Skip to main content
Log in

Surface water detection and delineation using remote sensing images: a review of methods and algorithms

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

Multispectral and hyperspectral images captured by remote sensing satellites or airborne sensors contain abundant information that can be used to study and analyze objects of interest on the surface of earth and their properties. The potential of remotely sensed images for studying natural resources like water has been studied by researchers over the past many years. As water is an important natural resource that needs to be conserved, such studies have been of great interest to the scientific community. By employing appropriate digital image processing techniques on images taken from remote sensing satellites or airborne sensors, an effective system can be developed to study the quantitative and qualitative changes happening to surface water bodies over a period of time. Surface water detection and mapping is a crucial and necessary step in such studies and different automated and semi-automated methods have been developed over the years for mapping water in remotely sensed images. Remote sensing sensors capture images at multiple bands corresponding to different wavelength ranges in the EM spectrum. Digital image processing based techniques for water mapping falls predominantly into four categories; (i) single band based methods, (ii) spectral index based methods, (iii) machine learning based methods and (iv) spectral mixture analysis based methods. This paper presents a review of techniques, methods, algorithms and the sensors/satellites that have been developed and experimented with to perform surface water body detection and delineation from remote sensing images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abd Manaf S, Mustapha N, Nasir SM, Azura HN, Radzi M, Hamid A (2016) Comparison of classification techniques on fused optical and SAR images for shoreline extraction: a case study at northeast Coast of Peninsular Malaysia. J Comput Sci 12:399–411. https://doi.org/10.3844/jcssp.2016.399.411

    Article  Google Scholar 

  • Achanta R et al (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Google Scholar 

  • Acharya TD et al (2016) Change detection of lakes in Pokhara, Nepal using Landsat data. Multidiscip Digit Publ Inst Proc 1:2

    Google Scholar 

  • Acharya TD et al (2016) Identification of water bodies in a landsat 8 oli image using a j48 decision tree. Sensors 16(7):1075

    Google Scholar 

  • Aher S, Kantamaneni K, Deshmukh Pragati (2017) Detection and delineation of water bodies in hilly region using CartoDEM, SRTM and ASTER GDEM data. Remote Sens Land 1(1):41–52

    Google Scholar 

  • Ahmad A, Quegan S (2012) Analysis of maximum likelihood classification on multispectral data. Appl Math Sci 6(129):6425–6436

    Google Scholar 

  • Bagli S, Soille P, Fermi E (2004) Automatic delineation of shoreline and lake boundaries from Landsat satellite images. Proceedings of initial ECO-IMAGINE GI and GIS for Integrated Coastal Management, Seville, pp. 13–15

  • Baig MHA et al (2013) Comparison of MNDWI and DFI for water mapping in flooding season. Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International. IEEE

  • Baig MHA et al (2014) Water mapping through universal pattern decomposition method and tasseled cap transformation. Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE

  • Ball GH, Hall DJ (1965) ISODATA, a novel method of data analysis and pattern classification. Stanford Research Institute, Menlo Park

    Google Scholar 

  • Bangira T et al (2017) A spectral unmixing method with ensemble estimation of endmembers: application to flood mapping in the caprivi floodplain. Remote Sens 9(10):1013

    Google Scholar 

  • Behnamian Amir et al (2017) Semi-automated surface water detection with synthetic aperture radar data: a wetland case study. Remote Sens 9(12):1209

    Google Scholar 

  • Bochow M et al (2012) Automatic detection and delineation of surface water bodies in airborne hyperspectral data. Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International. IEEE

  • Bolanos S et al (2016) Operational surface water detection and monitoring using Radarsat 2. Remote Sens 8(4):285

    Google Scholar 

  • Boschetti M et al (2014) Comparative analysis of normalised difference spectral indices derived from MODIS for detecting surface water in flooded rice cropping systems. PloS One 9(2):e88741

    Google Scholar 

  • Brisco B et al (2009) A semi-automated tool for surface water mapping with RADARSAT-1. Can J Remote Sens 35(4):336–344

    Google Scholar 

  • Che X et al (2015) Downscaling MODIS surface reflectance to improve water body extraction. Adv Meteorol. https://doi.org/10.1155/2015/424291

    Article  Google Scholar 

  • Choung Y-J, Jo M-H (2016) Monitoring water resource changes using multi-temporal Landsat imagery taken in Changnyeong, South Korea. Proc Eng 154:348–352

    Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  • Csendes B, Mucsi L (2016) Inland excess water mapping using hyperspectral imagery. Geogr Pannon 20(4):191–196

