Skip to main content
Log in

The many faces of data-centric workflow optimization: a survey

  • Review
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

Workflow technology is rapidly evolving and, rather than being limited to modeling the control flow in business processes, is becoming a key mechanism to perform advanced data management, such as big data analytics. This survey focuses on data-centric workflows (or workflows for data analytics or data flows), where a key aspect is data passing through and getting manipulated by a sequence of steps. The large volume and variety of data, the complexity of operations performed, and the long time such workflows take to compute give rise to the need for optimization. In general, data-centric workflow optimization is a technology in evolution. This survey focuses on techniques applicable to workflows comprising arbitrary types of data manipulation steps and semantic inter-dependencies between such steps. Further, it serves a twofold purpose: firstly, to present the main dimensions of the relevant optimization problems and the types of optimizations that occur before flow execution and secondly, to provide a concise overview of the existing approaches with a view to highlighting key observations and areas deserving more attention from the community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Hereafter, these three terms will be used interchangeably; the terms workflow and flow will be used interchangeably, too.

  2. The terms technique, proposal, and work will be used interchangeably.

  3. Through considering optimizations starting from a valid initial flow, we exclude from our survey the big area of answering queries in the presence of limited access patterns, in which, the main aim is to construct such an initial plan [69, 78] through selecting an appropriate subset of tasks from a given task pool; however, we have considered works from data integration that optimize the plan after it has been devised, such as [111] or [34], which is subsumed by Kougka and Gounaris [60].

  4. www.myexperiment.org/ in bio-informatics.

References

  1. IBM infosphere datastage balanced optimization. http://www-01.ibm.com/software/data/integration/info_server/ (2008). Accessed Jan 2018

  2. Abadi, D.J., Agrawal, R., Ailamaki, A., Balazinska, M., Bernstein, P.A., Carey, M.J., Chaudhuri, S., Dean, J., Doan, A., Franklin, M.J., Gehrke, J., Haas, L.M., Halevy, A.Y., Hellerstein, J.M., Ioannidis, Y.E., Jagadish, H.V., Kossmann, D., Madden, S., Mehrotra, S., Milo, T., Naughton, J.F., Ramakrishnan, R., Markl, V., Olston, C., Ooi, B.C., Ré, C., Suciu, D., Stonebraker, M., Walter, T., Widom, J.: The beckman report on database research. SIGMOD Rec. 43(3), 61–70 (2014)

    Article  Google Scholar 

  3. Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-constrained workflow scheduling algorithms for infrastructure as a service clouds. Future Gener. Comput. Syst. 29(1), 158–169 (2013)

    Article  Google Scholar 

  4. Abrishami, S., Naghibzadeh, M., Epema, D.H.J.: Cost-driven scheduling of grid workflows using partial critical paths. IEEE Trans. Parallel Distrib. Syst. 23(8), 1400–1414 (2012)

    Article  Google Scholar 

  5. Agrawal, K., Benoit, A., Dufossé, F., Robert, Y.: Mapping filtering streaming applications with communication costs. In: SPAA, pp. 19–28 (2009)

  6. Agrawal, K., Benoit, A., Dufossé, F., Robert, Y.: Mapping filtering streaming applications. Algorithmica 62(1–2), 258–308 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Agrawal, K., Benoit, A., Magnan, L., Robert, Y.: Scheduling algorithms for linear workflow optimization. In: IPDPS, pp. 1–12 (2010)

  8. Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J., Hueske, F., Heise, A., Kao, O., Leich, M., Leser, U., Markl, V., Naumann, F., Peters, M., Rheinländer, A., Sax, M.J., Schelter, S., Höger, M., Tzoumas, K., Warneke, D.: The stratosphere platform for big data analytics. VLDB J. 23(6), 939–964 (2014)

    Article  Google Scholar 

  9. Barker, A., van Hemert, J.I.: Scientific workflow: a survey and research directions. In: PPAM, Lecture Notes in Computer Science, vol. 4967, pp. 746–753 (2007)

  10. Benoit, A., Çatalyürek, U.V., Robert, Y., Saule, E.: A survey of pipelined workflow scheduling: models and algorithms. ACM Comput. Surv. 45(4), 50:1–50:36 (2013)

    Article  Google Scholar 

  11. Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for business processes. In: Handbook of Research on Business Process Modeling, Chapter 23, 503–531 (2009)

