Skip to main content

Advertisement

Log in

Stimuli-Responsive Polymeric Nanocarriers for Efficient Gene Delivery

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Gene therapy provides an alternative and effective method for treatment of genetic diseases and cancers that are refractory to conventional therapeutics. The success of gene therapy is largely dependent on the development of safe and effective gene delivery vectors for transporting genetic material from the blood stream to the cytoplasm or nucleus. Current gene vectors can be divided into viral and non-viral vectors. Although non-viral gene delivery carriers can offer some advantages, such as safety and facile fabrication, they do not possess the same high gene transfection efficiency as viral vectors due to a lack of functionality to overcome extra- and intracellular gene delivery obstacles. On the basis of these disadvantages, researchers are developing “smart” non-viral gene-delivery carriers in order to overcome the physiological barriers and realize efficient gene transfection. These “smart” stimuli-responsive carriers can undergo physical or chemical reactions in response to internal tumor-specific environments, such as pH conditions, redox potentials, enzymatic activations and thermal gradients, as well as external stimulations, such as ultrasound, light, magnetic fields, and electrical fields. Furthermore, “smart” carriers can also be triggered by dual or multiple combinations of different stimuli. In this review, we highlight the recent stimuli-sensitive polymeric nanocarriers for gene delivery, and we discuss the potential of combining multiple stimuli-responsive strategies for future gene therapy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

AAm:

Acrylamide

AAV:

Adeno-associated viruses

ADV:

Acoustic droplet vaporization

AON:

Antisense oligodeoxy nucleotides

ATP:

Adenosine triphosphate

azoTAB:

Azobenzene-trimethylammonium bromide

BAH:

Bis-aryl hydrazone

C11F17-PAsp(DET):

C11F17-poly[N-[N′-(2-aminoethyl)]aspartamide]

CMD:

Carboxymethyl dextran

CPDT:

Cyclopentadithiophene

CTX:

Chlorotoxin

DSPEI:

Degradability of disulfide cross-linked short PEIs

dtACPP:

Activatable cell-penetrating peptide

GALA:

Glutamic acid-alanine-leucine-alanine

GFP:

Green fluorescent protein

GILT:

Gamma-interferon-inducible lysosomal thiol reductase

GNR:

Gold nanorod

GSH:

Gutathione

HCC:

Hepatocellular carcinoma

HHV:

Herpes simplex viruses

KALA:

Lysine-alanine-leucine-alanine

KAPE:

Ketal containing poly (β-amino esters)

LCST:

Low critical solution temperature

MB:

Microbubble

MF:

Magnetic field

MMA:

Methyl methacrylate

MMPs:

Matrix metalloproteinases

MN core:

Magnetic nanopartical core

MPAP:

Membrane translocation peptides

mPEG-b-PLLys:

Poly(ethylene glycol)-b-poly(l-lysine)

NBU:

o-Nitrobenzyl urethane

NIR:

Near infrared

NS:

Nanoshell

PAA:

Poly (acrylic acid)

PAO:

Poly(alkylene oxides)

PATK:

Poly(amino thioketal)

PBA:

Phenylboronic acid

PBAA:

Poly (butyl acrylicacid)

PBAE:

Poly(β-amino ester)

PDEA:

Poly(2-(diethylamino)ethyl methacrylate)

PDMAEMA:

Poly(2-dimethylaminoethyl methacrylate)

PEAA:

Poly(ethyl acrylic acid)

PEEP-b-PDMAEMA:

Poly(ethylethylene phosphate)-block-poly[2-(dimethylamino)ethyl methacrylate]

PEG:

Polyethylene glycol

PEI:

Polyethylenimine

PEO-PPO-PEO:

Poly-(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)

PFP:

Perfluoropentane

PGA-g-mPEG:

Poly(glutamic acid)-g-MeO-poly(ethylene glycol)

PICM:

PEG-b-P (PrMA-co-MAA)

PLH:

Poly (l-histidine)

PLL:

Poly-l-lysine

PLys:

Poly (l-lysine)

PMA:

Poly (meth acrylic acid)

PNIPAM:

Poly (N-isopropylacrylamide)

PPAA:

Poly (propyl acrylic acid)

PPDDP:

MPEG113-b-CP5k-b-PDMAEMA42-b-P(DMAEMA22-co-BMA40-co-PAA24

PPMCs:

Pluronic/polyethylenimine to embedded magnetite nanocrystals

PPPs:

