Skip to main content
Log in

Waste Printed Circuit Board (PCB) Recycling Techniques

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

With the development of technologies and the change of consumer attitudes, the amount of waste electrical and electronic equipment (WEEE) is increasing annually. As the core part of WEEE, the waste printed circuit board (WPCB) is a dangerous waste but at the same time a rich resource for various kinds of materials. In this work, various WPCB treatment methods as well as WPCB recycling techniques divided into direct treatment (landfill and incineration), primitive recycling technology (pyrometallurgy, hydrometallurgy, biometallurgy and primitive full recovery of NMF-non metallic fraction), and advanced recycling technology (mechanical separation, direct use and modification of NMF) are reviewed and analyzed based on their advantages and disadvantages. Also, the evaluation criteria are discussed including economic, environmental, and gate-to-market ability. This review indicates the future research direction of WPCB recycling should focus on a combination of several techniques or in series recycling to maximize the benefits of process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

EEE:

Electrical and electronic equipment

WEEE:

Waste electrical and electronic equipment

PCB:

Printed circuit board

WPCB:

Waste printed circuit board

MF:

Metallic fraction of printed circuit board or waste printed circuit board

NMF:

Non-metallic fraction of printed circuit board or waste printed circuit board

References

  1. Gu Y, Wu Y, Xu M, Mu X, Zuo T (2016) Waste electrical and electronic equipment (WEEE) recycling for a sustainable resource supply in the electronics industry in China. J Clean Prod 127:331–338

    Article  Google Scholar 

  2. Williams PT (2010) Valorization of printed circuit boards from waste electrical and electronic equipment by pyrolysis. Waste Biomass Valorization 1:107–120

    Article  CAS  Google Scholar 

  3. Hadi P, Ning C, Ouyang W, Lin SK, Hui CW, Mckay G (2014) Conversion of an aluminosilicate-based waste material to high-value efficient adsorbent. Chem Eng J 256:415–420

    Article  CAS  Google Scholar 

  4. Lee CH, Chang SL, Wang KM, Wen LC (2000) Management of scrap computer recycling in Taiwan. J Hazard Mater 73:209–220

    Article  CAS  Google Scholar 

  5. Flandinet L, Tedjar F, Ghetta V, Fouletier J (2012) Metals recovering from waste printed circuit boards (WPCBs) using molten salts. J Hazard Mater 213–214:485–490

    Article  CAS  Google Scholar 

  6. Quan C, Li A, Gao N (2013) Combustion and pyrolysis of electronic waste: thermogravimetric analysis and kinetic model. Procedia Environ Sci 18:776–782

    Article  CAS  Google Scholar 

  7. Draft proposal for a European parliament and council directive on waste electric and electronic equipment. Brussels

  8. Ghosh B, Ghosh MK, Parhi P, Mukherjee PS, Mishra BK (2015) Waste printed circuit boards recycling: an extensive assessment of current status. J Clean Prod 94:5–19

    Article  CAS  Google Scholar 

  9. He Y, Xu Z (2014) The status and development of treatment techniques of typical waste electrical and electronic equipment in China: a review. Waste Manag Res 32:254–269

    Article  CAS  Google Scholar 

  10. Kumari A, Kumari A, Jha MK, Kumar V, Singh RP, Yoo K (2014) Copper recovery from small devices populated on waste printed circuit boards. J Metall Mater Sci 56:41–51

    CAS  Google Scholar 

  11. Zeng X, Zheng L, Xie H, Lu B, Xia K, Chao K, Li W, Yang J, Lin S, Li J (2012) Current status and future perspective of waste printed circuit boards recycling. Procedia Environ Sci 16:590–597

    Article  Google Scholar 

  12. Das A, Vidyadhar A, Mehrotra SP (2009) A novel flowsheet for the recovery of metal values from waste printed circuit boards. Resour Conserv Recycl 53:464–469

    Article  Google Scholar 

  13. Hadi P, Ning C, Ouyang W, Xu M, Lin SK, McKay G (2014) Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor. Waste Manag 35:236–246

    Article  Google Scholar 

  14. Akcil A, Erust C, Gahan CS, Ozgun M, Sahin M, Tuncuk A (2015) Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants—a review. Waste Manag 45:258–271

    Article  CAS  Google Scholar 

  15. De Marco I, Caballero BM, Chomôn MJ, Laresgoiti MF, Torres A, Fernández G, Arnaiz S (2008) Pyrolysis of electrical and electronic wastes. J Anal Appl Pyrolysis 82:179–183