    Google Scholar 

  • Das B et al (2019) Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geol Ecol Landsc 3(3):223–237

    Google Scholar 

  • Ding Z et al (2016) Application of multispectral remote sensing technology in surface water body extraction. 2016 International Conference on Audio, Language and Image Processing (ICALIP)

  • Du Z et al (2014) Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens Lett 5(7):672–681

    Google Scholar 

  • Du Y et al (2016) Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens 8(4):354

    Google Scholar 

  • Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, pp. 32–57

  • Duy NB (2015) Automatic detection of surface water bodies from Sentinel-1 SAR images using Valley-Emphasis method. Vietnam J Earth Sci 37(4):328–343

    Google Scholar 

  • Endo C, Kajiya A et al (2017) An automatic method for open water detection using MUX/CBERS-4 images. Anaisdo XVIII Simpósio Brasileirode Sensoriamento Remoto-SBSR 978–85-17-00088-1

  • Farrand WH, Harsanyi JC (1997) Mapping the distribution of mine tailings in the Coeur d’Alene River Valley, Idaho, through the use of a constrained energy minimization technique. Remote Sens Environ 59(1):64–76

    Google Scholar 

  • Feyisa GL et al (2014) Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sens Environ 140:23–35

    Google Scholar 

  • Frazier PS, Page KJ (2000) Water body detection and delineation with Landsat TM data. Photogramm Eng Remote Sens 66(12):1461–1468

    Google Scholar 

  • Gao H et al (2016) An effective modified water extraction method for Landsat-8 OLI imagery of mountainous plateau regions. IOP Conf Ser: Earth Environ Sci 34:1

    Google Scholar 

  • Gao H, Birkett C, Lettenmaier Dennis P (2012) Global monitoring of large reservoir storage from satellite remote sensing. Water Resour Res 48:9

    Google Scholar 

  • Geng X et al (2014) CEM: more bands, better performance. IEEE Geosci Remote Sens Lett 11(11):1876–1880

    Google Scholar 

  • Goodarzi Mehr Saeed et al (2013) Using the mixture-tuned matched filtering method for lithological mapping with Landsat TM5 images. Int J Remote Sens 34(24):8803–8816

    Google Scholar 

  • Gopal Penny et al (2018) Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India. Hydrol Earth Syst Sci 22(1):595

    Google Scholar 

  • Guo Qiandong et al (2017) A weighted normalized difference water index for water extraction using Landsat imagery. Int J Remote Sens 38(19):5430–5445

    Google Scholar 

  • Hahmann T, Wessel B (2010) Surface water body detection in high-resolution TerraSAR-X data using active contour models. 2010 8th European Conference on Synthetic Aperture Radar (EUSAR)

  • Hassan MdS, Mahmud Syed SI (2014) Detection of waterlogging areas based on passive remote sensing data in Jessore district of Khulna division, Bangladesh. Int J Sci Res Publ 4:1–7

    Google Scholar 

  • Hong S et al (2015) Water area extraction using RADARSAT SAR imagery combined with landsat imagery and terrain information. Sensors 15(3):6652–6667

    Google Scholar 

  • Huang Chang et al (2015) An evaluation of Suomi NPP-VIIRS data for surface water detection. Remote Sens Lett 6(2):155–164

    Google Scholar 

  • Huang X et al (2015) Combining pixel-and object-based machine learning for identification of water-body types from urban high-resolution remote-sensing imagery. IEEE J Sel Top Appl Earth Obs Remote Sens 8(5):2097–2110

    Google Scholar 

  • Huang Chang et al (2016) Surface water mapping from Suomi NPP-VIIRS imagery at 30 m resolution via blending with Landsat data. Remote Sens 8(8):631

    Google Scholar 

  • Huang C et al (2017) A comparison of terrain indices toward their ability in assisting surface water mapping from Sentinel-1 data. ISPRS Int J Geo-Inf 6(5):140

    Google Scholar 

  • Ireland G, Volpi M, Petropoulos George P (2015) Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean flood. Remote Sens 7(3):3372–3399

    Google Scholar 

  • Irwin K et al (2017) Fusion of SAR, optical imagery and airborne LiDAR for surface water detection. Remote Sens 9(9):890

    Google Scholar 

  • Isikdogan F, Bovik AC, Passalacqua Paola (2017) Surface water mapping by deep learning. IEEE J Sel Top Appl Earth Obs Remote Sens 10(11):4909–4918

    Google Scholar 

  • Ji L et al (2016) Probabilistic graphical model based approach for water mapping using GaoFen-2 (GF-2) high resolution imagery and Landsat 8 time series. arXiv preprint arXiv:1612.07801

