Skip to main content

Advertisement

Log in

Geoacoustic Inversion Using Physical–Statistical Bottom Reverberation Model in the Deep Ocean

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

Reverberation is an important ocean phenomenon that involves bottom properties. This paper proposes a method of geoacoustic inversion using bottom reverberation in the deep ocean. Models for the probability density function, including Rayleigh, Lognormal normal, K, and Weibull distributions, are commonly used to describe the envelope of bottom reverberation. Based on the measured data in South China Sea, the envelope of bottom reverberation in the experiment is consistent with K distribution. A double exponential distribution is used to generate the amplitude of reverberation, of which the envelope obeys the K distribution. In addition, the propagation and scattering models are introduced as the parameters of double exponential function, wherein the model has a physical mechanism. Therefore, a bottom reverberation model with both physical and statistical characteristics is suitable for geoacoustic inversion. The cost function is used to minimize the mean square difference between the measured and modeled envelope of the bottom reverberation. The inversion results are consistent with those from previous research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gerstoft, P., Ellis, D.D.: Application of multifrequency inversion methods to obtain seabed properties from broadband reverberation data. J. Acoust. Soc. Am. 100(4), 2665 (1996). https://doi.org/10.1121/1.417480

    Article  Google Scholar 

  2. Zhou, J., Guan, D., Shang, E., Luo, E.: Long-range reverberation and bottom scattering strength in shallow water. Chin. J. Acoust. 6(1), 151–153 (1982). https://doi.org/10.15949/j.cnki.0217-9776.1982.01.006

    Article  Google Scholar 

  3. Duan, R., Yang, K.D., Ma, Y.L., Lei, B.: A reliable acoustic path: physical properties and a source localization method. Chin. Phys. B 21(12), 124301 (2012). https://doi.org/10.1088/1674-1056/21/12/124301

    Article  Google Scholar 

  4. Yang, K., Xiao, P., Duan, R., Ma, Y.: Bayesian inversion for geoacoustic parameters from ocean bottom reflection loss. J. Comput. Acoust. 25(3), 1750019-1–1750019-17 (2017). https://doi.org/10.1142/s0218396x17500199

    Article  MathSciNet  Google Scholar 

  5. Guo, X., Yang, K., Ma, Y.: Geoacoustic inversion for bottom parameters via bayesian theory in deep ocean. Chin. Phys. Lett. 34(03), 68–72 (2017). https://doi.org/10.1088/0256-307X/34/3/034301

    Article  Google Scholar 

  6. Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H.: Computational Ocean Acoustic, 2nd edn, pp. 51–57. Springer, New York (2011). ISBN: 978-1-4419-8677-1

    Book  Google Scholar 

  7. Ellis, D.D., Crowe, D.V.: Bistatic reverberation calculations using a three-dimensional scattering function. J. Acoust. Soc. Am. 89(5), 2207–2214 (1991)

    Article  Google Scholar 

  8. Jackson, D.R., Winebrenner, D.P., Ishimaru, A.: Application of the composite roughness model to high-frequency bottom backscattering. J. Acoust. Soc. Am. 79(5), 1410–1422 (1986)

    Article  Google Scholar 

  9. Jackson, D.R., Briggs, K.B.: High-frequency bottom backscattering: roughness versus sediment volume scattering. J. Acoust. Soc. Am. 92(92), 962–977 (1992)

    Article  Google Scholar 

  10. Abraham, D.A.: Statistical normalization of non-Rayleigh reverberation. IEEE Oceans 1, 500–505 (1997). https://doi.org/10.1109/OCEANS.1997.634415

    Article  Google Scholar 

  11. Abraham, D.A.: Modeling Non-Rayleigh Reverberation, SR-266. SACLANT Undersea Research Centre, La Spezia (1997)

    Google Scholar 

  12. Yang, K., Liya, X., Yang, Q., Li, G.: Two-step inversion of geoacoustic parameters with bottom reverberation and transmission loss in the deep ocean. Acoust. Aust. 46(1), 131–142 (2018). https://doi.org/10.1007/s40857-018-0130-2

    Article  MathSciNet  Google Scholar 

  13. Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., Baranova, O.K., Zweng, M.M., Johnson, D.R.: World Ocean Altas 2009 Volume 1: Temperature. US Government Printing Office, Washington, DC (2009)