    Article  CAS  Google Scholar 

  16. Jie G, Ying-Shun L, Mai-Xi L (2008) Product characterization of waste printed circuit board by pyrolysis. J Anal Appl Pyrolysis 83:185–189

    Article  CAS  Google Scholar 

  17. Marsanich K, Zanelli S, Barontini F, Cozzani V (2004) Evaporation and thermal degradation of tetrabromobisphenol A above the melting point. Thermochim Acta 421:95–103

    Article  CAS  Google Scholar 

  18. Luda MP, Balabanovich AI, Hornung A, Camino G (2003) Thermal degradation of a brominated bisphenol a derivative. Polym Adv Technol 14:741–748

    Article  CAS  Google Scholar 

  19. Li J, Lu H, Liu S, Xu Z (2008) Optimizing the operating parameters of corona electrostatic separation for recycling waste scraped printed circuit boards by computer simulation of electric field. J Hazard Mater 153:269–275

    Article  CAS  Google Scholar 

  20. Insititute of scrap recycling industries Inc. (2003) Scrap recycling: where tomorrow begins. Washington DC, USA

  21. La Brooy SR, Linge HG, Walker GS (1994) Review of gold extraction from ores. Miner Eng 7:1213–1241

    Article  Google Scholar 

  22. Heath JA, Jeffrey MI, Zhang HG, Rumball JA (2008) Anaerobic thiosulfate leaching: development of in situ gold leaching systems. Miner Eng 21:424–433

    Article  CAS  Google Scholar 

  23. Yen W T XC (2008) Effects of copper minerals on ammionical thiosulfate leaching of gold. Proceeding XX IV Int. Miner. Process. Congr.

  24. Ilyas S, Anwar MA, Niazi SB, Afzal Ghauri M (2007) Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 88:180–188

    Article  CAS  Google Scholar 

  25. Faramarzi MA, Stagars M, Pensini E et al (2004) Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J Biotechnol 113:321–326

    Article  CAS  Google Scholar 

  26. Choi M-S, Cho K-S, Kim D-JD-S, Kim D-JD-S (2004) Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans. J Environ Sci Heal Part A- Toxic/Hazardous Subst Environ Eng 39:2973–2982

    Article  Google Scholar 

  27. Duan C, Sheng C, Wu L, Zhao Y, He J, Zhou E (2014) Separation and recovery of fine particles from waste circuit boards using an inflatable tapered diameter separation bed. Sci World

  28. Shapiro M, Galperin V (2005) Air classification of solid particles: a review. Chem Eng Process Process Intensif 44:279–285

    Article  CAS  Google Scholar 

  29. RI S (1996) Recycling and resources recovery engineering. Springer, Berlin

  30. Li J, Xu Z, Zhou Y (2007) Application of corona discharge and electrostatic force to separate metals and nonmetals from crushed particles of waste printed circuit boards. J Electrostat 65:233–238

    Article  CAS  Google Scholar 

  31. Guo J, Cao B, Guo J, Xu Z (2008) A plate produced by nonmetallic materials of pulverized waste printed circuit boards. Environ Sci Technol 42:5267–5271

    Article  CAS  Google Scholar 

  32. Guo J, Guo J, Cao B, Tang Y, Xu Z (2009) Manufacturing process of reproduction plate by nonmetallic materials reclaimed from pulverized printed circuit boards. J Hazard Mater 163:1019–1025

    Article  CAS  Google Scholar 

  33. Yokoyama S, Iji M (1995) Recycling of thermosetting plastic waste from electronic component production processes. In: Proceedings 1995 IEEE Int. Symp., pp 132–137

  34. Mou P, Xiang DDG (2007) Products made from nonmetallic materials reclaimed from waste printed circuit boards. Tsinghua Sci Technol 12:276–283

    Article  Google Scholar 

  35. Ban BC, Song JY, Lim JY, Wang SK, An KG, Kim DS (2005) Studies on the reuse of waste printed circuit board as an additive for cement mortar. J Env Sci Heal A Tox Hazard Subst Env Eng 40:645–656

    Article  CAS  Google Scholar 

  36. Goosey M, Kellner R (2003) Recycling technologies for the treatment of end of life printed circuit boards (PCBs). Circuit World 29:33–37

    Article  CAS  Google Scholar 

  37. Hadi P, Ning C, Ouyang W, Lin SK, Hui CW, McKay G (2014) Conversion of an aluminosilicate-based waste material to high-value efficient adsorbent. Chem Eng J 256:415–420