  • Ji L et al (2015) Target detection method for water mapping using Landsat 8 OLI/TIRS imagery. Water 7(2):794–817

    Google Scholar 

  • Kaplan G, Avdan Ugur (2017) Object-based water body extraction model using Sentinel-2 satellite imagery. Eur J Remote Sens 50(1):143–150

    Google Scholar 

  • Kaptué AT, Hanan NP, Prihodko Lara (2013) Characterization of the spatial and temporal variability of surface water in the Soudan-Sahel region of Africa. J Geophys Res: Biogeosci 118(4):1472–1483

    Google Scholar 

  • Klemas V, Pieterse A (2015) Using remote sensing to map and monitor water resources in arid and semiarid regions. Adv Watershed Sci Assess. Springer International Publishing, pp. 33–60

  • Kopačková V, Hladíková Lenka (2014) Applying spectral unmixing to determine surface water parameters in a mining environment. Remote Sens 6(11):11204–11224

    Google Scholar 

  • Li Wenbo et al (2013) A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sens 5(11):5530–5549

    Google Scholar 

  • Li Linlin et al (2018) Monitoring the dynamics of surface water fraction from MODIS time series in a Mediterranean environment. Int J Appl Earth Obs Geoinf 66:135–145

    Google Scholar 

  • Li-Chee-Ming J et al (2015) Validation of spaceborne radar surface water mapping with optical sUAS images. Int Arch Photogramm Remote Sens Spat Inf Sci 40(1):363

    Google Scholar 

  • Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation. Wiley, New Jersey

    Google Scholar 

  • Li N, Martin A, Estival R (2017) An automatic water detection approach based on Dempster–Shafer theory for multi-spectral images. 2017 20th International Conference on Information Fusion (Fusion)

  • Liu C et al (2009) Subpixel mapping of water cover with MODIS in Tibetan Plateau. Geoscience and Remote Sensing Symposium, 2009 IEEE International. IGARSS 2009:4

  • Luo X et al (2016) A hierarchical processing method for subpixel surface water mapping from highly heterogeneous urban environments using Landsat OLI data. Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International. IEEE

  • Malinowski Radosław et al (2015) Detection and delineation of localized flooding from WorldView-2 multispectral data. Remote Sens 7(11):14853–14875

    Google Scholar 

  • Manakos Ioannis et al (2014) Globalland30 mapping capacity of land surface water in Thessaly, Greece. Land 4(1):1–18

    Google Scholar 

  • Mason DC et al (2007) Improving river flood extent delineation from synthetic aperture radar using airborne laser altimetry. IEEE Trans Geosci Remote Sens 45(12):3932–3943

    Google Scholar 

  • Meng Q, Wen X, Yuan L, Xu H (2019) Factorization-based active contour for water-land SAR image segmentation via the fusion of features. IEEE Access 7:40347–40358

    Google Scholar 

  • Mishra K, Prasad P (2015) Automatic extraction of water bodies from Landsat imagery using perceptron model. J Comput Environ Sci. https://doi.org/10.1155/2015/903465

    Article  Google Scholar 

  • Mohammadi A, Costelloe JF, Ryu Dongryeol (2017) Application of time series of remotely sensed normalized difference water, vegetation and moisture indices in characterizing flood dynamics of large-scale arid zone floodplains. Remote Sens Environ 190:70–82

    Google Scholar 

  • Moradi M, Sahebi M, Shokri M (2017) Modified optimization water index (Mowi) For Landsat-8 Oli/Tirs. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 185–190

  • Morsy S et al (2016) Airborne multispectral Lidar data for land-cover classification and land/water mapping using different spectral indexes. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 3:3

    Google Scholar 

  • Mueller Norman et al (2016) Water observations from space: mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens Environ 174:341–352

    Google Scholar 

  • Mukherjee NR, Samuel C (2016) Assessment of the temporal variations of surface water bodies in and around Chennai using Landsat imagery. Indian J Sci Technol 9(18):1–7

    Google Scholar 

  • Murugan P et al (2016) Algorithm to select optimal spectral bands for hyperspectral index of feature extraction. Indian J Sci Technol 9:37

    Google Scholar 

  • Nedeljkovic I (2004) Image classification based on fuzzy logic. Int Arch Photogramm Remote Sens Spat Inf Sci 34(3):3–7

    Google Scholar 

  • Nikolakopoulos K, Karathanassi V, Rokos D (2007) Coastal water mapping using satellite hyperspectral data. SPIE-The International Society for Optical Engineering. 15

