Skip to main content
Log in

Modeling Coupled Processes in Municipal Solid Waste Landfills: An Overview with Key Engineering Challenges

  • State of the Art/Practice Paper
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

Disposal of municipal solid waste (MSW) in engineered landfills is one of the most widely used waste management practices in the USA and worldwide. During its design life, landfilled MSW undergoes various complex mechanisms controlled by physical (hydraulic and mechanical), chemical, thermal, and biological processes and their interrelated behaviors. A thorough understanding of these coupled MSW interactions is critical in designing a stable, effective and well-operational landfill. However, to date, the current practices associated with mathematical modeling as well as long-term monitoring of landfill performance(s) are mostly empirical and limited to site-specific conditions. Moreover, they fail to substantially quantify the changes in the geotechnical properties of MSW that result from coupled processes, especially the highly uncertain biological processes that result in MSW degradation in landfills. Furthermore, the spatially and temporally varied waste composition, heterogeneous and anisotropic nature of field MSW together with leachate and landfill gas production due to biodegradation results in atypical differential MSW settlement and, therefore, can adversely impact the long-term performance of landfills. Over the years, numerous experimental studies, field studies and mathematical modeling studies that focus on these landfill processes have been performed to optimize MSW landfill performance. In this study, a critical review of the previous research efforts on coupled processes is provided to help landfill engineers understand, design and operate MSW landfills safely and efficiently. Moreover, key research issues and challenges related to numerical modeling of landfilled MSW undergoing coupled processes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. USEPA (2016) Advancing sustainable materials management: 2014 fact sheet

  2. Hoornweg D, Bhada-Tat P (2012) What a waste: a global review of solid waste management. 15

  3. Sharma HD, Reddy KR (2004) Geoenvironmental engineering: site remediation, waste containment and emerging waste management technologies. Wiley, New Jersey

    Google Scholar 

  4. Gera F, Hueckel T, Peano A (1996) Critical issues in modelling the long-term hydro-thermomechanical performance of natural clay barriers. Eng Geol 41(1):17–33

    Article  Google Scholar 

  5. Noorishad J, Ayatollahi MS, Witherspoon PA (1982) A finite-element method for coupled stress and fluid flow analysis in fractured rock masses. Int J Rock Mech Min Sci Geomech 19(4):185–193

    Article  Google Scholar 

  6. Alonso EE, Gens A, Josa A (1990) A constitutive model for partially saturated soils. Géotechnique 40(3):405–430

    Article  Google Scholar 

  7. Olivella S, Gens A, Carrera J, Alonso EE (1996) Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng Computat 13(7):87–112

    Article  MATH  Google Scholar 

  8. Nasir O, Fall M (2009) Coupling binder hydration, temperature and compressive strength development of underground cemented paste backfill at early ages. Tunn Undergr Space Technol 25(1):9–20

    Article  Google Scholar 

  9. McDougall JR (2007) A hydro-bio-mechanical model for settlement and other behavior in landfilled waste. J Comput Geotech 34(4):229–246

    Article  Google Scholar 

  10. Jones DRV, Dixon N (2005) Landfill lining stability and integrity: the role of waste settlement. Geotext Geomembr 23(1):27–53

    Article  Google Scholar 

  11. Grisolia M, Napoleoni Q, Tangredi G (1995) The use of triaxial tests for the mechanical characterization of municipal solid waste. In: Proceedings of the Sardinia ‘95, Fifth International Landfill Symposium, vol. 2, Cagliari, Italy, pp 761–767

  12. Castellie F, Maugeri M (2013) Postearthquake Analysis of a Piled Foundation. J Geotech Geoenviron Eng 139(10):1822–1827

    Article  Google Scholar 

  13. Dixon N, Jones DRV (2005) Engineering properties of municipal solid waste. Geotext Geomembr 23(3):205–233

    Article  Google Scholar 

  14. Zekkos D, Bray J, Kavazanjian E, Matasovic N, Rathje E, Riemer M, Stokoe K (2005) Unit weight of municipal solid waste. J Geotech Geoenviron Eng 132(10):1250–1261

    Article  Google Scholar 

  15. Oweis IS (2006) Estimate of landfill settlements due to mechanical and decompositional process. J Geotech Geoenviron Eng 132(5):644–650

    Article  Google Scholar 

  16. Reddy KR, Hettiarachchi H, Parakalla NS, Gangathulasi J, Bogner JE (2009) Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA. Waste Manage (Oxford) 29(2):952–959