    Article  CAS  Google Scholar 

  38. Hu SH, Wu JY, Yen FS, Tsai MS (2006) Alkaline leaching of printed circuit board sludge. Environ Prog 25:243–250

    Article  CAS  Google Scholar 

  39. Cui J, Forssberg E (2003) Mechanical recycling of waste electric and electronic equipment: a review. J Hazard Mater 99:243–263

    Article  CAS  Google Scholar 

  40. Huang K, Guo J, Xu Z (2009) Recycling of waste printed circuit boards: a review of current technologies and treatment status in China. J Hazard Mater 164:399–408

    Article  CAS  Google Scholar 

  41. Hall WJ, Williams PT (2007) Separation and recovery of materials from scrap printed circuit boards. Resour Conserv Recycl 51:691–709

    Article  Google Scholar 

  42. Yamane LH, de Moraes VT, Espinosa DCR, Tenório JAS (2011) Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers. Waste Manag 31:2553–2558

    Article  CAS  Google Scholar 

  43. Hadi P, Xu M, Lin CSK, Hui CW, McKay G (2015) Waste printed circuit board recycling techniques and product utilization. J Hazard Mater 283:234–243

    Article  CAS  Google Scholar 

  44. Menad N, Björkman B, Allain EG (1998) Combustion of plastics contained in electric and electronic scrap. Resour Conserv Recycl 24:65–85

    Article  Google Scholar 

  45. Malhotra SC (1985) Trends and opportunities in electronic scrap reclamation. Conserv Recycl 8:327–333

    Article  Google Scholar 

  46. Vijayaram R, Nesakumar D, Chandramohan K (2013) Copper extraction from the discarded printed circuit boards by leaching. Res J Eng Sci 2:11–14

    Google Scholar 

  47. Jha MK, Kumari A, Choubey PK, Lee JC, Kumar V, Jeong J (2012) Leaching of lead from solder material of waste printed circuit boards (PCBs). Hydrometallurgy 121–124:28–34

    Article  CAS  Google Scholar 

  48. Chancerel P, Rotter S (2009) Recycling-oriented characterization of small waste electrical and electronic equipment. Waste Manag 29:2336–2352

    Article  CAS  Google Scholar 

  49. Zhou Y, Qiu K (2010) A new technology for recycling materials from waste printed circuit boards. J Hazard Mater 175:823–828

    Article  CAS  Google Scholar 

  50. Park YJ, Fray DJ (2009) Recovery of high purity precious metals from printed circuit boards. J Hazard Mater 164:1152–1158

    Article  CAS  Google Scholar 

  51. Evangelopoulos P, Kantarelis E, Yang W (2015) Investigation of the thermal decomposition of printed circuit boards (PCBs) via thermogravimetric analysis (TGA) and analytical pyrolysis (Py-GC/MS). J Anal Appl Pyrolysis 115:337–343

    Article  CAS  Google Scholar 

  52. Fogarasi S, Imre-Lucaci F (2014) Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation. J Hazard Mater 273:215–221

    Article  CAS  Google Scholar 

  53. Behnamfard A, Salarirad MM, Veglio F (2013) Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Manag 33:2354–2363

    Article  CAS  Google Scholar 

  54. Silvas FPC, Jiménez Correa MM, Caldas MPK, Moraes VT, Espinosa DCR, Tenório JAS (2015) Printed circuit board recycling: physical processing and copper extraction by selective leaching. Waste Manag 46:503–510

    Article  CAS  Google Scholar 

  55. Xing M, Zhang FS (2013) Degradation of brominated epoxy resin and metal recovery from waste printed circuit boards through batch sub/supercritical water treatments. Chem Eng J 219:131–136

    Article  CAS  Google Scholar 

  56. Calgaro CO, Schlemmer DF, da Silva MDCR et al (2015) Fast copper extraction from printed circuit boards using supercritical carbon dioxide. Waste Manag 45:289–297

    Article  CAS  Google Scholar 

  57. He W, Li G, Ma X, Wang H, Huang J, Xu M, Huang C (2006) WEEE recovery strategies and the WEEE treatment status in China. J Hazard Mater 136:502–512

    Article  CAS  Google Scholar 

  58. Yoo JM, Jeong J, Yoo K, Lee JC, Kim W (2009) Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill. Waste Manag 29:1132–1137

    Article  CAS  Google Scholar 

  59. Hadi P, Ning C, Kubicki JD, Mueller K, Fagan JW, Luo ZT, Weng LT, McKay G (2016) Sustainable development of a surface-functionalized mesoporous aluminosilicate with ultra-high ion exchange efficiency. Inorg Chem Front 3:502–513