  • Ouma YO, Tateishi R (2006) A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. Int J Remote Sens 27(15):3153–3181

    Google Scholar 

  • Pal Sankar K, Ghosh A, Uma Shankar B (2000) Segmentation of remotely sensed images with fuzzy thresholding, and quantitative evaluation. Int J Remote Sens 21(11):2269–2300

    Google Scholar 

  • Paul A, Tripathi D, Dutta D (2018) Application and comparison of advanced supervised classifiers in extraction of water bodies from remote sensing images. Sustain Water Resour Manag 4(4):905–919

    Google Scholar 

  • Pekel Jean-François et al (2014) A near real-time water surface detection method based on HSV transformation of MODIS multi-spectral time series data. Remote Sens Environ 140:704–716

    Google Scholar 

  • Pekel J-F et al (2016) High-resolution mapping of global surface water and its long-term changes. Nature 540(7633):418

    Google Scholar 

  • Perivolioti T, Antonios M, Dimitra B, Terzopoulos D (2017) Comparative evaluation of radar and multispectral satellite image time-series for mapping the morphometric characteristics of Lake Koronia

  • Pervez W et al (2017) Evaluate the capability of Landsat8 operational land imager for shoreline change detection/inland water studies. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, p 42

  • Pham-Duc B, Prigent C, Aires Filipe (2017) Surface water monitoring within Cambodia and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations. Water 9(6):366

    Google Scholar 

  • Pierdicca Nazzareno et al (2008) Integrating physical and topographic information into a fuzzy scheme to map flooded area by SAR. Sensors 8(7):4151–4164

    Google Scholar 

  • Quinlan JR (1992) Learning with continuous classes. 5th Australian Joint Conference on Artificial Intelligence, p. 92

  • Rahman MdR, Thakur PK (2017) Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: a case study from the Kendrapara District of Orissa State of India. Egypt J Remote Sens Space Sci 21:S37–S41

    Google Scholar 

  • Rasoul Safavian S, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 21(3):660–674

    Google Scholar 

  • Rodriguez-Galiano VF et al (2012) Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens Environ 121:93–107

    Google Scholar 

  • Rokni K et al (2015) A new approach for surface water change detection: integration of pixel level image fusion and image classification techniques. Int J Appl Earth Obs Geoinf 34:226–234

    Google Scholar 

  • Rover J, Wylie BK, Ji Lei (2010) A self-trained classification technique for producing 30 m percent-water maps from Landsat data. Int J Remote Sens 31(8):2197–2203

    Google Scholar 

  • Saleh D (2017) Spectral mixture analysis and temporal land sat satellite images for monitoring and change detection: Dead Sea Jordan. Int J Inf Technol 5:1

    Google Scholar 

  • Sarp G, Ozcelik Mehmet (2017) Water body extraction and change detection using time series: a case study of Lake Burdur, Turkey. J Taibah Univ Sci 11(3):381–391

    Google Scholar 

  • Shrestha R, Liping D (2013) Land/water detection and delineation with Landsat data using Matlab/ENVI. 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics)

  • Singh K, Ghosh M, Sharma Shubha Rani (2016) WSB-DA: water surface boundary detection algorithm using Landsat 8 OLI data. IEEE J Sel Top Appl Earth Obs Remote Sens 9(1):363–368

    Google Scholar 

  • Sisay Amare (2016) Remote sensing based water surface extraction and change detection in the central rift valley region of ethiopia. Am J Geogr Inf Syst 5(2):33–39

    Google Scholar 

  • Sisodia PS, Tiwari V, Kumar A (2014) Analysis of supervised maximum likelihood classification for remote sensing image. In International conference on Recent Advances and Innovations in Engineering (ICRAIE)

  • Solbo S et al (2003) Mapping surface-water with Radarsat at arbitrary incidence angles. Geoscience and Remote Sensing Symposium, IGARSS’03 Proceedings IEEE International, 4

  • Song P, Liu Y (2011) Satellite-based tracking of water surface variation of Poyang Lake during the last three decades. IAHS-AISH Publication, pp. 215–220

  • Sun W, Bo D, Xiong Shaolong (2017) Quantifying sub-pixel surface water coverage in urban environments using low-albedo fraction from Landsat imagery. Remote Sens 9(5):428

    Google Scholar 

  • Thouvenin P-A, Dobigeon Ni, Tourneret J-Y (2016) Online unmixing of multitemporal hyperspectral images accounting for spectral variability. IEEE Trans Image Process 25(9):3979–3990