    Article  Google Scholar 

  17. Reddy KR, Hettiarachchi H, Parakalla N, Gangathulasi J, Bogner J, Lagier T (2009) Hydraulic conductivity of MSW in landfills. J Environ Eng 135(8):1–7

    Article  Google Scholar 

  18. Reddy KR, Hettiarachchi H, Parakalla N, Gangathulasi J, Bogner JE, Lagier T (2009) Compressibility and shear strength municipal solid waste under short-term leachate recirculation operations. Waste Manag Res 27(6):578–587

    Article  Google Scholar 

  19. Bareither CA, Benson CH, Edil TB (2012) Effects of waste composition and decomposition on the shear strength of municipal solid waste. J Geotech Geoenviron Eng 138(10):1161–1174

    Article  Google Scholar 

  20. El-Fadel M, Khoury R (2000) Modeling settlement in MSW landfills: a critical review. Crit Rev Environ Sci Technol 30(3):327–361

    Article  Google Scholar 

  21. Sowers GF (1973). Settlement of waste disposal fills. In: Proceedings of 8th international Conference on Soil Mechanics and Foundation Engineering, Moscow, USSR 2:207–210

  22. Marques ACM, Filz GM, Vilar OM (2003) Composite compressibility model for municipal solid waste. J Geotech Geoenviron Eng 129(4):372–378

    Article  Google Scholar 

  23. Hossain SM, Gabr MA (2005) Prediction of municipal solid waste landfill settlement with leachate recirculation. In: Proceedings Geo Frontiers, Austin, Tex., Vol. 168, ASCE, 50

    Google Scholar 

  24. Gourc J-P, Staub MJ, Conte M (2010) Decoupling MSW settlement into mechanical and biochemical processes-Modelling and validation on large-scale setups. Waste Manag 30(8):1556–1568

    Article  Google Scholar 

  25. Rao SK, Moulton LK, Seals RK (1977) Settlement of refuse landfills. In: Proceedings of the Conference on Geotechnical Practices for Disposal of Solid Waste Materials. University of Michigan, Ann Arbor June 13–15, 1977

    Google Scholar 

  26. Edil TB, Ranguette VJ, Wuellner WW (1990). Settlement of municipal refuse, geotechnics of waste fills—theory and practice, Landva A, Knowles D (eds) ASTM STP 1070, American Society of Testing and Materials, Philadelphia, Pennsylvania, 225–239

  27. Gibson RE, Lo KY (1961) A theory of consolidation for soils exhibiting secondary compression. Norges Tekniske Vitenskapsakademi

  28. Wall DK, Zeiss C (1995) Municipal landfill biodegradation and settlement. J Environ Eng 121(3):214–224

    Article  Google Scholar 

  29. Yen BC, Scanlon B (1975) Sanitary landfill settlement rates. J Geotech Eng Div 101(5):475–487

    Google Scholar 

  30. Ling I, Leshchinsky D, Yoshiyuki M, Toshinori K (1998) Estimation of municipal solid waste landfill settlement. J. Geotech Geoenviron Eng 124(1):21–28

    Article  Google Scholar 

  31. Park HI, Lee SR (1997) Long-term settlement behavior of landfills with refuse decomposition. J Resour Manage Technol 24(4):159–165

    Google Scholar 

  32. Sivakumar Babu GL, Reddy KR, Chouskey SK, Kulkarni HS (2010) Prediction of long-term municipal solid waste landfill settlement using constitutive model. Practice periodical of hazardous, toxic, and radioactive waste management. ASCE 14(2):139–150

    Google Scholar 

  33. Sharma HD, De A (2007) Municipal solid waste landfill settlement: postclosure perspectives. J Geotech Geoenviron Eng 133(6):619–629

    Article  Google Scholar 

  34. Machado SL, Vilar OM, Carvalho MF (2008) Constitutive model for long term municipal solid waste mechanical behavior. Comput Geotech 35(5):775–790

    Article  Google Scholar 

  35. McDougall JR, Pyrah IC (2004) Phase relations for decomposable soils. Geotechnique 54(7):487–494

    Article  Google Scholar 

  36. Olivier F, Gourc JP (2007) Hydro-mechanical behavior of municipal solid waste subject to leachate recirculation in a large-scale compression reactor cell. Waste Manage (Oxford) 27(1):44–58