    Article  CAS  Google Scholar 

  60. Li J, Duan H, Yu K, Liu L, Wang S (2010) Characteristic of low-temperature pyrolysis of printed circuit boards subjected to various atmosphere. Resour Conserv Recycl 54:810–815

    Article  Google Scholar 

  61. Hoffmann JE (1992) Recovering precious metals from electronic scrap. J Miner Met Mater Soc 44:43–48

    Article  CAS  Google Scholar 

  62. Kopacek B, Kopacek P (2015) Extracting rare materials from electr(on)ic scrap. IFAC-PapersOnLine 48:157–161

    Article  Google Scholar 

  63. Lindberg SE, Wallschläger D, Prestbo EM, Bloom NS, Price J, Reinhart D (2001) Methylated mercury species in municipal waste landfill gas sampled in Florida, USA. Atmos Environ 35:4011–4015

    Article  CAS  Google Scholar 

  64. Spalvins E, Dubey B, Townsend T (2008) Impact of electronic waste disposal on lead concentrations in landfill leachate. Environ Sci Technol 42:7452–7458

    Article  CAS  Google Scholar 

  65. Osako M, Kim YJ, Sakai SI (2004) Leaching of brominated flame retardants in leachate from landfills in Japan. Chemosphere 57:1571–1579

    Article  CAS  Google Scholar 

  66. Wong CSC, Wu SC, Duzgoren-Aydin NS, Aydin A, Wong MH (2007) Trace metal contamination of sediments in an e-waste processing village in China. Environ Pollut 145:434–442

    Article  CAS  Google Scholar 

  67. Kang HY, Schoenung JM (2005) Electronic waste recycling: a review of US infrastructure and technology options. Resour Conserv Recycl 45:368–400

    Article  Google Scholar 

  68. Kang HY, Schoenung JM (2006) Economic analysis of electronic waste recycling: modeling the cost and revenue of a materials recovery facility in California. Environ Sci Technol 40:1672–1680

    Article  CAS  Google Scholar 

  69. Davis G, Herat S (2008) Electronic waste: the local government perspective in Queensland, Australia. Resour Conserv Recycl 52:1031–1039

    Article  Google Scholar 

  70. Tanskanen P (2013) Management and recycling of electronic waste. Acta Mater 61:1001–1011

    Article  CAS  Google Scholar 

  71. USEPA (US (2007) Management of Electronic Waste in the United States

  72. Guo J, Guo J, Xu Z (2009) Recycling of non-metallic fractions from waste printed circuit boards: a review. J Hazard Mater 168:567–590

    Article  CAS  Google Scholar 

  73. Komilis D, Evangelou A, Giannakis G, Lymperis C (2012) Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes. Waste Manag 32:372–381

    Article  CAS  Google Scholar 

  74. Oguchi M, Sakanakura H, Terazono A (2013) Toxic metals in WEEE: characterization and substance flow analysis in waste treatment processes. Sci Total Environ 463–464:1124–1132

    Article  CAS  Google Scholar 

  75. Tange L, Drohmann D (2005) Waste electrical and electronic equipment plastics with brominated flame retardants—from legislation to separate treatment—thermal processes. Polym Degrad Stab 88:35–40

    Article  CAS  Google Scholar 

  76. Long YY, Feng YJ, Cai SS, Ding WX, Shen DS (2013) Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling. J Hazard Mater 261:427–434

    Article  CAS  Google Scholar 

  77. Duan H, Li J, Liu Y, Yamazaki N, Jiang W (2011) Characterization and inventory of PCDD/Fs and PBDD/Fs emissions from the incineration of waste printed circuit board. Environ Sci Technol 45:6322–6328

    Article  CAS  Google Scholar 

  78. Sakai SI, Watanabe J, Honda Y, Takasuki H, Aoki I, Futamatsu M, Shiozaki K (2001) Combustion of brominated flame retardants and behavior of its byproducts. Chemosphere 42:519–531

    Article  CAS  Google Scholar 

  79. Ni M, Xiao H, Chi Y, Yan J, Buekens A (2012) Combustion and inorganic bromine emission of waste printed circuit boards in a high temperature furnace. Waste Manag 32:568–574

    Article  CAS  Google Scholar 

  80. Oguchi M, Sakanakura H, Terazono A, Takigami H (2012) Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process. Waste Manag 32:96–103