Photo- and pH-responsive polypeptides

PTX:

Paclitaxel

RES:

Reticuloe endothelin system

ROS:

Reactive oxygen species

SDBS:

Sodium dodecylbenzenesulfonate

SDS:

Sodium dodecylsulfate

siGFP:

siRNA molecules targeting GFP

SPIO:

Superparamagnetic oxide nanoparticle

SSPEI:

Disulfide-containing polyethylenimine

UCAs:

Ultrasound contrast agents

UCST:

Upper critical solution temperature

UNCs:

Upconversion nanoparticles

uPA:

Urokinase plasminogen activator

US:

Ultrasound contrast agents

VP:

Vinylpyrrolidinone

References

  1. Ragusa A, GarcÍa I, PenadÉs S (2007) Nanoparticles as nonviral gene delivery vectors. IEEE Trans Nanobiosci 6:319–330

    Article  Google Scholar 

  2. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593

    Article  CAS  Google Scholar 

  3. Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302

    Article  CAS  Google Scholar 

  4. Kumar SR, Markusic DM, Biswas M, High KA, Herzog RW (2016) Clinical development of gene therapy: Results and lessons from recent successes. Mol Ther Methods Clin Dev 3:16034

    Article  CAS  Google Scholar 

  5. Tani K (2016) Current status of ex vivo gene therapy for hematological disorders: A review of clinical trials in Japan around the world. Int J Hematol 104:42–72

    Article  CAS  Google Scholar 

  6. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067-U1140

    Google Scholar 

  7. Huang S, Shao K, Kuang Y, Liu Y, Li J, An S, Guo Y, Ma H, He X, Jiang C (2013) Tumor targeting and microenvironment-responsive nanoparticles for gene delivery. Biomaterials 34:5294–5302

    Article  CAS  Google Scholar 

  8. Xu P, Li S-Y, Li Q, Van Kirk EA, Ren J, Murdoch WJ, Zhang Z, Radosz M, Shen Y (2008) Virion-minnicking nanocapsules from pH-controlled hierarchical self-assembly for gene delivery. Angew Chem Int Ed 47:1260–1264

    Article  CAS  Google Scholar 

  9. Kim M-H, Na H-K, Kim Y-K, Ryoo S-R, Cho HS, Lee KE, Jeon H, Ryoo R, Min D-H (2011) Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 5:3568–3576

    Article  CAS  Google Scholar 

  10. Huh YM, Lee ES, Lee JH, Yw Jun, Kim PH, Yun CO, Kim JH, Suh JS, Cheon J (2007) Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Adv Mater 19:3109–3112

    Article  CAS  Google Scholar 

  11. Zhang G, Liu J, Yang Q, Zhuo R, Jiang X (2012) Disulfide-containing brushed polyethylenimine derivative synthesized by click chemistry for nonviral gene delivery. Bioconjug Chem 23:1290–1299

    Article  CAS  Google Scholar 

  12. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  CAS  Google Scholar 

  13. Chen DJ, Majors BS, Zelikin A, Putnam D (2005) Structure-function relationships of gene delivery vectors in a limited polycation library. J Control Release 103:273–283

    Article  CAS  Google Scholar 

  14. Kaur S, Prasad C, Balakrishnan B, Banerjee R (2015) Trigger responsive polymeric nanocarriers for cancer therapy. Biomater Sci 3:955–987

    Article  CAS  Google Scholar 

  15. Dehousse V, Garbacki N, Colige A, Evrard B (2010) Development of pH-responsive nanocarriers using trimethylchitosans and methacrylic acid copolymer for siRNA delivery. Biomaterials 31:1839–1849

    Article  CAS  Google Scholar 

  16. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  CAS  Google Scholar 

  17. Thornton PD, Mart RJ, Ulijn RV (2007) Enzyme-responsive polymer hydrogel particles for controlled release. Adv Mater 19:1252–1256

    Article  CAS  Google Scholar 

  18. Reineke TM (2016) Stimuli-responsive polymers for biological detection and delivery. ACS Macro Lett 5:14–18

    Article  CAS  Google Scholar 

  19. Li J, Yu X, Wang Y, Yuan Y, Xiao H, Cheng D, Shuai X (2014) A reduction and pH dual-sensitive polymeric vector for long-circulating and tumor-targeted siRNA delivery. Adv Mater 26:8217–8224