    Google Scholar 

  • Thouvenin P-A, Dobigeon N, Tourneret J-Y (2018) A hierarchical Bayesian model accounting for endmember variability and abrupt spectral changes to unmix multitemporal hyperspectral images. IEEE Trans Comput Imaging 4(1):32–45

    Google Scholar 

  • Tochamnanvita T, Muttitanon Wutjanun (2014) Investigation of coastline changes in three provinces of Thailand using remote sensing. Int Arch Photogramm Remote Sens Spat Inf Sci 40(8):1079

    Google Scholar 

  • Trochim ED et al (2016) Remote sensing of water tracks. Earth Space Sci 3(3):106–122

    Google Scholar 

  • Vassilia K, Polychronis K, Styliani I (2009) Independent component analysis for coastal water mapping using hyperspectral datasets. First workshop on hyperspectral image and signal processing: evolution in remote sensing, 2009. WHISPERS’09

  • Verpoorter C, Kutser T, Tranvik Lars (2012) Automated mapping of water bodies using Landsat multispectral data. Limnol Oceanogr: Methods 10(12):1037–1050

    Google Scholar 

  • Vignesh T, Thyagharajan KK (2017) Water bodies identification from multispectral images using Gabor filter, FCM and canny edge detection methods. 2017 International Conference on Information Communication and Embedded Systems (ICICES)

  • Wang Shudong et al (2015) A simple enhanced water index (EWI) for percent surface water estimation using Landsat data. IEEE J Sel Top Appl Earth Obs Remote Sens 8(1):90–97

    Google Scholar 

  • Wei H et al (2015) Water body extraction based on the LBV transformation analysis for China GF-1 multi-spectral images, p. 4

  • Westerhoff RS et al (2013) Automated global water mapping based on wide-swath orbital synthetic-aperture radar. Hydrol Earth Syst Sci 17(2):651

    Google Scholar 

  • Xiao X, Wdowinski S, Wu Y (2014) Improved water classification using an application-oriented processing of Landsat ETM+ and ALOS PALSAR change 7(11)

  • Xie Huan et al (2014) New hyperspectral difference water index for the extraction of urban water bodies by the use of airborne hyperspectral images. J Appl Remote Sens 8(1):085098

    Google Scholar 

  • Xie Huan et al (2016) Automated subpixel surface water mapping from heterogeneous urban environments using Landsat 8 OLI imagery. Remote Sens 8(7):584

    Google Scholar 

  • Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27(14):3025–3033

    Google Scholar 

  • Xu C, Haigang S, Xu F (2016) Land surface water mapping using multi-scale level sets and a visual saliency model from SAR images. ISPRS Int J Geo-Inf 5(5):58

    Google Scholar 

  • Yang Kang et al (2014) River delineation from remotely sensed imagery using a multi-scale classification approach. IEEE J Sel Top Appl Earth Obs Remote Sens 7(12):4726–4737

    Google Scholar 

  • Yang X et al (2017) Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sens 9(6):596

    Google Scholar 

  • Yang X, Chen Li (2017) Evaluation of automated urban surface water extraction from Sentinel-2A imagery using different water indices. J Appl Remote Sens 11(2):026016

    Google Scholar 

  • Yang C, Cai X, Wang X (2017) Remote sensing of hydrological changes in Tian-e-Zhou Oxbow Lake, an ungauged area of the Yangtze River Basin. Remote Sens 10(1):27

    Google Scholar 

  • Zeng Zhiyuan (1990) A new method for extracting information from Landsat data. Int J Remote Sens 5(2):128–139

    Google Scholar 

  • Zeng ZY (2007) A new method of data transformation for satellite images: I. Methodology and transformation equations for TM images. Int J Remote Sens 28(18):4095–4124

    Google Scholar 

  • Zeng L et al (2017) Analysing changes of the Poyang Lake water area using Sentinel-1 synthetic aperture radar imagery. Int J Remote Sens 38(23):7041–7069

    Google Scholar 

  • Zhang T et al (2017) Surface water extraction from Landsat 8 OLI imagery using the LBV transformation. IEEE J Sel Top Appl Earth Obs Remote Sens 10(10):4417–4429

    Google Scholar 

  • Zhou Yan et al (2017) Open surface water mapping algorithms: a comparison of water-related spectral indices and sensors. Water 9(4):256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Bijeesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bijeesh, T.V., Narasimhamurthy, K.N. Surface water detection and delineation using remote sensing images: a review of methods and algorithms. Sustain. Water Resour. Manag. 6, 68 (2020). https://doi.org/10.1007/s40899-020-00425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-020-00425-4

Keywords

Navigation