    Article  Google Scholar 

  37. US EPA (2005) Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide. Washington D.C., EPA-600/R-05/047

  38. Cossu R, Andreoletta G, Muntoni A (1996) Modelling Landfill Gas Production. Landfilling of Waste: Biogas. E & FN Spon, London, pp 238–268

    Google Scholar 

  39. Yu, L., Batlle, F., and Lloret, A. (2010) A coupled model for prediction of settlement and gas flow in MSW landfills. Int J Numer Anal Methods Geomech 34(11):1169–1190

    MATH  Google Scholar 

  40. Giri RK, Reddy KR (2014) Slope stability of bioreactor landfills during leachate injection: effects of geometric configurations of horizontal trench systems. Geomech Geoeng 10(2):1–13

    Google Scholar 

  41. Giri RK, Reddy KR (2014) Design charts for selecting minimum setback distance from side slope to horizontal trench system in bioreactor landfills. Geotech Geol Eng 32(4):1017–1027

    Article  Google Scholar 

  42. Giri RK, Reddy KR (2014) Slope stability of bioreactor landfills during leachate injection: effects of unsaturated hydraulic properties of municipal solid waste. Int J Geotech Eng 8(2):144–156

    Article  Google Scholar 

  43. Giri RK, Reddy KR (2014) Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions. Waste Manag Res 32(3):186–197

    Article  Google Scholar 

  44. Kazimoglu YK, McDougall JR, Pyrah IC (2005). Moisture retention curve in landfilled waste. In: Proceedings Intl. Conf. on Unsaturated Soils, Weimar, 93(1):59–67

  45. Capelo J, De Castro M.A.H. (2007) Measuring transient water flow in unsaturated municipal solid waste-a new experimental approach. Waste Manage (Oxford) 27(6):811–819

    Article  Google Scholar 

  46. Staub MJ, Galietti B, Oxarango L, Khire MV, Gourc J-P (2009). Porosity and hydraulic conductivity of MSW using laboratory scale tests. Proc. 3rd Intl. Workshop on Hydro-Physico-Mechanics of Landfill, Braunschweig, Germany. 1–9

  47. Staub MJ, Laurent JP, Gourc JP, Morra C (2010) Applicability of time domain reflectometry water content measurements in municipal solid waste. Vadose Zone J 9(1):160–171

    Article  Google Scholar 

  48. Staub MJ, Gourc JP, Laurent JP, Kintzuger C, Oxarango L, Benbelkacem H, Bayard R, Morra C (2010) Long-term moisture measurements in large-scale bioreactor cells using TDR and neutron probes. J Hazard Mater 180(1):165–172

    Article  Google Scholar 

  49. Gangathulasi J (2008) Effects of leachate recirculation on geotechnical properties of municipal solid waste in landfills. Ph. D. Thesis, Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, Illinois

  50. Stoltz G, Tinet AJ, Staub MJ, Oxarango L, Gourc JP (2012) Moisture retention properties of municipal solid waste in relation to compression. J Geotech Geoenviron Eng ASCE 138(4):535–543

    Article  Google Scholar 

  51. Grellier S, Reddy K, Gangathulasi J, Adib R, Peters C (2006) Electrical resistivity tomography imaging of leachate recirculation in Orchard Hills Landfill. Proc. SWANA Conference, Charlotte, N.C, 1–7

  52. Grellier S, Reddy KR, Gangathulasi J, Adib R, Peters C (2007) US MSW and its biodegradation in a bioreactor landfill. In: Proceedings of the Sardinia ‘2007, Eleventh International Landfill Symposium, Cagliari, Italy

  53. Marcoux MA, Lagier T, Gourc JP (2007) Monitoring of leachate recirculation in a bioreactor Landfill: comparison of lysimeter and resistivity measurements. Proc. Sardinia, Eleventh International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy; 1–5

  54. Carpenter PJ, Grellier S, Reddy KR, Adib R, Peters C, Gangathulasi J (2008) Investigating the interior of a landfill cell with leachate injection using electromagnetic conductivity and ground-penetrating radar surveys. Proc. of the 21st Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), Philadelphia, PA, USA

  55. Imhoff PT, Reinhart DB, Englund M, Guerin R, Gawande N, Han B, Jonnalagadda S, Townsend TG, Yazdani R (2007) Review of state of the art methods for measuring water in landfills. Waste Manage (Oxford) 27(6):729–745