    Article  CAS  Google Scholar 

  20. Midoux P, Pichon C, Yaouanc JJ, Jaffres PA (2009) Chemical vectors for gene delivery: A current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol 157:166–178

    Article  CAS  Google Scholar 

  21. Guo C, Chen W, Lin S, Li H, Cheng D, Wang X, Shuai X (2012) Synthesis and characterization of polycation block copolymer Poly(l-lysine)-b-poly[N-(N′, N′-diisopropyl-aminoethyl)aspartamide] as potential pH responsive gene delivery system. Polymer 53:342–349

    Article  CAS  Google Scholar 

  22. Knorr V, Allmendinger L, Walker GF, Paintner FF, Wagner E (2007) An acetal-based PEGylation reagent for pH-Sensitive shielding of DNA polyplexes. Bioconjug Chem 18:1218–1225

    Article  CAS  Google Scholar 

  23. Mignet N, Richard C, Seguin J, Largeau C, Bessodes M, Scherman D (2008) Anionic pH-sensitive pegylated lipoplexes to deliver DNA to tumors. Int J Pharm 361:194–201

    Article  CAS  Google Scholar 

  24. Benns JM, Choi JS, Mahato RI, Park JS, Kim SW (2000) pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(l-histidine)-graft-poly(l-lysine) comb shaped polymer. Bioconjug Chem 11:637–645

    Article  CAS  Google Scholar 

  25. Midoux P, Monsigny M (1999) Efficient gene transfer by histidylated polylysine pDNA complexes. Bioconjug Chem 10:406–411

    Article  CAS  Google Scholar 

  26. Durmaz YY, Lin Y-L, ElSayed MEH (2013) Development of degradable, ph-sensitive star vectors for enhancing the cytoplasmic delivery of nucleic acids. Adv Funct Mater 23:3885–3895

    Article  CAS  Google Scholar 

  27. Lee H, Jeong JH, Park TG (2002) PEG grafted polylysine with fusogenic peptide for gene delivery: High transfection efficiency with low cytotoxicity. J Control Release 79:283–291

    Article  CAS  Google Scholar 

  28. Li W, Nicol F, Szoka FC Jr (2004) GALA: A designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 56:967–985

    Article  CAS  Google Scholar 

  29. Stayton PS, El-Sayed MEH, Murthy N, Bulmus V, Lackey C, Cheung C, Hoffman AS (2005) ‘Smart’ delivery systems for biomolecular therapeutics. Orthod Craniofac Res 8:219–225

    Article  CAS  Google Scholar 

  30. Felber AE, Castagner B, Elsabahy M, Deleavey GF, Damha MJ, Leroux JC (2011) siRNA nanocarriers based on methacrylic acid copolymers. J Control Release 152:159–167

    Article  CAS  Google Scholar 

  31. Peddada LY, Garbuzenko OB, Devore DI, Minko T, Roth CM (2014) Delivery of antisense oligonucleotides using poly(alkylene oxide)-poly(propylacrylic acid) graft copolymers in conjunction with cationic liposomes. J Control Release 194:103–112

    Article  CAS  Google Scholar 

  32. C-b Wu, J-y Hao, X-m Deng, Liu Y (2008) Random branched poly(hydroxyetheramine): A novel polycation with proton sponge effect and high density of discrete charge. Polym Bull 60:635–645

    Article  CAS  Google Scholar 

  33. Kim HJ, Miyata K, Nomoto T, Zheng M, Kim A, Liu X, Cabral H, Christie RJ, Nishiyama N, Kataoka K (2014) siRNA delivery from triblock copolymer micelles with spatially-ordered compartments of PEG shell, siRNA-loaded intermediate layer, and hydrophobic core. Biomaterials 35:4548–4556

    Article  CAS  Google Scholar 

  34. Sanjoh M, Hiki S, Lee Y, Oba M, Miyata K, Ishii T, Kataoka K (2010) pDNA/poly(l-lysine) polyplexes functionalized with a pH-sensitive charge-conversional poly(aspartamide) derivative for controlled gene delivery to human umbilical vein endothelial cells. Macromol Rapid Commun 31:1181–1186

    Article  CAS  Google Scholar 

  35. Tangsangasaksri M, Takemoto H, Naito M, Maeda Y, Sueyoshi D, Kim HJ, Miura Y, Ahn J, Azuma R, Nishiyama N, Miyata K, Kataoka K (2016) siRNA-loaded polyion complex micelle decorated with charge-conversional polymer tuned to undergo stepwise response to intra-tumoral and intra-endosomal pHs for exerting enhanced RNAi efficacy. Biomacromolecules 17:246–255

