Skip to main content
Log in

A Novel 5D Chaotic System with Extreme Multi-stability and a Line of Equilibrium and Its Engineering Applications: Circuit Design and FPGA Implementation

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

Extreme multi-stability is a newly introduced property observed in nonlinear dynamical systems. Such systems have very rich dynamical solutions depending on both parameters and initial conditions. On the other hand, designing dynamical systems with special features related to their equilibria is of great interest. In this paper, a novel chaotic system with extreme multi-stability and a line of equilibrium is presented. Such systems are so infrequent. It also should be noted that this designed chaotic system belongs to the category of dynamical systems with hidden attractors. Complete dynamical properties of this new system are investigated. Also, by the assistance of FPGA and electronic circuit implementation, this system is implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdolmohammadi HR et al (2008) A bio-inspired evolutionary algorithm for combined heat and power economic dispatch problems. In: Iranian conf fuzzy intelli syst

  • Ahmadi A et al (2019) A new five dimensional multistable chaotic system with hidden attractors. In: Boubaker O, Jafari S (eds) Recent advances in chaotic systems and synchronization. Elsevier, Amsterdam, pp 77–87

    Google Scholar 

  • Akgul A et al (2016) Chaos-based engineering applications with a 3D chaotic system without equilibrium points. Nonlinear Dyn 84(2):481–495

    MathSciNet  Google Scholar 

  • Azzaz MS et al (2013) A new auto-switched chaotic system and its FPGA implementation. Commun Nonlinear Sci Numer Simul 18(7):1792–1804

    MathSciNet  MATH  Google Scholar 

  • Bao B et al (2016) Multistability in Chua’s circuit with two stable node-foci. Chaos Interdiscip J Nonlinear Sci 26(4):043111

    MathSciNet  Google Scholar 

  • Bao B et al (2018a) Three-dimensional memristive Hindmarsh–Rose neuron model with hidden coexisting asymmetric behaviors. Complexity 2018:3872573

    Google Scholar 

  • Bao H et al (2018b) Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria. Commun Nonlinear Sci Numer Simul 57:264–275

    MathSciNet  Google Scholar 

  • Barati K et al (2016) Simple chaotic flows with a curve of equilibria. Int J Bifurc Chaos 26(12):1630034

    MathSciNet  MATH  Google Scholar 

  • Boubaker O, Jafari S (2018) Recent advances in chaotic systems and synchronization: from theory to real world applications. Academic Press, Cambridge

    MATH  Google Scholar 

  • Danca M-F, Kuznetsov N (2017) Hidden chaotic sets in a Hopfield neural system. Chaos, Solitons Fractals 103:144–150

    MathSciNet  MATH  Google Scholar 

  • Danca M-F, Kuznetsov N, Chen G (2017) Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system. Nonlinear Dyn 88(1):791–805

    MathSciNet  Google Scholar 

  • Dudkowski D, Prasad A, Kapitaniak T (2017) Perpetual points: new tool for localization of coexisting attractors in dynamical systems. Int J Bifurc Chaos 27(04):1750063

    MathSciNet  MATH  Google Scholar 

  • Faghani Z et al (2018) Effects of different initial conditions on the emergence of chimera states. Chaos Solitons Fractals 114:306–311

    MathSciNet  MATH  Google Scholar 

  • He S et al (2018) Multivariate multiscale complexity analysis of self-reproducing chaotic systems. Entropy 20(8):556

    MathSciNet  Google Scholar 

  • Hilborn RC (2000) Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Jafari S et al (2016) Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dyn 86(2):1349–1358

    MathSciNet  Google Scholar 

  • Jafari S et al (2018) Twin birds inside and outside the cage. Chaos, Solitons Fractals 112:135–140

    MathSciNet  MATH  Google Scholar 

  • Jaros P, Kapitaniak T, Perlikowski P (2016) Multistability in nonlinearly coupled ring of Duffing systems. Eur Phys J Spec Top 225(13–14):2623–2634

    Google Scholar 

  • Karthikeyan A, Rajagopal K (2018) FPGA implementation of fractional-order discrete memristor chaotic system and its commensurate and incommensurate synchronisations. Pramana 90(1):14

    Google Scholar 

  • Kiseleva M, Kuznetsov N, Leonov G (2016) Hidden and self-excited attractors in electromechanical systems with and without equilibria. arXiv preprint arXiv:1601.06909

  • Kiseleva M et al (2018) Hidden and self-excited attractors in Chua circuit: synchronization and SPICE simulation. Int J Parallel Emergent Distrib Syst 33(5):513–523