  12. Böhm, M.: Cost-based optimization of integration flows. Ph.D. thesis (2011)

  13. Böhm, M., Habich, D., Lehner, W.: On-demand re-optimization of integration flows. Inf. Syst. 45, 1–17 (2014)

    Article  Google Scholar 

  14. Böhm, M., Tatikonda, S., Reinwald, B., Sen, P., Tian, Y., Burdick, D., Vaithyanathan, S.: Hybrid parallelization strategies for large-scale machine learning in systemml. PVLDB 7(7), 553–564 (2014)

    Google Scholar 

  15. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of multi-domain queries on the web. PVLDB 1(1), 562–573 (2008)

    Google Scholar 

  16. Burge, J., Munagala, K., Srivastava, U.: Ordering pipelined query operators with precedence constraints. Technical Report 2005-40, Stanford InfoLab (2005)

  17. Calheiros, R.N., Buyya, R.: Meeting deadlines of scientific workflows in public clouds with tasks replication. IEEE Trans. Parallel Distrib. Syst. 25(7), 1787–1796 (2014)

    Article  Google Scholar 

  18. Chaudhuri, S.: An overview of query optimization in relational systems. In: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 1–3, 1998, Seattle, Washington, pp. 34–43 (1998)

  19. Chaudhuri, S., Dayal, U., Narasayya, V.: An overview of business intelligence technology. Commun. ACM 54, 88–98 (2011)

    Article  Google Scholar 

  20. Chaudhuri, S., Shim, K.: Optimization of queries with user-defined predicates. ACM Trans. Database Syst. 24(2), 177–228 (1999)

    Article  Google Scholar 

  21. Chen, W., Deelman, E.: Partitioning and scheduling workflows across multiple sites with storage constraints. In: Proceedings of the 9th International Conference on Parallel Processing and Applied Mathematics—Volume Part II, PPAM’11, pp. 11–20 (2012)

  22. Chen, W.N., Zhang, J.: An ant colony optimization approach to a grid workflow scheduling problem with various qos requirements. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 39(1), 29–43 (2009)

    Article  Google Scholar 

  23. Chirkin, A.M., Belloum, A., Kovalchuk, S.V., Makkes, M.X.: Execution time estimation for workflow scheduling. In: Proceedings of the 9th Workshop on Workflows in Support of Large-Scale Science, pp. 1–10. IEEE Press (2014)

  24. Cohen-Boulakia, S., Chen, J., Goble, C., Missier, P., Williams, A., Froidevaux, C.: Distilling structure in taverna scientific workflows: a refactoring approach. BMC Bioinformatics 15(1), S12 (2014)

    Article  Google Scholar 

  25. Crotty, A., Galakatos, A., Dursun, K., Kraska, T., Binnig, C., Çetintemel, U., Zdonik, S.: An architecture for compiling udf-centric workflows. PVLDB 8(12), 1466–1477 (2015)

    Google Scholar 

  26. Curcin, V., Ghanem, M.: Scientific workflow systems—can one size fit all? In: Biomedical Engineering Conference, 2008. CIBEC 2008. Cairo International, pp. 1–9 (2008)

  27. Dayal, U., Castellanos, M., Simitsis, A., Wilkinson, K.: Data integration flows for business intelligence. In: Proceedings of EDBT, pp. 1–11 (2009)

  28. de Oliveira, D., Ogasawara, E.S., Dias, J., Baio, F.A., Mattoso, M.: Ontology-based semi-automatic workflow composition. JIDM 3(1), 61–72 (2012)

    Google Scholar 

  29. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: an overview of workflow system features and capabilities. Future Gener. Comput. Syst. 25(5), 528–540 (2009)

    Article  Google Scholar 

  30. Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: a framework for mapping complex scientific workflows onto distributed systems. Sci. Program. 13(3), 219–237 (2005)

    Google Scholar 

  31. Deshpande, A., Hellerstein, L.: Parallel pipelined filter ordering with precedence constraints. ACM Trans. Algorithms 8(4), 41:1–41:38 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dong, F., Akl, S.G.: Scheduling algorithms for grid computing: state of the art and open problems. Technical report (2006)

