust 45, 273–278 (2017). https://doi.org/10.1007/s40857-017-0104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-017-0104-9

Keywords

Navigation