    Article  Google Scholar 

  56. Kumar D, Jonnalagadda S, Jain P, Gawande NA, Townsend TG, Reinhart DB (2009) Field evaluation of resistivity sensors for in situ moisture measurement in a bioreactor landfill. Waste Manage (Oxford) 29(5):1547–1557

    Article  Google Scholar 

  57. Kadambala R, Townsend TG, Jain P, Singh K (2011) Temporal and spatial pore water pressure distribution surrounding a vertical landfill leachate recirculation well. Int J Environ Res Public Health 8(5):1692–1706

    Article  Google Scholar 

  58. Zeiss C, Major W (1992) Moisture flow through municipal solid waste: patters and characteristics. J Environ Syst 22(3):211–231

    Article  Google Scholar 

  59. McCreanor, P.T., and Reinhart, H.S. (1996). Hydrodynamic modeling of leachate recirculating landfills. Water Sci Technol 34(7–8):463–470

    Article  Google Scholar 

  60. McCreanor PT, Reinhart DR (1999) Hydrodynamic modeling of leachate recirculating landfills. Waste Manag Res 17(6):465–469

    Article  Google Scholar 

  61. McCreanor PT, Reinhart DR (2000) Mathematical modeling of leachate routing in a leachate recirculating landfill. Water Res 34(4):1285–1295

    Article  Google Scholar 

  62. Reinhart DR, McCreanor PT, Townsend TG (2002) The bioreactor landfill: Its status and future. Waste Manag Res 20:172–186

    Article  Google Scholar 

  63. Hayder MM, Khire MV (2005) Leachate recirculation using horizontal trenches in bioreactor landfills. J Geotech Geoenviron Eng 131(7):837–847

    Article  Google Scholar 

  64. Khire MV, Mukherjee M (2007) Leachate injection using vertical wells in bioreactor landfills. Waste Manage (Oxford) 27(9):1233–1247

    Article  Google Scholar 

  65. Khire M, Haydar M (2007) Leachate Recirculation in Engineered Landfills Using Geocomposite Drainage Material. J Geotech Geoenviron Eng Am Soc Civ Eng 133(2):166–174

    Article  Google Scholar 

  66. Jain P, Townsend TG, Tolaymat TM (2010) Steady state design of vertical wells for liquids addition at bioreactor landfills. Waste Manage (Oxford) 30(11):2022–2029

    Article  Google Scholar 

  67. Kulkarni HS, Reddy KR (2011). Effects of Unsaturated Hydraulic Properties of Municipal Solid Waste on Moisture Distribution in Bioreactor Landfills. Proceedings of Geo-Frontiers, Dallas, Texas, USA, 1392–1403

  68. Kulkarni HS, Reddy KR (2011) Comparative Evaluation of Different Leachate Recirculation Systems in Bioreactor Landfills. Proceedings, International Session at the JGS 9th National Symposium on Environmental Geotechnology, October, Kyoto, Japan

  69. Reddy KR, Kulkarni HS (2010) Effect of Vertical Well Configuration on Moisture Distribution in Bioreactor landfill. Proc 2nd International Conference Waste Engineering & Management, Shanghai, China

  70. Reddy KR, Kulkarni HS (2011) Effectiveness of drainage blanket for leachate recirculation in bioreactor landfills. 5th Pan-American Conference on Teaching and Learning of Geotechnical Engineering, October 2–6, Toronto, Ontario, Canada

  71. Xu Q, Tolaymat T, Townsend TG (2012) Impact of pressurized liquids addition on landfill slope stability. J Geotech Geoenviron Eng 138(4):472–480

    Article  Google Scholar 

  72. Kulkarni HS, Reddy KR (2012) Moisture distribution in bioreactor landfills: a review. Indian Geotech J 42(3):125–149

    Article  Google Scholar 

  73. Reddy KR, Kulkarni HS, Khire MV (2013) Two-phase modeling of leachate recirculation using vertical wells in bioreactor landfills. J Hazard Toxic Radioact Waste ASCE 17(4):272–284

    Article  Google Scholar 

  74. White JK, Nayagum D, Beaven RP (2014) A multi-component two-phase flow algorithm for use in landfill processes modelling. Waste Manage (Oxford) 34(9):1644–1656

    Article  Google Scholar 

  75. Singh K, Kadambala R, Jain P, Xu Q, Townsend TG (2014) Anisotropy estimation of compacted municipal solid waste using pressurized vertical well liquids injection. Waste Manag Res 32(6):482–491