  33. Fard, H., Prodan, R., Fahringer, T.: A truthful dynamic workflow scheduling mechanism for commercial multicloud environments. IEEE Trans. Parallel Distrib. Syst. 24(6), 1203–1212 (2013)

    Article  Google Scholar 

  34. Florescu, D., Levy, A., Manolescu, I., Suciu, D.: Query optimization in the presence of limited access patterns. In: ACM SIGMOD, pp. 311–322 (1999)

  35. Garcia-Molina, H., Ullman, J.D., Widom, J.D.: Database Systems: The Complete Book. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  36. Gounaris, A., Kougka, G., Tous, R., Tripiana, C., Torres, J.: Dynamic configuration of partitioning in spark applications. IEEE Trans. Parallel Distrib. Syst. (2017). https://doi.org/10.1109/TPDS.2017.2647939

    Google Scholar 

  37. Grehant, X., Demeure, I., Jarp, S.: A survey of task mapping on production grids. ACM Comput. Surv. 45(3), 37:1–37:25 (2013)

    Article  MATH  Google Scholar 

  38. Gu, Y., Wu, Q., Rao, N.S.V.: Analyzing execution dynamics of scientific workflows for latency minimization in resource sharing environments. In: Proceedings of the 2011 IEEE World Congress on Services, pp. 153–160 (2011)

  39. Halasipuram, R., Deshpande, P.M., Padmanabhan, S.: Determining essential statistics for cost based optimization of an ETL workflow. In: EDBT, pp. 307–318 (2014)

  40. Hellerstein, J.M.: Optimization techniques for queries with expensive methods. ACM Trans. Database Syst. 23(2), 113–157 (1998)

    Article  Google Scholar 

  41. Herodotou, H., Babu, S.: Profiling, what-if analysis, and cost-based optimization of mapreduce programs. PVLDB 4(11), 1111–1122 (2011)

    Google Scholar 

  42. Holl, S., Zimmermann, O., Hofmann-Apitius, M.: A new optimization phase for scientific workflow management systems. In: eScience, pp. 1–8 (2012)

  43. Holzinger, A., Stocker, C., Ofner, B., Prohaska, G., Brabenetz, A., Hofmann-Wellenhof, R.: Combining HCI, natural language processing, and knowledge discovery—potential of IBM content analytics as an assistive technology in the biomedical field. In: Human–Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data—Third International Workshop, HCI-KDD, pp. 13–24 (2013)

  44. Huang, B., Babu, S., Yang, J.: Cumulon: optimizing statistical data analysis in the cloud. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pp. 1–12 (2013)

  45. Huang, B., Böhm, M., Tian, Y., Reinwald, B., Tatikonda, S., Reiss, F.R.: Resource elasticity for large-scale machine learning. In: SIGMOD’15, pp. 137–152 (2015)

  46. Huang, B., Jarrett, N.W.D., Babu, S., Mukherjee, S., Yang, J.: Cümülön: Matrix-based data analytics in the cloud with spot instances. Proc. VLDB Endow. 9(3), 156–167 (2015)

    Article  Google Scholar 

  47. Hueske, F., Peters, M., Sax, M., Rheinländer, A., Bergmann, R., Krettek, A., Tzoumas, K.: Opening the black boxes in data flow optimization. PVLDB 5(11), 1256–1267 (2012)

    Google Scholar 

  48. Informatica: How to achieve flexible, cost-effective scalability and performance through pushdown processing. White Paper (2007)

  49. Ioannidis, Y.E.: Query optimization. ACM Comput. Surv. 28(1), 121–123 (1996)

    Article  Google Scholar 

  50. Jin, T., Zhang, F., Sun, Q., Bui, H., Parashar, M., Yu, H., Klasky, S., Podhorszki, N., Abbasi, H.: Using cross-layer adaptations for dynamic data management in large scale coupled scientific workflows. In: International Conference for High Performance Computing, Networking, Storage and Analysis, SC’13, p. 74 (2013)

  51. Jovanovic, P., Romero, O., Abelló, A.: A unified view of data-intensive flows in business intelligence systems: a survey. In: Transactions on Large-Scale Data- and Knowledge-Centered Systems XXIX, pp. 66–107. Springer, Berlin (2016)

  52. Jovanovic, P., Romero, O., Simitsis, A., Abell, A.: Incremental consolidation of data-intensive multi-flows. IEEE Trans. Knowl. Data Eng. 28(5), 1203–1216 (2016)

