Skip to main content
Log in

Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

The rapid and precise detection of diseases and plant disorders is the basis for the adequate and timely design of management strategies. Currently, there are several non-destructive alternatives that allow early detection, highlighting the use of spectral cameras attached to unmanned aerial vehicles (UAVs). The objective of this research was to evaluate the use of multispectral cameras on UAVs to discriminate vascular wilt caused by Verticillium spp., (VW), waterlogging stress (WL), and an unknown alteration (UA) in commercial potato (Solanum tuberosum) variety “Diacol Capiro” crops. Plots were monitored during the crop cycle, performing the visual characterization of the diseases and disorders present. Five spectral band images were acquired using a MicaSense RedEdge spectral camera attached to a Map-T680 hexacopter drone to extract the bands and calculate the vegetation indices that were calibrated and evaluated to determine their ability to discriminate between diseased and healthy plants based on a generalized linear model (GLM) and Kappa index. Additionally, the supervised random forest classification method was implemented, optimized, and evaluated using the accuracy, area under receiver operating characteristic curve (ROC-AUC), kappa index, and inference error based on k-fold cross-validation. After algorithms optimization our results show a classifier accuracy, kappa and ROC-AUC values to VW, WL and UA between 73.5–82.5%, 0.56–0.71, 0.97–0.98, and 35 37.5–51.9%, 0.07–0.06, and 0.88–0.94 for plots 1 and 2, respectively. This study reports an approach to the use of multispectral cameras attached to UAVs as a tool with potential for the detection of diseases and physiological disorders in commercial potato crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Barnett HL, Hunter BB (1972) Illustrated genera of imperfect fungi. Burgess Publishing Company, Minnesota E.U

  • Bekkar M, Djemaa HK, Alitouche TA (2013) Evaluation measures for models assessment over imbalanced data sets. Journal of Information Engineering and Applications 3:27–38–38

  • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140. https://doi.org/10.1007/BF00058655

  • Buriticá-Cespedes P (1999) Directorio de patógenos y enfermedades de las plantas de importancia económica en Colombia, Instituto Colombiano Agropecuario (ICA). Universidad Nacional de Colombia, Medellín Colombia

  • Calderón R, Navas-Cortés JA, Lucena C, Zarco-Tejada PJ (2013) High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrowband spectral indices. Remote Sensing of Environment 139:231–245. https://doi.org/10.1016/j.rse.2013.07.031

  • Céspedes MC, Cárdenas ME, Vargas AM, Rojas A, Morales JG, Jiménez P, Bernal AJ, Restrepo S (2013) Physiological and molecular characterization of Phytophthora infestans isolates from the Central Colombian Andean Region. Revista Iberoamericana de Micología 30:81–87

    Article  PubMed  Google Scholar 

  • Cochran W (1977) Sampling techniques, 3rd edn. Wiley, New York

    Google Scholar 

  • Cortes C, Mohri M (2003) AUC optimization vs. error rate minimization. In: Proceedings of the 16th International Conference on Neural Information Processing Systems. MIT Press, Whistler, British Columbia, Canada, pp 313–320

  • Couture JJ, Singh A, Charkowski AO, Groves RL, Gray SM, Bethke PC, Townsend PA (2018) Integrating spectroscopy with potato disease management. Plant Disease 102:2233–2240

    Article  CAS  PubMed  Google Scholar 

  • Dash JP, Watt MS, Pearse GD, Heaphy M, Dungey HS (2017) Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing 131:1–14

    Article  Google Scholar 

  • del Río S, López V, Benítez JM, Herrera F (2014) On the use of MapReduce for imbalanced big data using Random Forest. Information Sciences 285:112–137. https://doi.org/10.1016/j.ins.2014.03.043

  • Duarte-Carvajalino JM, Alzate DF, Ramirez AA, Santa-Sepulveda JD, Fajardo-Rojas AE, Soto-Suárez M (2018) Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sensing 10:1513

    Article  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide, Edición, illustrated. American Phytopathological Society, St. Paul

    Google Scholar 

  • Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5:537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher RS (2016) Using vegetation indices as input into random forest for soybean and weed classification. American Journal of Plant Sciences 7:720–726

    Google Scholar 

  • Fox J, Weisberg S, Price B, et al (2020) car: Companion to Applied Regression. Version 3.0-10URL. https://CRAN.R-project.org/package=car

  • Franceschini MHD, Bartholomeus H, van Apeldoorn DF, Suomalainen J, Kooistra L (2019) Feasibility of unmanned aerial vehicle optical imagery for early detection and severity assessment of late blight in potato. Remote Sensing 11:224

    Article  Google Scholar 

  • Fry W, Goodwin S, Dyer A, Matuszak JM, Drenth A, Tooley PW, Sujkowski LS, Koh YJ, Cohe BA, Spielman LJ, Deahl KL, InglisSandlan DAKP (1993) Historical and recent migrations of Phytophthora infestans: chronology, pathways, and implications. Plant Disease 77:653–661