    Article  CAS  Google Scholar 

  36. Asayama S, Sudo M, Nagaoka S, Kawakami H (2008) Carboxymethyl poly(l-histidine) as a new pH-sensitive polypeptide to enhance polyplex gene delivery. Mol Pharm 5:898–901

    Article  CAS  Google Scholar 

  37. Boylan NJ, Kim AJ, Suk JS, Adstamongkonkul P, Simons BW, Lai SK, Cooper MJ, Hanes J (2012) Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-l-lysine. Biomaterials 33:2361–2371

    Article  CAS  Google Scholar 

  38. Khalil IA, Hayashi Y, Mizuno R, Harashima H (2011) Octaarginine- and pH sensitive fusogenic peptide-modified nanoparticles for liver gene delivery. J Control Release 156:374–380

    Article  CAS  Google Scholar 

  39. Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E (1994) The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J Biol Chem 269:12918–12924

    CAS  Google Scholar 

  40. Yuan Q, Yeudall WA, Yang H (2010) PEGylated polyamidoamine dendrimers with bis-aryl hydrazone linkages for enhanced gene delivery. Biomacromolecules 11:1940–1947

    Article  CAS  Google Scholar 

  41. Guk K, Lim H, Kim B, Hong M, Khang G, Lee D (2013) Acid-cleavable ketal containing poly(beta-amino ester) for enhanced siRNA delivery. Int J Pharm 453:541–550

    Article  CAS  Google Scholar 

  42. Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z (2011) Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 152:2–12

    Article  CAS  Google Scholar 

  43. Wen Y, Zhang Z, Li J (2014) Highly efficient multifunctional supramolecular gene carrier system self-assembled from redox-sensitive and zwitterionic polymer blocks. Adv Funct Mater 24:3874–3884

    Article  CAS  Google Scholar 

  44. Takemoto H, Ishii A, Miyata K, Nakanishi M, Oba M, Ishii T, Yamasaki Y, Nishiyama N, Kataoka K (2010) Polyion complex stability and gene silencing efficiency with a siRNA-grafted polymer delivery system. Biomaterials 31:8097–8105

    Article  CAS  Google Scholar 

  45. Jung S, Lee SH, Mok H, Chung HJ, Park TG (2010) Gene silencing efficiency of siRNA-PEG conjugates: Effect of PEGylation site and PEG molecular weight. J Control Release 144:306–313

    Article  CAS  Google Scholar 

  46. Mok H, Lee SH, Park JW, Park TG (2010) Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nat Mater 9:272–278

    CAS  Google Scholar 

  47. Matsumoto S, Christie RJ, Nishiyama N, Miyata K, Ishii A, Oba M, Koyama H, Yamasaki Y, Kataoka K (2009) Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules 10:119–127

    Article  CAS  Google Scholar 

  48. Manickam DS, Li J, Putt DA, Zhou QH, Wu C, Lash LH, Oupicky D (2010) Effect of innate glutathione levels on activity of redox-responsive gene delivery vectors. J Control Release 141:77–84

    Article  CAS  Google Scholar 

  49. Schwerdt A, Zintchenko A, Concia M, Roesen N, Fisher K, Lindner LH, Issels R, Wagner E, Ogris M (2008) Hyperthermia-induced targeting of thermosensitive gene carriers to tumors. Hum Gene Ther 19:1283–1292

    Article  CAS  Google Scholar 

  50. Kurisawa M, Yokoyama M, Okano T (2000) Gene expression control by temperature with thermo-responsive polymeric gene carriers. J Control Release 69:127–137

    Article  CAS  Google Scholar 

  51. Lee SH, Choi SH, Kim SH, Park TG (2008) Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: Swelling induced physical disruption of endosome by cold shock. J Control Release 125:25–32

    Article  CAS  Google Scholar 

  52. Choi SH, Lee SH, Park TG (2006) Temperature-sensitive pluronic/poly(ethylenimine) nanocapsules for thermally triggered disruption of intracellular endosomal compartment. Biomacromolecules 7:1864–1870

    Article  CAS  Google Scholar 

  53. Beckert L, Kostka L, Kessel E, Krhac Levacic A, Kostkova H, Etrych T, Lachelt U, Wagner E (2016) Acid-labile pHPMA modification of four-arm oligoaminoamide pDNA polyplexes balances shielding and gene transfer activity in vitro and in vivo. Eur J Pharm Biopharm 105:85–96