    Article  Google Scholar 

  53. Jovanovic, P., Simitsis, A., Wilkinson, K.: Babbleflow: a translator for analytic data flow programs. In: SIGMOD, pp. 713–716 (2014)

  54. Jovanovic, P., Simitsis, A., Wilkinson, K.: Engine independence for logical analytic flows. In: ICDE, pp. 1060–1071 (2014)

  55. Juve, G., Chervenak, A.L., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Characterizing and profiling scientific workflows. Future Gener. Comput. Syst. 29(3), 682–692 (2013)

    Article  Google Scholar 

  56. Karagiannis, A., Vassiliadis, P., Simitsis, A.: Scheduling strategies for efficient ETL execution. Inf. Syst. 38(6), 927–945 (2013)

    Article  Google Scholar 

  57. Kllapi, H., Sitaridi, E., Tsangaris, M.M., Ioannidis, Y.: Schedule optimization for data processing flows on the cloud. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, pp. 289–300 (2011)

  58. Kougka, G., Gounaris, A.: Declarative expression and optimization of data-intensive flows. In: DaWaK, pp. 13–25 (2013)

  59. Kougka, G., Gounaris, A.: Optimization of data-intensive flows: is it needed? is it solved? In: Proceedings of the 17th International Workshop on Data Warehousing and OLAP, DOLAP 2014, Shanghai, November 3–7, 2014, pp. 95–98 (2014)

  60. Kougka, G., Gounaris, A.: Cost optimization of data flows based on task re-ordering. In: LNCS Transactions on Large-Scale Data- and Knowledge-Centered Systems (2017, to appear)

  61. Kougka, G., Gounaris, A.: Optimal task ordering in chain data flows: exploring the practicality of non-scalable solutions. In: DaWaK (2017)

  62. Kougka, G., Gounaris, A., Leser, U.: Modeling data flow execution in a parallel environment. In: DaWaK (2017)

  63. Kougka, G., Gounaris, A., Tsichlas, K.: Practical algorithms for execution engine selection in data flows. Future Gener. Comput. Syst. 45, 133–148 (2015)

    Article  Google Scholar 

  64. Krishnamurthy, R., Boral, H., Zaniolo, C.: Optimization of nonrecursive queries. In: VLDB, pp. 128–137 (1986)

  65. Kumar, N., Kumar, P.S.: An efficient heuristic for logical optimization of ETL workflows. In: BIRTE, pp. 68–83 (2010)

  66. Kumar, V.S., Sadayappan, P., Mehta, G., Vahi, K., Deelman, E., Ratnakar, V., Kim, J., Gil, Y., Hall, M., Kurc, T., Saltz, J.: An integrated framework for parameter-based optimization of scientific workflows. In: HPDC, pp. 177–186 (2009)

  67. Kumbhare, A.G., Simmhan, Y., Prasanna, V.K.: Exploiting application dynamism and cloud elasticity for continuous dataflows. In: SC, p. 57 (2013)

  68. Kyriazis, D., Tserpes, K., Menychtas, A., Litke, A., Varvarigou, T.A.: An innovative workflow mapping mechanism for grids in the frame of quality of service. Future Gener. Comput. Syst. 24(6), 498–511 (2008)

    Article  Google Scholar 

  69. Li, C.: Computing complete answers to queries in the presence of limited access patterns. VLDB J. 12(3), 211–227 (2003)

    Article  Google Scholar 

  70. Lim, H., Herodotou, H., Babu, S.: Stubby: a transformation-based optimizer for mapreduce workflows. Proc. VLDB Endow. 5(11), 1196–1207 (2012)

    Article  Google Scholar 

  71. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific workflow management. J. Grid Comput. 13(4), 457–493 (2015)

    Article  Google Scholar 

  72. Liu, X., Iftikhar, N.: An ETL optimization framework using partitioning and parallelization. In: SAC’15 (2015)

  73. Nguyen, P., Hilario, M., Kalousis, A.: Using meta-mining to support data mining workflow planning and optimization. J. Artif. Intell. Res. 51, 605–644 (2014)

    Article  Google Scholar 

  74. Ogasawara, E.S., de Oliveira, D., Valduriez, P., Dias, J., Porto, F., Mattoso, M.: An algebraic approach for data-centric scientific workflows. PVLDB 4(12), 1328–1339 (2011)