    Article  CAS  Google Scholar 

  81. Bidini G, Fantozzi F, Bartocci P, D’Alessandro B, D’Amico M, Laranci P, Scozza E, Zagaroli M (2015) Recovery of precious metals from scrap printed circuit boards through pyrolysis. J Anal Appl Pyrolysis 111:140–147

    Article  CAS  Google Scholar 

  82. Yang X, Sun L, Xiang J, Hu S, Su S (2013) Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review. Waste Manag 33:462–473

    Article  CAS  Google Scholar 

  83. Ortuño N, Conesa JA, Moltó J, Font R (2014) Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal. Sci Total Environ 499:27–35

    Article  CAS  Google Scholar 

  84. Barontini F, Marsanich K, Petarca L, Cozzani V (2004) The thermal degradation process of tetrabromobisphenol A. Ind Eng Chem Res 43:1952–1961

    Article  CAS  Google Scholar 

  85. Barontini F, Cozzani V, Marsanich K, Raffa V, Petarca L (2004) An experimental investigation of tetrabromobisphenol A decomposition pathways. J Anal Appl Pyrolysis 72:41–53

    Article  CAS  Google Scholar 

  86. Lai YC, Lee WJ, Li HW, Wang LC, Ping G, Chien C (2007) Inhibition of polybrominated dibenzo-p-dioxin and dibenzofuran formation from the pyrolysis of printed circuit boards. Environ Sci Technol 41:957–962

    Article  CAS  Google Scholar 

  87. Kim YM, Han TU, Watanabe C, Teramae N, Park YK, Kim S, Hwang B (2015) Analytical pyrolysis of waste paper laminated phenolic-printed circuit board (PLP-PCB). J Anal Appl Pyrolysis 115:87–95

    Article  CAS  Google Scholar 

  88. Kumari A, Jha MK, Lee JC, Singh RP (2016) Clean process for recovery of metals and recycling of acid from the leach liquor of PCBs. J Clean Prod 112:4826–4834

    Article  CAS  Google Scholar 

  89. Terakado O, Ohhashi R, Hirasawa M (2013) Bromine fixation by metal oxide in pyrolysis of printed circuit board containing brominated flame retardant. J Anal Appl Pyrolysis 103:216–221

    Article  CAS  Google Scholar 

  90. Guo X, Qin FGF, Yang X, Jiang R (2014) Study on low-temperature pyrolysis of large-size printed circuit boards. J Anal Appl Pyrolysis 105:151–156

    Article  CAS  Google Scholar 

  91. Cayumil R, Khanna R, Rajarao R, Mukherjee PS, Sahajwalla V (2015) Concentration of precious metals during their recovery from electronic waste. Waste Manag 57:121–130

    Article  CAS  Google Scholar 

  92. Benallal B, Roy C, Pakdel H, Chabot S, Poirier MA (1995) Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tyres. Comparison with petroleum naphtha. Fuel 74:1589–1594

    Article  CAS  Google Scholar 

  93. Long L, Sun S, Zhong S, Dai WC, Liu JY, Song WF (2010) Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards. J Hazard Mater 177:626–632

    Article  CAS  Google Scholar 

  94. Wu W, Qiu K (2015) Vacuum co-pyrolysis of Chinese fir sawdust and waste printed circuit boards. Part II: influence of heating conditions. J Anal Appl Pyrolysis 111:216–223

    Article  CAS  Google Scholar 

  95. Zhou Y, Wu W, Qiu K (2010) Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation. Waste Manag 30:2299–2304

    Article  CAS  Google Scholar 

  96. Mitan NMM, Bhaskar T, Hall WJ, Muto A, Williams PT (2008) Effect of decabromodiphenyl ether and antimony trioxide on controlled pyrolysis of high-impact polystyrene mixed with polyolefins. Chemosphere 72:1073–1079

    Article  CAS  Google Scholar 

  97. Havlik T, Orac D, Petranikova M, Miskufova A (2011) Hydrometallurgical treatment of used printed circuit boards after thermal treatment. Waste Manag 31:1542–1546

    Article  CAS  Google Scholar 

  98. Liu JY, Duan NYHY (2010) Study on the metals dissolving from waste printed circuit boards by using nitric acid as leaching liquor. Environ Pollut Control 12:35–38

    Google Scholar 

  99. Jun W, Liang C, Lijuan LQ (2008) Study on selectively leaching gold from waste printed circuit boards with thiourea. Gold 6:17

    Google Scholar 

  100. Kinoshita T, Akita S, Kobayashi N, Nii S, Kwaizumi F, Takahashi K (2003) Metal recovery from non-mounted printed wiring boards via hydrometallurgical processing. Hydrometallurgy 69:73–79