    Google Scholar 

  • Koyuncu I, Ozcerit AT, Pehlivan I (2013) An analog circuit design and FPGA-based implementation of the Burke-Shaw chaotic system. Optoelectron Adv Mater Rapid Commun 7(9–10):635–638

    Google Scholar 

  • Kuznetsov N (2016) The Lyapunov dimension and its estimation via the Leonov method. Phys Lett A 380(25):2142–2149

    MathSciNet  MATH  Google Scholar 

  • Kuznetsov N, Mokaev T, Vasilyev P (2014) Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor. Commun Nonlinear Sci Numer Simul 19(4):1027–1034

    MathSciNet  Google Scholar 

  • Kuznetsov N, Leonov G, Mokaev T (2015) The Lyapunov dimension and its computation for self-excited and hidden attractors in the Glukhovsky–Dolzhansky fluid convection model. arXiv preprint arXiv:1509.09161

  • Kuznetsov N et al (2017) Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE. Commun Nonlinear Sci Numer Simul 51:39–49

    Google Scholar 

  • Kuznetsov N et al (2018) Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system. Nonlinear Dyn 92(2):267–285

    MATH  Google Scholar 

  • Lassoued A et al (2019) Experimental observations and circuit realization of a jerk chaotic system with piecewise nonlinear function. In: Boubaker O, Jafari S (eds) Recent advances in chaotic systems and synchronization. Elsevier, Amsterdam, pp 3–21

    Google Scholar 

  • Leonov GA, Kuznetsov NV (2007) Time-varying linearization and the Perron effects. Int J Bifurc Chaos 17(04):1079–1107

    MathSciNet  MATH  Google Scholar 

  • Leonov GA, Kuznetsov NV (2013) Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int J Bifurc Chaos 23(01):1330002

    MathSciNet  MATH  Google Scholar 

  • Leonov G, Kuznetsov N, Vagaitsev V (2012) Hidden attractor in smooth Chua systems. Physica D 241(18):1482–1486

    MathSciNet  MATH  Google Scholar 

  • Leonov G, Kuznetsov N, Mokaev T (2015) Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun Nonlinear Sci Numer Simul 28(1):166–174

    MathSciNet  Google Scholar 

  • Li C, Sprott JC (2014) Coexisting hidden attractors in a 4-D simplified Lorenz system. Int J Bifurc Chaos 24(03):1450034

    MathSciNet  MATH  Google Scholar 

  • Li C, Su K, Wu L (2013) Adaptive sliding mode control for synchronization of a fractional-order chaotic system. J Comput Nonlinear Dyn 8(3):031005

    Google Scholar 

  • Li C et al (2017a) Infinite multistability in a self-reproducing chaotic system. Int J Bifurc Chaos 27(10):1750160

    MathSciNet  MATH  Google Scholar 

  • Li Z et al (2017b) Realization of current-mode SC-CNN-based Chua’s circuit. AEU Int J Electron Commun 71:21–29

    Google Scholar 

  • Ma J et al (2018) Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor. PLoS ONE 13(1):e0191120

    Google Scholar 

  • Molaie M et al (2013) Simple chaotic flows with one stable equilibrium. Int J Bifurc Chaos 23(11):1350188

    MathSciNet  MATH  Google Scholar 

  • Panahi S et al (2019) A new four-dimensional chaotic system with no equilibrium point. In: Boubaker O, Jafari S (eds) Recent advances in chaotic systems and synchronization. Elsevier, Amsterdam, pp 63–76

    Google Scholar 

  • Pham V-T et al (2014) Is that really hidden? The presence of complex fixed-points in chaotic flows with no equilibria. Int J Bifurc Chaos 24(11):1450146

    MATH  Google Scholar 

  • Pisarchik AN, Feudel U (2014) Control of multistability. Phys Rep 540(4):167–218

    MathSciNet  MATH  Google Scholar 

  • Rajagopal K, Jafari S, Laarem G (2017a) Time-delayed chameleon: analysis, synchronization and FPGA implementation. Pramana 89(6):92

    Google Scholar 

  • Rajagopal K et al (2017b) Chaotic chameleon: dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses. Chaos Solitons Fractals 103:476–487

    MathSciNet  Google Scholar 

  • Rajagopal K et al (2018a) Fractional order synchronous reluctance motor: analysis, chaos control and FPGA implementation. Asian J Control 20:1979–1993

    MathSciNet  MATH  Google Scholar 

  • Rajagopal K et al (2018b) A hyperchaotic memristor oscillator with fuzzy based chaos control and LQR based chaos synchronization. AEU Int J Electron Commun 94:55–68