    Google Scholar 

  75. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for data processing. In: SIGMOD Conference, pp. 1099–1110 (2008)

  76. Pietri, I., Juve, G., Deelman, E., Sakellariou, R.: A performance model to estimate execution time of scientific workflows on the cloud. In: Proceedings of the 9th Workshop on Workflows in Support of Large-Scale Science, pp. 11–19. IEEE Press (2014)

  77. Plankensteiner, K., Prodan, R.: Meeting soft deadlines in scientific workflows using resubmission impact. IEEE Trans. Parallel Distrib. Syst. 23(5), 890–901 (2012)

    Article  Google Scholar 

  78. Preda, N., Kasneci, G., Suchanek, F.M., Neumann, T., Yuan, W., Weikum, G.: Active knowledge: dynamically enriching RDF knowledge bases by web services. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapolis, IN, June 6–10, 2010, pp. 399–410 (2010)

  79. Quiroz, A., Huang, E., Ceriani, L.: A robust and extensible tool for data integration using data type models. In: Proceedings of the Twenty-Ninth AAAI, pp. 3993–3998 (2015)

  80. Rahman, M., Hassan, M.R., Ranjan, R., Buyya, R.: Adaptive workflow scheduling for dynamic grid and cloud computing environment. Concurr. Comput. Pract. Exp. 25(13), 1816–1842 (2013)

    Article  Google Scholar 

  81. Rheinländer, A., Heise, A., Hueske, F., Leser, U., Naumann, F.: SOFA: an extensible logical optimizer for udf-heavy data flows. Inf. Syst. 52, 96–125 (2015)

    Article  Google Scholar 

  82. Schikuta, E., Wanek, H., Ul Haq, I.: Grid workflow optimization regarding dynamically changing resources and conditions. Concurr. Comput. Pract. Exp. 20, 1837–1849 (2008)

    Article  Google Scholar 

  83. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path selection in a relational database management system. In: Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data, pp. 23–34 (1979)

  84. Shi, J., Zou, J., Lu, J., Cao, Z., Li, S., Wang, C.: MRTuner: a toolkit to enable holistic optimization for mapreduce jobs. Proc. VLDB Endow. 7(13), 1319–1330 (2014)

    Article  Google Scholar 

  85. Shivam, P., Babu, S., Chase, J.S.: Active and accelerated learning of cost models for optimizing scientific applications. In: VLDB, pp. 535–546 (2006)

  86. Simitsis, A., Vassiliadis, P., Dayal, U., Karagiannis, A., Tziovara, V.: Benchmarking ETL workflows. In: TPCTC 2009, 199–220 (2009)

  87. Simitsis, A., Vassiliadis, P., Sellis, T.K.: State-space optimization of ETL workflows. IEEE Trans. Knowl. Data Eng. 17(10), 1404–1419 (2005)

    Article  Google Scholar 

  88. Simitsis, A., Wilkinson, K.: Revisiting ETL benchmarking: the case for hybrid flows. In: TPCTC, pp. 75–91 (2012)

  89. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: QoX-driven ETL design: reducing the cost of ETL consulting engagements. In: Proceedings of the SIGMOD, pp. 953–960 (2009)

  90. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: Optimizing analytic data flows for multiple execution engines. In: SIGMOD Conference, pp. 829–840 (2012)

  91. Simitsis, A., Wilkinson, K., Dayal, U.: Hybrid analytic flows—the case for optimization. Fund. Inf. 128(3), 303–335 (2013)

    Google Scholar 

  92. Simitsis, A., Wilkinson, K., Dayal, U., Castellanos, M.: Optimizing ETL workflows for fault-tolerance. In: ICDE, pp. 385–396 (2010)

  93. Simitsis, A., Wilkinson, K., Dayal, U., Hsu, M.: HFMS: managing the lifecycle and complexity of hybrid analytic data flows. In: ICDE, pp. 1174–1185 (2013)

  94. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over web services. In: Proceedings of VLDB, pp. 355–366 (2006)

  95. Tan, W., Sun, Y., Lu, G., Tang, A., Cui, L.: Trust services-oriented multi-objects workflow scheduling model for cloud computing. In: ICPCA/SWS, pp. 617–630 (2012)