    Article  Google Scholar 

  • Gibson-Poole S, Humphris S, Toth I, Hamilton A (2017) Identification of the onset of disease within a potato crop using a UAV equipped with un-modified and modified commercial off-the-shelf digital cameras. Advances in Animal Biosciences 8:812–816

    Article  Google Scholar 

  • Hasmadi M, Pakhriazad H, Shahrin M (2009) Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Geografia-Malaysian Journal of Society and Space 5:1–10

    Google Scholar 

  • Hijman RJ (2016) Package ‘raster’

  • Immitzer M, Atzberger C, Koukal T (2012) Tree species classification with random forest using very high spatial resolution 8-Band WorldView-2 Satellite Data. Remote Sensing 4:2661–2693

    Article  Google Scholar 

  • Johnson DA, Dung J (2010) Verticillium wilt of potato – the pathogen, disease and management. Canadian Journal of Plant Pathology 32:58–67

    Article  CAS  Google Scholar 

  • Krikun J, Orion D (1979) Verticillium wilt of potato: Importance and control. Phytoparasitica 7:107

    Article  Google Scholar 

  • Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B, R Core Team, Benesty M, Lescarbeau R, Ziem A, Scrucca L, Tang Y, Candan C, Hunt T (2020) caret: classification and regression training

  • Henao-Rojas JC, Rosero-Alpala MG, Ortiz-Muñoz C, et al (2021) Machine Learning Applications and Optimization of Clustering Methods Improve the Selection of Descriptors in Blackberry Germplasm Banks. Plants (Basel) 10. https://doi.org/10.3390/plants10020247

  • Li B, Xu X, Han J, Zhang L, Bian C, Jin L, Liu J (2019) The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods 15:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

  • Liaw A, Wiener M (2018) randomForest: Breiman and Cutler’s random forests for classification and regression. Version 4.6–14URL https://CRAN.R-project.org/package=randomForest

  • Lowe A, Harrison N, French AP (2017) Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 13:1–12

    Article  Google Scholar 

  • Mahlein A-K, Kuska MT, Behmann J, Polder G, Walter A (2018) Hyperspectral sensors and imaging technologies in Phytopathology: State of the art. Annual Review of Phytopathology 56:535–558

    Article  CAS  PubMed  Google Scholar 

  • Mahlein A-K, Kuska MT, Thomas S, Bohnenkamp D, Alisaac E, Behmann J (2017) Plant disease detection by hyperspectral imaging: from the lab to the field. Advances in Animal Biosciences 8:238–243

    Article  Google Scholar 

  • Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR, Davis CE, Dandekar AM (2015) Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development 35:1–25

    Article  Google Scholar 

  • Mellor A, Boukir S, Haywood A, Jones S (2015) Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS. Journal of Photogrammetry and Remote Sensing 105:155–168. https://doi.org/10.1016/j.isprsjprs.2015.03.014

  • Millard K, Richardson M (2015) On the importance of training data sample selection in random forest image classification: a case study in peatland ecosystem mapping. Remote Sensing 7:8489–8515

    Article  Google Scholar 

  • Miller SA, Beed FD, Harmon CL (2009) Plant disease diagnostic capabilities and networks. Annual Review of Phytopathology 47:15–38

    Article  CAS  PubMed  Google Scholar 

  • Mondal P (2011) Quantifying surface gradients with a 2-band enhanced vegetation index (EVI2). Ecological Indicators 11:918–924

    Article  Google Scholar 

  • Mueller A, Guido S (2016) Introduction to machine learning with Python: a guide for data scientists, Dawn Sachanafelt. O’Reilly Media, Sebastopol, CA

  • Naidu RA, Perry EM, Pierce FJ, Mekuria T (2009) The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Computers and Electronics in Agriculture 66:38–45

    Article  Google Scholar 

  • Nieto L (1988) La madurez prematura de la papa causada por Verticillium spp. en Colombia. Revista ICA 4:334–340

    Google Scholar 

  • Oerke E-C, Steiner U, Dehne H-W, Lindenthal M (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. Journal of Experimental Botany 57:2121–2132

    Article  CAS  PubMed  Google Scholar 

  • Orsák M, Kotíková Z, Hnilička F, Lachman J, Stanovič R (2020) Effect of drought and waterlogging on hydrophilic antioxidants and their activity in potato tubers. Plant, Soil and Environment 66:128–134

    Article  Google Scholar 

  • Pal M (2005) Random forest classifier for remote sensing classification. International Journal of Remote Sensing 26:217–222

    Article  Google Scholar 

  • Paluszynska A, Biecek P, Jiangaut Y, cre (2019) randomForestExplainer: Explaining and Visualizing Random Forests in Terms of Variable Importance. Version 0.10.0. https://CRAN.Rproject.org/package=randomForestExplainer

  • Polder G, Blok PM, de Villiers HAC, van der Wolf JM, Kamp J (2019) Potato virus Y detection in seed potatoes using deep learning on hyperspectral images. Frontiers in Plant Science 10:1–13