    Article  CAS  Google Scholar 

  54. Zintchenko A, Ogris M, Wagner E (2006) Temperature dependent gene expression induced by PNIPAM-based copolymers: Potential of hyperthermia in gene transfer. Bioconjug Chem 17:766–772

    Article  CAS  Google Scholar 

  55. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  CAS  Google Scholar 

  56. Liang J, Liu B (2016) ROS-responsive drug delivery systems. Bioeng Transl Med 1:239–251

    Google Scholar 

  57. Molla MR, Prasad P, Thayumanavan S (2015) Protein-induced supramolecular disassembly of amphiphilic polypeptide nanoassemblies. J Am Chem Soc 137:7286–7289

    Article  CAS  Google Scholar 

  58. Rozema DB, Blokhin AV, Wakefield DH, Benson JD, Carlson JC, Klein JJ, Almeida LJ, Nicholas AL, Hamilton HL, Chu Q, Hegge JO, Wong SC, Trubetskoy VS, Hagen CM, Kitas E, Wolff JA, Lewis DL (2015) Protease-triggered siRNA delivery vehicles. J Control Release 209:57–66

    Article  CAS  Google Scholar 

  59. Thambi T, Park JH, Lee DS (2016) Stimuli-responsive polymersomes for cancer therapy. Biomater Sci 4:55–69

    Article  CAS  Google Scholar 

  60. Huang S, Shao K, Kuang Y, Liu Y, Li J, An S, Guo Y, Ma H, He X, Jiang C (2013) Tumor targeting and microenvironment-responsive nanoparticles for gene delivery. Biomaterials 34:5294–5302

    Article  CAS  Google Scholar 

  61. Zhu L, Perche F, Wang T, Torchilin VP (2014) Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs. Biomaterials 35:4213–4222

    Article  CAS  Google Scholar 

  62. Veiman KL, Kunnapuu K, Lehto T, Kiisholts K, Parn K, Langel U, Kurrikoff K (2015) PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo. J Control Release 209:238–247

    Article  CAS  Google Scholar 

  63. Mo R, Jiang T, Gu Z (2014) Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew Chem Int Ed Engl 53:5815–5820

    Article  CAS  Google Scholar 

  64. Kim J, Lee YM, Kim H, Park D, Kim J, Kim WJ (2016) Phenylboronic acid-sugar grafted polymer architecture as a dual stimuli-responsive gene carrier for targeted anti-angiogenic tumor therapy. Biomaterials 75:102–111

    Article  CAS  Google Scholar 

  65. Wang G-H, Huang G-L, Zhao Y, Pu X-X, Li T, Deng J-J, Lin J-T (2016) ATP triggered drug release and DNA co-delivery systems based on ATP responsive aptamers and polyethylenimine complexes. J Mater Chem B 4:3832–3841

    Article  CAS  Google Scholar 

  66. Balazadeh S, Jaspert N, Arif M, Mueller-Roeber B, Maurino VG (2012) Expression of ROS-responsive genes and transcription factors after metabolic formation of H(2)O(2) in chloroplasts. Front Plant Sci 3:234

    Article  Google Scholar 

  67. Chung MF, Chia WT, Wan WL, Lin YJ, Sung HW (2015) Controlled release of an anti-inflammatory drug using an ultrasensitive ros-responsive gas-generating carrier for localized inflammation inhibition. J Am Chem Soc 137:12462–12465

    Article  CAS  Google Scholar 

  68. Shim MS, Xia Y (2013) A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew Chem Int Ed Engl 52:6926–6929

    Article  CAS  Google Scholar 

  69. Christiansen JP, French BA, Klibanov AL, Kaul S, Lindner JR (2003) Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol 29:1759–1767

    Article  Google Scholar 

  70. Shimamura M, Sato N, Taniyama Y, Yamamoto S, Endoh M, Kurinami H, Aoki M, Ogihara T, Kaneda Y, Morishita R (2004) Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound. Gene Ther 11:1532–1539

    Article  CAS  Google Scholar 

  71. Azuma H, Tomita N, Kaneda Y, Koike H, Ogihara T, Katsuoka Y, Morishita R (2003) Transfection of NFkappaB-decoy oligodeoxynucleotides using efficient ultrasound-mediated gene transfer into donor kidneys prolonged survival of rat renal allografts. Gene Ther 10:415–425