  14. Antonov, J.I., Seidov, D., Boyer, T.P., Locarnini, R.A., Mishonov, A.V., Garcia, H.E.: World Ocean Altas 2009 Volume 1: Salinity. US Government Printing Office, Washington, DC (2009)

  15. Zhang, X., Cheng, C., Liu, Y.: Acoustic propagation effect caused by subtropical mode water of northwestern Pacific. Acta Oceanol. Sin. 36(9), 94–102 (2014). https://doi.org/10.3969/j.issn.0253-4193.2014.09.011

    Article  Google Scholar 

  16. Proakis, J.G., Rader, C.M., Ling, F., Moonen, M., Proudler, I.K.: Algorithms for Statistical Signal Processing. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  17. Hui, J., Sheng, X.: Underwater Acoustic Channel, 2nd edn. Defense Industrial Press, Beijing (2007)

    Google Scholar 

  18. Liu, B., Lei, J.: Principles of Underwater Sound, pp. 187–213. Harbin Engineering University Press, Harbin (1993)

    Google Scholar 

  19. Kim, C., Han, K.: Estimation of the scale parameter of the Rayleigh distribution under general progressive censoring. J. Korean Stat. Soc. 38(3), 239–246 (2009). https://doi.org/10.1016/j.jkss.2008.10.005

    Article  MathSciNet  MATH  Google Scholar 

  20. Attfield, M.D., Hewett, P.: Exact expressions for the bias and variance of estimators of the mean of a lognormal distribution. Am. Ind. Hyg. Assoc. J. 53(7), 432–435 (1992). https://doi.org/10.1080/15298669291359906

    Article  Google Scholar 

  21. Blacknell, D., Tough, R.J.A.: Parameter estimation for the K-distribution based on [z log(z)]. IEE Proc. Radar Sonar Navig. 148(6), 309–312 (2001). https://doi.org/10.1049/ip-rsn:20010720

    Article  Google Scholar 

  22. Menon, M.V.: Estimation of shape and scale parameters of the Weibull distribution. Technometrics 5(2), 175–183 (1963). https://doi.org/10.2307/1266061

    Article  MathSciNet  MATH  Google Scholar 

  23. Kolmogorov, A.: Sulla determinazione empirica di una legge di distribuzione’. Giorn Dellinst Ital Degli Att 4, 83–91 (1933)

    MATH  Google Scholar 

  24. Smirnov, N.: Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 19(2), 279–281 (1948). https://doi.org/10.1214/aoms/1177730256

    Article  MathSciNet  MATH  Google Scholar 

  25. Middleton, D.: New physical-statistical methods and models for clutter and reverberation: the KA-distribution and related probability structures. IEEE J. Ocean. Eng. 24(3), 261–284 (1999). https://doi.org/10.1109/JOE.2001.922796

    Article  Google Scholar 

  26. Abraham, D.A., Lyons, A.P.: Novel physical interpretations of K-distributed reverberation. IEEE J. Ocean. Eng. 27(4), 800–813 (2002). https://doi.org/10.1109/JOE.2002.804324

    Article  Google Scholar 

  27. Abraham, D.A., Lyons, A.P.: Exponential scattering and K-distributed reverberation. IEEE Oceans 3, 1622–1628 (2001). https://doi.org/10.1109/OCEANS.2001.968075

    Article  Google Scholar 

  28. Yang, K., Xu, L., Yang, Q., Duan, R.: Striation-based source depth estimation with a vertical line array in the deep ocean. J. Acoust. Soc. Am. 143(1), EL8–EL12 (2018). https://doi.org/10.1121/1.5020267

    Article  Google Scholar 

  29. Hamilton, E.L., Bachman, R.T.: Sound velocity and related properties of marine sediments. J. Acoust. Soc. Am. 72(6), 1891–1904 (1982). https://doi.org/10.1121/1.388539

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the researchers and staff for their help in the research program of the SCS in the summer of 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunde Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Yang, K. & Yang, Q. Geoacoustic Inversion Using Physical–Statistical Bottom Reverberation Model in the Deep Ocean. Acoust Aust 47, 261–269 (2019). https://doi.org/10.1007/s40857-019-00164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-019-00164-3

Keywords

PACS Nos.

Navigation