    Article  Google Scholar 

  • Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) A modified soil adjusted vegetation index. Remote Sensing of Environment 48:119–126

    Article  Google Scholar 

  • R Development Core Team (2020) R: the R project for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/. Accessed 1 Jun 2020

  • Ramirez-Gil JG, Garcia C, Navas J, Leon J, Góme-Caro S. 2019. Implicaciones epidemológicas y económicas de Verticillium sp., en una región productora de papa en Cundinamarca, in: XXXIV CONGRESO COLOMBIANO DE FITOPOPATOLOGIA Y CIENCIAS AFINES MEMORIAS. Presented at the XXXIV CONGRESO COLOMBIANO DE FITOPOPATOLOGIA Y CIENCIAS AFINES MEMORIAS, Fitopatologia Colombiana, Cudinamarca Colombia, pp. 206–207

  • Ramirez-Gil J, Navas J, Góme-Caro S (2019b) Epidemiología e importancia económica de una alteración de origen desconocido en papa en la sabana occidente de Cundinamarca. In: XXXIV CONGRESO COLOMBIANO DE FITOPOPATOLOGIA Y CIENCIAS AFINES MEMORIAS. Fitopatologia Colombiana, Cudinamarca Colombia, pp 205–205

  • Ramírez-Gil JG, Morales-Osorio JG (2018) Microbial dynamics in the soil and presence of the avocado wilt complex in plots cultivated with avocado cv. Hass under ENSO phenomena (El Niño – La Niña). Scientia Horticulturae 240:273–280

    Article  Google Scholar 

  • Ristaino JB (2002) Tracking historic migrations of the Irish potato famine pathogen, Phytophthora infestans. Microbes and Infection 4:1369–1377

    Article  PubMed  Google Scholar 

  • Robin X, Turck N, Hainard A, et al (2021) pROC: Display and Analyze ROC Curves. Version 1.17.0.1. https://CRAN.R-project.org/package=pROC

  • Sarparast M (2018) LSRS: land surface remote sensing. Version 0.2.0URL https://CRAN.R-project.org/package=LSRS

  • Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of Hyphomycetes. CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands

  • Silva B, Cotes JM, Marín M (2010) Population structure of Phytophthora infestans in potato crops from Antioquia, Boyaca, Cundinamarca, and Norte de Santander (Colombia). Agronomía Colombiana 28:375–382

    Google Scholar 

  • Stevenson W, Loria R, Frank G, Weingartner D (2002) Compendium of Potato Diseases, W.R. Stevenson , R. Loria, G.D. Franc and D.P. Weingartner. American Phytopathological Society Press, St. Paul USA

  • Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. Journal for Chemical Information and Computer Scientists 43:1947–1958

    Article  CAS  Google Scholar 

  • Torres H (2002) Manual de las enfermedades más importantes de la papa en el Perú, Centro internacional de la papa. Centro internacional de la papa., Lima, Peru

  • Tu Y-H, Phinn S, Johansen K et al (2020) Optimising drone flight planning for measuring horticultural tree crop structure. ISPRS Journal of Photogrammetry and Remote Sensing 160:83–96. https://doi.org/10.1016/j.isprsjprs.2019.12.006

  • Vidoni P (2003) Prediction and calibration in generalized linear models. Annals of the Institute of Statistical Mathematics 55:169–185

    Google Scholar 

  • Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the kappa statistic. Family Medicine 37:360–363

    PubMed  Google Scholar 

  • Watts JD, Powell SL, Lawrence RL, Hilker T (2011) Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery. Remote Sensing of Environment 115:66–75

    Article  Google Scholar 

  • Wheeler DL, Johnson DA (2016) Verticillium dahliae infects, alters plant biomass, and produces inoculum on rotation crops. Phytopathology 106:602–613

    Article  CAS  PubMed  Google Scholar 

  • Yang C-M, Cheng C-H, Chen R-K (2007) Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Crop Science 47:329–335

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the “Semillero de Investigación en Geomática Aplicada” for the loan of the drone and the spectral camera for field work. We would also like to thank several potato farmers and Sumiagro (™) for their valuable information and support during this research. In addition, we want to thank Professor Ivan Alberto Lizarazo Salcedo of the Universidad Nacional for his valuable help in the data analysis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JGRG, SGC. Data curation: JGRG, WALR. Formal analysis: JGRG, WALR. Investigation: JGRG, SGC, WALR. Methodology: JGRG, WALR. Software: JGRG, WALR. Writing, original draft preparation: JGRG, WALR. Writing, review and editing: JGRG. Supervision: JGRG, CL. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Joaquín Guillermo Ramírez-Gil.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 96 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León-Rueda, W.A., León, C., Caro, S.G. et al. Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools. Trop. plant pathol. 47, 152–167 (2022). https://doi.org/10.1007/s40858-021-00460-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-021-00460-2

Keywords

Navigation