    Article  CAS  Google Scholar 

  72. Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60:1153–1166

    Article  CAS  Google Scholar 

  73. Pichon C, Kaddur K, Midoux P, Tranquart F, Bouakaz A (2008) Recent advances in gene delivery with ultrasound and microbubbles. J Exp Nanosci 3:17–40

    Article  CAS  Google Scholar 

  74. Unger EC, Hersh E, Vannan M, Matsunaga TO, McCreery T (2001) Local drug and gene delivery through microbubbles. Prog Cardiovasc Dis 44:45–54

    Article  CAS  Google Scholar 

  75. Bloch SH, Wan M, Dayton PA, Ferrara KW (2004) Optical observation of lipid- and polymer-shelled ultrasound microbubble contrast agents. Appl Phys Lett 84:631

    Article  CAS  Google Scholar 

  76. Miller DL, Pislaru SV, Greenleaf JF (2002) Sonoporation: Mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet 27:115–134

    Article  CAS  Google Scholar 

  77. Simpson DH, Chin CT, Burns PN (1999) Pulse inversion Doppler: A new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control 46:372–382

    Article  CAS  Google Scholar 

  78. Newman CM, Bettinger T (2007) Gene therapy progress and prospects: Ultrasound for gene transfer. Gene Ther 14:465–475

    Article  CAS  Google Scholar 

  79. Suzuki R, Oda Y, Utoguchi N, Maruyama K (2011) Progress in the development of ultrasound-mediated gene delivery systems utilizing nano- and microbubbles. J Control Release 149:36–41

    Article  CAS  Google Scholar 

  80. Mitragotri S (2005) Innovation—healing sound: The use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 4:255–260

    Article  CAS  Google Scholar 

  81. Tachibana K, Uchida T, Ogawa K, Yamashita N, Tamura K (1999) Induction of cell-membrane porosity by ultrasound. Lancet 353:1409

    Article  CAS  Google Scholar 

  82. Deng CX, Sieling F, Pan H, Cui J (2004) Ultrasound-induced cell membrane porosity. Ultrasound Med Biol 30:519–526

    Article  Google Scholar 

  83. Hallow DM, Mahajan AD, McCutchen TE, Prausnitz MR (2006) Measurement and correlation of acoustic cavitation with cellular bioeffects. Ultrasound Med Biol 32:1111–1122

    Article  Google Scholar 

  84. Juffermans LJM, Dijkmans PA, Musters RJP, Visser CA, Kamp O (2006) Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide. Am J Physiol Heart Circ Physiol 291:H1595–H1601

    Article  CAS  Google Scholar 

  85. Mehier-Humbert S, Bettinger T, Yan F, Guy RH (2005) Ultrasound-mediated gene delivery: Kinetics of plasmid internalization and gene expression. J Control Release 104:203–211

    Article  CAS  Google Scholar 

  86. Pan H, Zhou Y, Izadnegahdar O, Cui JM, Deng CX (2005) Study of sonoporation dynamics affected by ultrasound duty cycle. Ultrasound Med Biol 31:849–856

    Article  Google Scholar 

  87. Sundaram J, Mellein BR, Mitragotri S (2003) An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J 84:3087–3101

    Article  CAS  Google Scholar 

  88. van Wamel A, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M, de Jong N (2006) Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation. J Control Release 112:149–155

    Article  CAS  Google Scholar 

  89. Zarnitsyn VG, Prausnitz MR (2004) Physical parameters influencing optimization of ultrasound-mediated DNA transfection. Ultrasound Med Biol 30:527–538

    Article  Google Scholar 

  90. Fabiilli ML, Haworth KJ, Fakhri NH, Kripfgans OD, Carson PL, Fowlkes JB (2009) The role of inertial cavitation in acoustic droplet vaporization. IEEE Trans Ultrason Ferroelectr Freq Control 56:1006–1017

    Article  Google Scholar 

  91. Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138:268–276

    Article  CAS  Google Scholar 

  92. Zhang M, Fabiilli ML, Haworth KJ, Fowlkes JB, Kripfgans OD, Roberts WW, Ives KA, Carson PL (2010) Initial investigation of acoustic droplet vaporization for occlusion in canine kidney. Ultrasound Med Biol 36:1691–1703