    Article  Google Scholar 

  76. Jain P, Townsend TG, Tolaymat TM (2014) Transient design of landfill liquid addition systems. Waste Manage (Oxford) 34(9):1667–1673

    Article  Google Scholar 

  77. Jain P, Ko JH, Kumar D, Powell J, Kim H, Maldonado L, Reinhart DR (2014) Case study of landfill leachate recirculation using small-diameter vertical wells. Waste Manage (Oxford) 34(11):2312–2320

    Article  Google Scholar 

  78. Farquhar GJ, Rovers FA (1973) Gas production during refuse decomposition. Water Air Soil Pollut 2(4):483–495

    Article  Google Scholar 

  79. Barlaz MA, Schaefer DM, Ham RK (1989) Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. J Appl Environ Microbiol 55(1):55–65

    Google Scholar 

  80. Reddy KR, Hettiarachchi H, Gangathulasi J, Bogner JE (2011) Geotechnical properties of municipal solid waste at different phases of degradation. Waste Manage (Oxford) 31(11):2275–2286

    Article  Google Scholar 

  81. Bekins BA, Warren E, Godsy EM (1998) A comparison of zero-order, first-order, and Monod biotransformation models. Ground Water 36(2):261–268

    Article  Google Scholar 

  82. Hettiarachchi CH, Meegoda JN, Hettiarachchi P (2009) Effect of gas and moisture on modeling of bioreactor landfill settlement. Waste Manage (Oxford) 29(3):1018–1025

    Article  Google Scholar 

  83. Richards LA, (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333

    Article  MATH  Google Scholar 

  84. Van Genuchten MTH (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  85. Liu X, Shi J, Qian X, Hu Y, Peng G (2011) One-dimensional model for municipal solid waste (MSW) settlement considering coupled mechanical-hydraulic-gaseous effect and concise calculation. Waste Manage (Oxford) 31(12):2473–2483

    Article  Google Scholar 

  86. Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soil. Wiley, New York

    Book  Google Scholar 

  87. Chen YM, Xu XB, Zhan LT (2012) Analysis of solid-liquid-gas interactions in landfilled municipal solid waste by a bio-hydro-mechanical coupled model. Sci China Tech Sci 55(1):81–89

    Article  Google Scholar 

  88. White JK, Robinson JP, Ren Q (2004) Modelling the biochemical degradation of solid waste in landfills. Waste Manage (Oxford) 24(3):227–240

    Article  Google Scholar 

  89. Powrie W, Beaven RP (1999) Hydraulic properties of household waste and implications for landfills. Proc ICE-Geotech Eng 137(4):235–247

    Article  Google Scholar 

  90. Yin JJ, Graham J (1989) Viscous-elastic–plastic modelling of one-dimensional time-dependent behaviour of clays. Canadian Geotech J 26:199–209

    Article  Google Scholar 

  91. Lobo A (2003) Desarrollo de MODUELO 2: herramienta para la evaluación de la contaminación producida en vertederos de residuos sólidos urbanos. Doctoral Thesis, Dept. of Sciences and Techniques of Water and the Environment, University of Cantabria, Spain

  92. Lobo A, Tejero I (2007) Application of simulation models to the diagnosis of MSW landfills: an example. Waste Manage (Oxford) 27(5):691–703

    Article  Google Scholar 

  93. Lobo A, Lopez A, Cobo N, Tejero I (2008) Simulation of municipal solid waste reactors using Moduelo. Proc ICE-Waste Resour Manag 161(3):99–104

    Google Scholar 

  94. Zehnder AJB, Ingvorsen K, Marti T (1982) Microbiology of methane bacteria. In Anaerobic digestion 1981: proceedings of the Second International Symposium on Anaerobic Digestion held in Travemhunde, Federal Republic of Germany, on 6–11 September, 1981/editors, DE Hughes

  95. Ivanova LK, Richards DJ, Smallman DJ (2008) The long-term settlement of landfill waste. Waste Resour Manag 161(3):121–133

    Google Scholar 

  96. Liu X, Shi J, Qian X, Liao Z (2013) Biodegradation behavior of municipal solid waste with liquid aspects: experiment and verification. J Environ Eng 139(12):1488–1496