    Article  CAS  Google Scholar 

  101. Qiu KQ, Gu HCS (2008) Characteristics of metals resources and status of hydrometallurgical processes for recycling metals from waste printed circuit boards. Chinese J Nonferrous Met 18:s381–s385

    Article  Google Scholar 

  102. Mankhand TR, Singh KK, Gupta SK, Das S (2013) Pyrolysis of printed circuit boards. Int J Metall Eng 1:102–107

    Google Scholar 

  103. Mecucci A, Scott K (2002) Leaching and electrochemical recovery of copper, lead and tin from scrap printed circuit boards. J Chem Technol Biotechnol 77:449–457

    Article  CAS  Google Scholar 

  104. Sheng PP, Etsell TH (2007) Recovery of gold from computer circuit board scrap using aqua regia. Waste Manag Res 25:380–383

    Article  CAS  Google Scholar 

  105. Chmielewski AG, Urbański TS, Migdał W (1997) Separation technologies for metals recovery from industrial wastes. Hydrometallurgy 45:333–344

    Article  CAS  Google Scholar 

  106. Zhou QFZW (2003) Recovery of gold from waste computer and its accessories. China Resour Compr Util 7:31–35

    Google Scholar 

  107. Quinet P, Proost J, Lierde A Van (2005) Minerals and Metallurgical Processing, 22 (1):17. 994740

  108. Becker E, Knothe MLJ (1983) Gold recovery from non-metallic secondary raw materials by leaching with thiourea and adsorption on ion exchangers. Hydrometallurgy 3:265–275

    Article  Google Scholar 

  109. Xu XL LJ (2011) Experimental study of thiourea leaching gold and silver from waste circuit boards. J Qingdao Univ (E&T), 69–73

  110. Moore DM, Zhang XR, Li CX. (2005) Using thiosulfate as a leach reagents instead of cyanide. Met Ore Dress Abroad 5–12

  111. Ha VH, Lee J, Jeong J, Hai HT, Jha MK (2010) Thiosulfate leaching of gold from waste mobile phones. J Hazard Mater 178:1115–1119

    Article  CAS  Google Scholar 

  112. Abbruzzese C, Fornari P, Massidda R, Vegliò F, Ubaldini S (1995) Thiosulphate leaching for gold hydrometallurgy. Hydrometallurgy 39:265–276

    Article  CAS  Google Scholar 

  113. Xu Q, Chen DH, Chen L, Huang M (2010) Gold leaching from waste printed circuit board by iodine process. Nonferrous Met. 3:335–343

    Google Scholar 

  114. Birloaga I, De Michelis I, Ferella F, Buzatu M, Vegliò F (2013) Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery. Waste Manag 33:935–941

    Article  CAS  Google Scholar 

  115. Devecci H. (2010) Extraction of copper from scrap TV boards by sulphuric acid leaching under oxidising conditions. In: GOING GREEN-CARE Innov. 2010 Conf. Vienna, p 45

  116. Kumari A, Jha MK, Singh RP (2015) Recovery of metals from pyrolysed PCBs by hydrometallurgical techniques. Hydrometallurgy 165:97–105

    Article  CAS  Google Scholar 

  117. Havlik T, Orac D, Petranikova M, Miskufova A, Kukurugya F, Takacova Z (2010) Leaching of copper and tin from used printed circuit boards after thermal treatment. J Hazard Mater 183:866–873

    Article  CAS  Google Scholar 

  118. Kim EY, Kim MS, Lee JC, Pandey BD (2011) Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. J Hazard Mater 198:206–215

    Article  CAS  Google Scholar 

  119. Ehrlich HL (2001) Past, present and future of biohydrometallurgy. Hydrometallurgy 59:127–134

    Article  CAS  Google Scholar 

  120. Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604

    Article  CAS  Google Scholar 

  121. Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  CAS  Google Scholar 

  122. Morris PJ, Quensen JF, Tiedje JM, Boyd SA (1992) Reductive debromination of the commercial polybrominated biphenyl mixture Firemaster BP6 by anaerobic microorganisms from sediments. Appl Environ Microbiol 58:3249–3256

    CAS  Google Scholar 

  123. Liang G, Tang J, Liu W, Zhou Q (2013) Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). J Hazard Mater 250–251:238–245

    Article  CAS  Google Scholar 

  124. Ilyas S, Ruan C, Bhatti HN, Ghauri MH, Anwar MH (2010) Column bioleaching of metals from electronic scrap. Hydrometallurgy 101:135–140