  96. Tao, F., Zhang, L., Laili, Y.: Configurable Intelligent Optimization Algorithm: Design and Practice in Manufacturing. Springer, New York, Incorporated (2014)

  97. Tsamoura, E., Gounaris, A., Manolopoulos, Y.: Brief announcement: on the quest of optimal service ordering in decentralized queries. In: Proceedings of the 29th Annual ACM Symposium on Principles of Distributed Computing, PODC 2010, Zurich, July 25–28, 2010, pp. 277–278 (2010)

  98. Tsamoura, E., Gounaris, A., Manolopoulos, Y.: Decentralized execution of linear workflows over web services. Future Gener. Comput. Syst. 27(3), 341–347 (2011)

    Article  Google Scholar 

  99. Tsamoura, E., Gounaris, A., Manolopoulos, Y.: Optimal service ordering in decentralized queries over web services. IJKBO 1(2), 1–16 (2011)

    Google Scholar 

  100. Tsamoura, E., Gounaris, A., Manolopoulos, Y.: Queries over web services. In: New Directions in Web Data Management, vol. 1, pp. 139–169 (2011)

  101. Tziovara, V., Vassiliadis, P., Simitsis, A.: Deciding the physical implementation of ETL workflows. In: Proceedings of the ACM 10th International Workshop on Data Warehousing and OLAP DOLAP, pp. 49–56 (2007)

  102. Varol, Y.L., Rotem, D.: An algorithm to generate all topological sorting arrangements. Comput. J. 24(1), 83–84 (1981)

    Article  MATH  Google Scholar 

  103. Vassiliadis, P.: A survey of extract–transform–load technology. IJDWM 5(3), 1–27 (2009)

    Google Scholar 

  104. Vassiliadis, P., Simitsis, A., Baikousi, E.: A taxonomy of ETL activities. In: DOLAP 2009, ACM 12th International Workshop on Data Warehousing and OLAP, Hong Kong, November 6, 2009, Proceedings, pp. 25–32 (2009)

  105. vom Brocke, J., Sonnenberg, C.: Business process management and business process analysis. In: Information Systems and Information Technology. Computing Handbook, 3rd edn., pp. 26: 1–31 (2014)

  106. Vrhovnik, M., Schwarz, H., Radeschütz, S., Mitschang, B.: An overview of SQL support in workflow products. In: Proceedings of ICDE, pp. 1287–1296 (2008)

  107. Vrhovnik, M., Schwarz, H., Suhre, O., Mitschang, B., Markl, V., Maier, A., Kraft, T.: An approach to optimize data processing in business processes. In: VLDB, pp. 615–626 (2007)

  108. Vu, L.H., Hauswirth, M., Aberer, K.: Qos-based service selection and ranking with trust and reputation management. In: Proceedings of the Cooperative Information System Conference (CoopIS05, pp. 466–483 (2005)

  109. Whrer, A., Brezany, P., Janciak, I., Mehofer, E.: Modeling and optimizing large-scale data flows. Future Gener. Comput. Syst. 31, 12–27 (2014)

    Article  Google Scholar 

  110. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, EASE’14, pp. 38:1–38:10 (2014)

  111. Yerneni, R., Li, C., Ullman, J.D., Garcia-Molina, H.: Optimizing large join queries in mediation systems. In: ICDT, pp. 348–364 (1999)

  112. Zeng, L., Veeravalli, B., Zomaya, A.Y.: An integrated task computation and data management scheduling strategy for workflow applications in cloud environments. J. Netw. Comput. Appl. 50, 39–48 (2015)

    Article  Google Scholar 

  113. Zhou, A.C., He, B., Liu, C.: Monetary cost optimizations for hosting workflow-as-a-service in IaaS clouds. IEEE Trans. Cloud Comput. 4(1), 34–48 (2016)

    Article  Google Scholar 

  114. Zinn, D., Bowers, S., McPhillips, T., Ludäscher, B.: Scientific workflow design with data assembly lines. In: Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science, pp. 14:1–14:10 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Gounaris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kougka, G., Gounaris, A. & Simitsis, A. The many faces of data-centric workflow optimization: a survey. Int J Data Sci Anal 6, 81–107 (2018). https://doi.org/10.1007/s41060-018-0107-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41060-018-0107-0

Keywords

Navigation