    Article  Google Scholar 

  97. Bareither CA, Benson CH, Edil TB (2013) Compression of municipal solid waste in bioreactor landfills: mechanical creep and biocompression. J Geotech Geoenviron Eng 139(7):1007–1021

    Article  Google Scholar 

  98. Staub MJ, Gourc JP, Drut N, Stoltz G, Mansour AA (2013) Large-scale bioreactor pilots for monitoring the long-term hydromechanics of MSW. J Hazard Toxic Radioact Waste 17(4):285–294

    Article  Google Scholar 

  99. Fei X, Zekkos D (2013) Factors influencing long-term settlement of municipal solid waste in laboratory bioreactor landfill simulators. J Hazard Toxic Radioact Waste 17(4):259–271

    Article  Google Scholar 

  100. Abichou T, Barlaz MA, Green R, Hater G (2013) The Outer loop bioreactor: a case study of settlement monitoring and solids decomposition. Waste Manage (Oxford) 33(10):2035–2047

    Article  Google Scholar 

  101. Simões GF, Catapreta CAA (2013) Monitoring and modeling of long-term settlements of an experimental landfill in Brazil. Waste Manage (Oxford) 33(2):420–430

    Article  Google Scholar 

  102. Larsen RJ, Marx ML (1986) An introduction to mathematical statistics and its applications. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  103. Yesiller N, Hanson JL (2003) Analysis of temperatures at a municipal solid waste landfill. Proc., 9th Int. Waste Management and Landfill Symp., Christensen TH et al (eds.) CISA, Italy

  104. Yeşiller N, Hanson JL, Liu WL (2005) Heat generation in municipal solid waste landfills. J Geotech Geoenviron Eng 131(11):1330–1344

    Article  Google Scholar 

  105. DeWalle FB, Chian, E. S. K., Hammerberg E (1978) Gas production from solid waste in landfills. J Environ Eng Div ASCE 104(EE3):415–432

    Google Scholar 

  106. Rees JF (1980) Optimization of methane production and refuse decomposition in landfills by temperature control. J Chem Technol Biotechnol Soc Chem Ind 30:458–465

    Article  Google Scholar 

  107. Hartz KE, Klink RE, Ham RK (1982) Temperature effects: methane generation from landfill samples. J Environ Eng Div ASCE 108(4):629–638

    Google Scholar 

  108. Mata-Alvarez J, Martinez-Viturtia A (1986) Laboratory simulation of municipal solid waste fermentation with leachate recycle. J Chem Technol Biotechnol 36:547–556

    Article  Google Scholar 

  109. Dach J, Jager J (1995). Prediction of gas and temperature with the disposal of pretreated residential waste. Proc., 5th Int. Waste Management and Landfill Symp., Christensen TH et al (eds) Vol. I, CISA, Italy, 665–677

  110. Rowe RK (1998) Geosynthetics and the minimization of contaminant migration through barrier systems beneath solid waste. Proc., 6th Int. Conf. on Geosynthetics, Rowe RK (ed), Vol. I, IFAI, Atlanta, 27–102

  111. Yoshida H, Tanaka N, Hozumi H (1997) Theoretical study on heat transport phenomena in a sanitary landfill. Proc., 6th Int. Waste Management and Landfill Symp., Christensen TH et al (eds.), vol I, CISA, Italy 109–120

  112. Townsend TG, Miller WL, Lee HJ, Earle JFK (1996) Acceleration of landfill stabilization using leachate recycle. J Environ Eng 122(4):263–268

    Article  Google Scholar 

  113. Lefebvre X, Lanini S, Houi D (2000) The role of aerobic activity on refuse temperature rise. I: landfill experimental study. Waste Manag Res 18(5):444–452

    Article  Google Scholar 

  114. Yoshida H, Rowe RK (2003). Consideration of landfill liner temperature. Proc., 9th Int. Waste Management and Landfill Symp., Christensen TH et al (eds.) CISA, Italy

  115. Hanson JL, Yesiller N, Kendall LA (2005) Integrated temperature and gas analysis at a municipal solid waste landfill. Proceeding of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, 4. Millpress Science Publishers, Rotterdam, pp 2265–2268

    Google Scholar 

  116. Zhao YR, Liu TJ, Chen XS, Xie Q, Huang LP (2016) The effect of temperature on the biodegradation properties of municipal solid waste. Waste Manag Res 0734242X15622811