    Article  CAS  Google Scholar 

  125. Yang T, Xu Z, Wen J, Yang L (2009) Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 97:29–32

    Article  CAS  Google Scholar 

  126. Yen-Peng Ting, Chi Chong Tan VAP (2008) Cyanide-generating bacteria for gold recovery from electronic scrap material. J Biotechnol 136:S653–S654

    Google Scholar 

  127. Marhual NP, Pradhan N, Kar RN, Sukla LB, Mishra BK (2008) Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample. Bioresour Technol 99:8331–8336

    Article  CAS  Google Scholar 

  128. Sampson MI, Phillips CV (2001) Influence of base metals on the oxidizing ability of acidophilic bacteria during the oxidation of ferrous sulfate and mineral sulfide concentrates, using mesophiles and moderate thermophiles. Miner Eng 14:317–340

    Article  CAS  Google Scholar 

  129. Brandl H, Bosshard R, Wegmann M (1999) Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Process Metall 9:569–576

    Article  Google Scholar 

  130. Zhu N, Xiang Y, Zhang T, Wu P, Dang Z, Li P, Wu J (2011) Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria. J Hazard Mater 192:614–619

    Article  CAS  Google Scholar 

  131. Search H, Journals C, Contact A, DC Arc Plasma Disposal of Printed Circuit Board * System of the DC arc plasma disposal of solid waste. 2423

  132. Liu K, Zhang Z, Zhang F-S (2016) Advanced degradation of brominated epoxy resin and simultaneous transformation of glass fiber from waste printed circuit boards by improved supercritical water oxidation processes. Waste Manag 56:423–430

    Article  CAS  Google Scholar 

  133. Wang H, Hirahara M, Goto M, Hirose T (2004) Extraction of flame retardants from electronic printed circuit board by supercritical carbon dioxide. J Supercrit Fluids 29:251–256

    Article  CAS  Google Scholar 

  134. Xiu FR, Zhang FS (2010) Materials recovery from waste printed circuit boards by supercritical methanol. J Hazard Mater 178:628–634

    Article  CAS  Google Scholar 

  135. Xiu F-R, Weng H, Qi Y, Yu G, Zhang Z, Zhang FS (2016) A novel reutilization method for waste printed circuit boards as flame retardant and smoke suppressant for poly (vinyl chloride). J Hazard Mater 315:102–109

    Article  CAS  Google Scholar 

  136. Xiu FR, Qi Y, Zhang FS (2015) Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment. Waste Manag 41:134–141

    Article  CAS  Google Scholar 

  137. Xiu FR, Zhang FS (2012) Size-controlled preparation of Cu2O nanoparticles from waste printed circuit boards by supercritical water combined with electrokinetic process. J Hazard Mater 233–234:200–206

    Article  CAS  Google Scholar 

  138. Xiu FR, Zhang FS (2009) Preparation of nano-Cu2O/TiO2 photocatalyst from waste printed circuit boards by electrokinetic process. J Hazard Mater 172:1458–1463

    Article  CAS  Google Scholar 

  139. Sanyal S, Ke Q, Zhang Y, Ngo T, Carrell J, Zhang H, Dai l (2013) Understanding and optimizing delamination/recycling of printed circuit boards using a supercritical carbon dioxide process. J Clean Prod 41:174–178

    Article  CAS  Google Scholar 

  140. Xing M, Zhang F (2012) A novel process for detoxification of BERs in waste {PCBs}. Procedia Environ Sci 16:491–494

    Article  CAS  Google Scholar 

  141. Yin J, Li G, He W, Huang J, Xu M (2011) Hydrothermal decomposition of brominated epoxy resin in waste printed circuit boards. J Anal Appl Pyrolysis 92:131–136

    Article  CAS  Google Scholar 

  142. Sarvar M, Salarirad MM, Shabani MA (2015) Characterization and mechanical separation of metals from computer printed circuit boards (PCBs) based on mineral processing methods. Waste Manag 45:246–257

    Article  CAS  Google Scholar 

  143. Eswaraiah C, Kavitha T, Vidyasagar S, Narayanan SS (2008) Classification of metals and plastics from printed circuit boards (PCB) using air classifier. Chem Eng Process Process Intensif 47:565–576

    Article  CAS  Google Scholar 

  144. Habib M, Miles NJ, Hall P (2013) Recovering metallic fractions from waste electrical and electronic equipment by a novel vibration system. Waste Manag 33:722–729

