Skip to main content

Advertisement

Log in

Artificial Raindrop Algorithm-Based Design of Wideband IIR Fractional Order Digital Integrators

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

A new technique to design accurate, stable, and wideband infinite impulse response, fractional order digital integrators (FODIs) for the fractional order integrators based on a metaheuristic optimization technique called artificial raindrop algorithm (ARA) is proposed in this paper. ARA is inspired by the process of natural rainfall, and achieves the global optimal solution by identifying the raindrop which occupies the lowest altitude. To investigate the efficiency of the proposed approach, comparisons have been carried out with real coded genetic algorithm, particle swarm optimization, and differential evolution-based FODIs. Simulation results demonstrate that ARA-based FODIs consistently accomplish better magnitude responses in the least number of iteration cycles. The proposed FODIs also outperform all the recently reported designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Alaoui MA (2009) Discretization methods of fractional parallel PID controllers. In: 16th International conference on electronics, circuits, and systems, pp 327–330

  • Ali A, Radwan A, Soliman AM (2013) Fractional order Butterworth filter: active and passive realizations. IEEE J Emerg Select Top Circ Syst 3(3):346–354

    Article  Google Scholar 

  • Bandyopadhyay B, Kamal S (2015) Stabilization and control of fractional order systems: a sliding mode approach. Springer, Switzerland

    MATH  Google Scholar 

  • Barbosa RS, Machado JAT, Silva MF (2006) Time domain design of fractional differentiators using least-squares. Signal Process 86(10):2567–2581

    Article  MATH  Google Scholar 

  • Chen YQ, Moore KL (2002) Discretization schemes for fractional-order differentiators and integrators. IEEE Trans Circ Syst I Fundam Theory Appl 49(3):363–367

    Article  MathSciNet  MATH  Google Scholar 

  • Chen YQ, Vinagre BM (2003) A new IIR-type digital fractional order differentiator. Signal Process 83(11):2359–2365

    Article  MATH  Google Scholar 

  • Chen YQ, Vinagre BM, Podlubny I (2004) Continued fraction expansion approaches to discretizing fractional order derivatives-an expository review. Nonlinear Dyn 38(1):155–170

    Article  MathSciNet  MATH  Google Scholar 

  • Ferdi Y (2006) Computation of fractional order derivative and integral via power series expansion and signal modeling. Nonlinear Dyn 46(1):1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberg DB (1989) Genetic algorithms in search optimization and machine learning. Addison-Wesley, San Francisco

    MATH  Google Scholar 

  • Gupta M, Yadav R (2012) Design of improved fractional order integrators using indirect discretization method. Int J Comput Appl 59(14):19–24

  • Gupta M, Yadav R (2013) Optimization of integer order integrators for deriving improved models of their fractional counterparts. J Optim 2013(142390):1–11

  • Gupta M, Varshney P, Visweswaran GS (2011) Digital fractional-order differentiator and integrator models based on first-order and higher order operators. Int J Circ Theory Appl 39(5):461–474

    Article  Google Scholar 

  • Jiang QY, Wang L, Hei XH et al (2014) Optimal approximation of stable linear systems with a novel and efficient optimization algorithm. IEEE Congress Evol Comput:840–844

  • Jiang Q, Wang L, Hei X (2015) Parameter identification of chaotic systems using artificial raindrop algorithm. J Comput Sci 8:20–31

    Article  MathSciNet  Google Scholar 

  • Jiang Q, Wang L, Hei V, Yu G, Lin Y (2016) The performance comparison of a new version of artificial raindrop algorithm on global numerical optimization. Neurocomputing. doi:10.1016/j.neucom.2015.09.093i

    Google Scholar 

  • Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital IIR filters. J Franklin Inst 346(4):328–348

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the Fourth IEEE International Conference on Neural Networks, vol 4, Perth, Australia, pp 1942–1948

  • Krishna BT (2011) Studies of fractional order differentiators and integrators: a survey. Signal Processing 91(3):386–426

    Article  MATH  Google Scholar 

  • Mahata S, Saha SK, Kar R, Mandal D (2016a) Optimal and accurate design of fractional order digital differentiator—an evolutionary approach. IET Signal Proc. doi:10.1049/iet-spr.2016.0201

    Google Scholar 

  • Mahata S, Saha SK, Kar R, Mandal D (2016b) Optimal design of wideband digital integrators and differentiators using harmony search algorithm. Int J Numer Model Electron Netw Dev Fields. doi:10.1002/jnm.2203

    Google Scholar 

  • Montgomery DC, Runger GC (2003) Applied statistics and probability for engineers. Wiley, New York, NY, USA

  • Oldham KB, Spanier J (1974) The fractional calculus. Academic, New York

    MATH  Google Scholar 

  • Ostalczyk P (2003) Fundamental properties of the fractional-order discrete time integrator. Signal Processing 83(11):2367–2376

    Article  MATH  Google Scholar 

  • Romero M, de Madrid AP, Manoso C, Vinagre BM (2013) IIR approximations to the fractional differentiator/integrator using Chebyshev polynomials theory. ISA Trans 52(4):461–468

    Article  Google Scholar 

  • Saha SK, Ghoshal SP, Kar R, Mandal D (2013) Cat swarm optimization algorithm for optimal linear phase FIR filter design. ISA Trans 52(6):781–794

    Article  Google Scholar 

  • Sharma R, Gaur P, Mittal AP (2015) Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans 58:279–291

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Tseng CC (2007) Design of FIR and IIR fractional order Simpson digital integrators. Signal Process 87(5):1045–1057

    Article  MATH  Google Scholar 

  • Valerio D, Costa JS (2005) Time-domain implementation of fractional order controllers. IEE Proc Control Theory Appl 152(5):539–552

    Article  Google Scholar 

  • Vinagre BM, Podlubny I, Hernandez A, Feliu V (2000) Some approximations of fractional order operators used in control theory and applications. Fract Calc Appl Anal 3(3):231–248

    MathSciNet  MATH  Google Scholar 

  • Vinagre BM, Chen YQ, Petras I (2003) Two direct Tustin discretization methods for fractional-order differentiator/integrator. J Franklin Inst 340(5):349–362

    Article  MathSciNet  MATH  Google Scholar 

  • Visweswaran GS, Varshney P, Gupta M (2011) New approach to realize fractional power in z-domain at low frequency. IEEE Trans Circ Syst II 58(3):179–183

    Google Scholar 

  • West BJ, Bologna M, Grigolini P (2003) Physics of fractal operators. Springer, New York

    Book  Google Scholar 

  • Yadav R, Gupta M (2015a) Approximations of higher-order fractional differentiators and integrators using indirect discretization. Turk J Electr Eng Comput Sci 23(3):666–680

    Article  Google Scholar 

  • Yadav R, Gupta M (2015b) New improved fractional order integrators using PSO optimization. Int J Electron 102(3):490–499

    Article  Google Scholar 

  • Zeng G-Q, Chen J, Dai Y-X, Li L-M, Zheng C-W, Chen M-R (2015) Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing 160:173–184

    Article  Google Scholar 

Download references

Acknowledgements

This project is financially supported by Visvesvaraya Young Faculty Fellowship, DeitY, Ministry of Communications and Information Technology, Govt. of India (Grant No. PhD-MLA-4(29)/2015-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahata, S., Saha, S.K., Kar, R. et al. Artificial Raindrop Algorithm-Based Design of Wideband IIR Fractional Order Digital Integrators. Iran J Sci Technol Trans Electr Eng 41, 165–173 (2017). https://doi.org/10.1007/s40998-017-0025-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-017-0025-5

Keywords

Navigation