  117. Lamothe, D. and Edgers, L., (1994). The effects of environmental parameters on the laboratory compression of refuse. Proceedings, Seventeenth International Madison Waste Conference, Department of Engineering Professional Development, University of Wisconsin, Madison, WI, 592–604

  118. Chakma S, Mathur S (2013) Postclosure long-term settlement for MSW landfills. J Hazard Toxic Radioact Waste ASCE 17(2):81–88

    Article  Google Scholar 

  119. Hudson AP (2007) Evaluation of the vertical and horizontal hydraulic conductivities of household wastes, Ph. D. Thesis, University of Southampton

  120. Gholamifard S, Eymard R, Duquennoi C (2008) Modeling anaerobic bioreactor landfills in methanogenic phase: long term and short term behaviors. Water Res 42(10):5061–5071

    Article  Google Scholar 

  121. El-Fadel M, Findikakis AN, Leckie JO (1996) Numerical modelling of generation and transport of gas and heat in sanitary landfills I. Model formulation. Waste Manag Res 14(5):483–504

    Article  Google Scholar 

  122. Garg A, Achari A (2010) A comprehensive numerical model simulating gas, heat, and moisture transport in sanitary landfills and methane oxidation in final covers. Environ Model Assess 15(5):397–410

    Article  Google Scholar 

  123. Bear J (1972) Dynamics of fluids in porous materials. Elsevier, New York

    MATH  Google Scholar 

  124. Nastev M (1998) “Modeling Landfill Gas Generation and Migration in Sanitary Landfills and Geological Formations”. PhD thesis, Universite Laval, Quebec

  125. Lei L, Bing L, Qiang X, Ying Z, Chun Y (2011) The modelling of biochemical–thermal coupling effect on gas generation and transport in MSW landfill. Int J Environ Pollut 46(3):216–233

    Article  Google Scholar 

  126. Parera LAK, Achari G, Hettiaratchi JPA (2002) Determination of source strength of landfill gas: a numerical modeling approach. J Environ Eng 128(5):461–471

    Article  Google Scholar 

  127. Gawande NA, Reinhart DR, Yeh G-T (2010) Modeling microbiological and chemical processes in municipal solid waste bioreactor, part I: development of a three-phase numerical model BIOKEMOD-3P. Waste Manage (Oxford) 30(2):202–210

    Article  Google Scholar 

  128. Yeh GT, Tripathi VS (1991) A model for simulating transport of reactive multispecies components: model development and demonstration. Water Resour Res 27(12):3075–3094

    Article  Google Scholar 

  129. Salvage K, Yeh GT (1998) Development and application of a numerical model of kinetic and equilibrium microbiological and geochemical reactions (BIOKEMOD). J Hydrol 209:27–52

    Article  Google Scholar 

  130. Hanson JL, Yeşiller N, Onnen MT, Liu WL, Oettle NK, Marinos JA (2013) Development of numerical model for predicting heat generation and temperatures in MSW landfills. Waste Manage (Oxford) 33(10):1993–2000

    Article  Google Scholar 

  131. Hubert J, Liu XF, Collin F (2016) Numerical modeling of the long term behavior of Municipal Solid Waste in a bioreactor landfill. Comput Geotech 72:152–170

    Article  Google Scholar 

  132. Kulkarni HS (2012) Optimization of Leachate Recirculation Systems in Bioreactor Landfill. PhD Thesis. Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago

  133. Reddy KR, Kumar G (2016) Coupled hydro-bio-mechanical modeling of bioreactor landfills: New modeling framework and research challenges. Proceedings of the US-India Workshop on Establishing Linkages between Geo-environmental Practices and Sustainability, August 18, 2016, Chicago, IL, USA

  134. Reddy KR, Kumar G, Giri RK (2017) Influence of dynamic coupled hydro-bio-mechanical processes on response of municipal solid waste and liner system in bioreactor landfills. Waste Manag. doi:10.1016/j.wasman.2016.12.040

    Google Scholar 

Download references

Acknowledgements

This project is funded by the US National Science Foundation (CMMI #1537514), which is gratefully acknowledged. The authors are grateful to the reviewers for their thoughtful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna R. Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, K.R., Kumar, G. & Giri, R.K. Modeling Coupled Processes in Municipal Solid Waste Landfills: An Overview with Key Engineering Challenges. Int. J. of Geosynth. and Ground Eng. 3, 6 (2017). https://doi.org/10.1007/s40891-016-0082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-016-0082-2

Keywords

Navigation