    Google Scholar 

  • Rajagopal K et al (2019) An exponential jerk system: circuit realization, fractional order and time delayed form with dynamical analysis and its engineering application. J Circuits Syst Comput 28(5):1950087

    Google Scholar 

  • Rostami Z et al (2018) Taking control of initiated propagating wave in a neuronal network using magnetic radiation. Appl Math Comput 338:141–151

    MathSciNet  MATH  Google Scholar 

  • Sadoudi S et al (2009) An FPGA real-time implementation of the Chen’s chaotic system for securing chaotic communications. Int J Nonlinear Sci 7(4):467–474

    MathSciNet  MATH  Google Scholar 

  • Shabestari PS et al (2018) A new chaotic model for glucose-insulin regulatory system. Chaos Solitons Fractals 112:44–51

    MathSciNet  Google Scholar 

  • Sharma P et al (2015a) Control of multistability in hidden attractors. Eur Phys J Spec Top 224(8):1485–1491

    Google Scholar 

  • Sharma PR et al (2015b) Controlling dynamics of hidden attractors. Int J Bifurc Chaos 25(04):1550061

    MathSciNet  MATH  Google Scholar 

  • Singh JP, Roy B (2018) Multistability and hidden chaotic attractors in a new simple 4-D chaotic system with chaotic 2-torus behaviour. Int J Dyn Control 6(2):529–538

    MathSciNet  Google Scholar 

  • Singh JP, Roy BK, Jafari S (2018) New family of 4-D hyperchaotic and chaotic systems with quadric surfaces of equilibria. Chaos Solitons Fractals 106:243–257

    MathSciNet  MATH  Google Scholar 

  • Sprott JC (2010) Elegant chaos: algebraically simple chaotic flows. World Scientific, Singapore

    MATH  Google Scholar 

  • Sprott JC et al (2017) Megastability: coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping. Eur Phys J Spec Top 226(9):1979–1985

    Google Scholar 

  • Stefanski A, Dabrowski A, Kapitaniak T (2005) Evaluation of the largest Lyapunov exponent in dynamical systems with time delay. Chaos Solitons Fractals 23(5):1651–1659

    MathSciNet  MATH  Google Scholar 

  • Tang Y-X, Khalaf AJM, Rajagopal K, Pham V-T, Jafari S, Tian Y (2018) A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors. Chin Phys B 27(4):040502

    Google Scholar 

  • Tlelo-Cuautle E et al (2016) Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs. Nonlinear Dyn 85(4):2143–2157

    MathSciNet  Google Scholar 

  • Tolba MF et al (2017) FPGA implementation of fractional-order integrator and differentiator based on Grünwald Letnikov’s definition. In: 2017 29th International Conference on Microelectronics (ICM). IEEE

  • Valli D et al (2014) Synchronization in coupled Ikeda delay systems. Eur Phys J Spec Top 223(8):1465–1479

    Google Scholar 

  • Wang G et al (2017) Coexisting oscillation and extreme multistability for a memcapacitor-based circuit. Math Probl Eng 2017:6504969

    MathSciNet  MATH  Google Scholar 

  • Wei Z (2011) Dynamical behaviors of a chaotic system with no equilibria. Phys Lett A 376(2):102–108

    MathSciNet  MATH  Google Scholar 

  • Wei Z et al (2018) A modified multistable chaotic oscillator. Int J Bifurc Chaos 28(07):1850085

    MathSciNet  MATH  Google Scholar 

  • Wolf A et al (1985) Determining Lyapunov exponents from a time series. Physica D 16(3):285–317

    MathSciNet  MATH  Google Scholar 

  • Xu Q et al (2016) Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solitons Fractals 83:186–200

    MathSciNet  MATH  Google Scholar 

  • Xu Q et al (2018) Crisis-induced coexisting multiple attractors in a second-order nonautonomous memristive diode bridge-based circuit. Int J Circuit Theory Appl 10:1917–1927

    Google Scholar 

  • Zhang J, Liao X (2017) Synchronization and chaos in coupled memristor-based FitzHugh-Nagumo circuits with memristor synapse. AEU Int J Electron Commun 75:82–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet-Thanh Pham.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, A., Rajagopal, K., Alsaadi, F.E. et al. A Novel 5D Chaotic System with Extreme Multi-stability and a Line of Equilibrium and Its Engineering Applications: Circuit Design and FPGA Implementation. Iran J Sci Technol Trans Electr Eng 44, 59–67 (2020). https://doi.org/10.1007/s40998-019-00223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-019-00223-5

Keywords

Navigation