    Article  CAS  Google Scholar 

  145. Kumar V, Lee J, Jeong J, Jha MK, Kim BS, Singh R (2015) Recycling of printed circuit boards (PCBs) to generate enriched rare metal concentrate. J Ind Eng Chem 21:805–813

    Article  CAS  Google Scholar 

  146. Zhang S, Forssberg E, Arvidson B, Moss W (1998) Aluminum recovery from electronic scrap by high-force eddy-current separators. Resour Conserv Recycl 23:225–241

    Article  Google Scholar 

  147. WL. D (1990) Practical applications of eddy current separators in the scrap recycling industry. Second Int. Symp. Met. Eng. Mater

  148. Li J, Lu H, Guo J, Xu Z, Zhou Y (2007) Recycle technology for recovering resources and products from waste printed circuit boards. Environ Sci Technol 41:1995–2000

    Article  CAS  Google Scholar 

  149. Jiang W, Jia L, Zhen-ming X (2009) A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board. J Hazard Mater 161:257–262

    Article  CAS  Google Scholar 

  150. Zhao M, Li J, Yu K, Zhu F, Wen X (2006) Measurement of pyrolysis contamination during crushing of waste printed circuit boards. J Tsinghua Univ Technol 46:1995–1998

    CAS  Google Scholar 

  151. Guo J, Li J, Rao Q, Xu Z (2008) Phenolic molding compound filled with nonmetals of waste PCBs. Environ Sci Technol 42:624–628

    Article  CAS  Google Scholar 

  152. Guo J, Rao Q, Xu Z (2008) Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound. J Hazard Mater 153:728–734

    Article  CAS  Google Scholar 

  153. Zheng Y, Shen Z, Cai C, Ma S, Xing Y (2009) The reuse of nonmetals recycled from waste printed circuit boards as reinforcing fillers in the polypropylene composites. J Hazard Mater 163:600–606

    Article  CAS  Google Scholar 

  154. Niu X, Li Y (2007) Treatment of waste printed wire boards in electronic waste for safe disposal. J Hazard Mater 145:410–416

    Article  CAS  Google Scholar 

  155. Lu MX, Zhou CH, Liu WL (2000) The study of recovering waste printed circuit board by mechanical method. Tech Equip Environ Pollut Control 10:30–35

    CAS  Google Scholar 

  156. Ke YH, Yang ET, Liu X, Liu CL, Dong WS (2013) Preparation of porous carbons from non-metallic fractions of waste printed circuit boards by chemical and physical activation. Xinxing Tan Cailiao/New Carbon Mater 28:108–114

    Article  CAS  Google Scholar 

  157. Rajagopal RR, Aravinda LS, Rajarao R, Bhat BR, Sahajwalla V(2016) Activated carbon derived from non-metallic printed circuit board waste for supercapacitor application. Electrochim Acta 211:488–498

    Article  CAS  Google Scholar 

  158. Hadi P, Barford J, McKay G (2013) Toxic heavy metal capture using a novel electronic waste-based material-mechanism, modeling and comparison. Environ Sci Technol 47:8248–8255

    CAS  Google Scholar 

  159. Xu M, Hadi P, Chen G, McKay G (2014) Removal of cadmium ions from wastewater using innovative electronic waste-derived material. J Hazard Mater 273:118–123

    Article  CAS  Google Scholar 

  160. Ning C, Hadi P, Lin CSK, McKay G (2016) Valorization of an electronic waste-derived aluminosilicate—surface functionalization and porous structure tuning. ACS Sustain Chem Eng 6:2980–2989

    Article  CAS  Google Scholar 

  161. Pimenta S, Pinho ST (2011) Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook. Waste Manag 31:378–392

    Article  CAS  Google Scholar 

  162. Burke A (2007) R&D considerations for the performance and application of electrochemical capacitors. Electrochim Acta 53:1083–1091

    Article  CAS  Google Scholar 

  163. Ludwig Christian, Hellweg Stefanie, Samuel Stucki E (2012) Municipal solid waste management: strategies and technologies for sustainable solutions. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon McKay.

Additional information

This article is part of the Topical Collection “Chemistry and Chemical Technologies in Waste Valorization”; edited by Carol Sze Ki LIN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, C., Lin, C.S.K., Hui, D.C. et al. Waste Printed Circuit Board (PCB) Recycling Techniques. Top Curr Chem (Z) 375, 43 (2017). https://doi.org/10.1007/s41061-017-0118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0118-7

Keywords

Navigation