    Article  CAS  Google Scholar 

  93. Wang CH, Kang ST, Yeh CK (2013) Superparamagnetic iron oxide and drug complex-embedded acoustic droplets for ultrasound targeted theranosis. Biomaterials 34:1852–1861

    Article  CAS  Google Scholar 

  94. Wang P, Yin T, Li J, Zheng B, Wang X, Wang Y, Zheng J, Zheng R, Shuai X (2016) Ultrasound-responsive microbubbles for sonography-guided siRNA delivery. Nanomedicine 12:1139–1149

    Article  CAS  Google Scholar 

  95. Yin T, Wang P, Li J, Zheng R, Zheng B, Cheng D, Li R, Lai J, Shuai X (2013) Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials 34:4532–4543

    Article  CAS  Google Scholar 

  96. Yin T, Wang P, Li J, Wang Y, Zheng B, Zheng R, Cheng D, Shuai X (2014) Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes. Biomaterials 35:5932–5943

    Article  CAS  Google Scholar 

  97. Cavalli R, Bisazza A, Trotta M, Argenziano M, Civra A, Donalisio M, Lembo D (2012) New chitosan nanobubbles for ultrasound-mediated gene delivery: Preparation and in vitro characterization. Int J Nanomed 7:3309–3318

    Article  CAS  Google Scholar 

  98. Jin Q, Wang Z, Yan F, Deng Z, Ni F, Wu J, Shandas R, Liu X, Zheng H (2013) A novel cationic microbubble coated with stearic acid-modified polyethylenimine to enhance DNA loading and gene delivery by ultrasound. PLoS One 8:e76544

    Article  CAS  Google Scholar 

  99. Gao D, Xu M, Cao Z, Gao J, Chen Y, Li Y, Yang Z, Xie X, Jiang Q, Wang W, Liu J (2015) Ultrasound-triggered phase-transition cationic nanodroplets for enhanced gene delivery. ACS Appl Mater Interfaces 7:13524–13537

    Article  CAS  Google Scholar 

  100. Lentacker I, De Geest BG, Vandenbroucke RE, Peeters L, Demeester J, De Smedt SC, Sanders NN (2006) Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. Langmuir 22:7273–7278

    Article  CAS  Google Scholar 

  101. Lentacker I, De Smedt SC, Demeester J, Sanders NN (2006) Microbubbles which bind and protect DNA against nucleases. J Control Release 116:E73–E75

    Article  CAS  Google Scholar 

  102. Chin LS, Lim M, Hung TT, Marquis CP, Amal R (2014) Perfluorodecalin nanocapsule as an oxygen carrier and contrast agent for ultrasound imaging. Rsc Adv 4:13052–13060

    Article  CAS  Google Scholar 

  103. Min HS, Son S, Lee TW, Koo H, Yoon HY, Na JH, Choi Y, Park JH, Lee J, Han MH, Park R-W, Kim I-S, Jeong SY, Rhee K, Kim SH, Kwon IC, Kim K (2013) Liver-specific and echogenic hyaluronic acid nanoparticles facilitating liver cancer discrimination. Adv Funct Mater 23:5518–5529

    Article  CAS  Google Scholar 

  104. Yang P, Li D, Jin S, Ding J, Guo J, Shi W, Wang C (2014) Stimuli-responsive biodegradable poly(methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system. Biomaterials 35:2079–2088

    Article  CAS  Google Scholar 

  105. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release 65:271–284

    Article  CAS  Google Scholar 

  106. Zhou Y, Wang Z, Chen Y, Shen H, Luo Z, Li A, Wang Q, Ran H, Li P, Song W, Yang Z, Chen H, Wang Z, Lu G, Zheng Y (2013) Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv Mater 25:4123–4130

    Article  CAS  Google Scholar 

  107. Kim D-H, Nikles DE, Johnson DT, Brazel CS (2008) Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Magn Magn Mater 320:2390–2396

    Article  CAS  Google Scholar 

  108. Koning GA, Eggermont AMM, Lindner LH, ten Hagen TLM (2010) Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm Res 27:1750–1754

    Article  CAS  Google Scholar 

  109. Shubayev VI, Pisanic TR 2nd, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477

    Article  CAS  Google Scholar 

  110. Mah C, Fraites TJ, Zolotukhin I, Song SH, Flotte TR, Dobson J, Batich C, Byrne BJ (2002) Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol Ther 6:106–112

    Article  CAS  Google Scholar 

  111. Lo Y-L, Chou H-L, Liao Z-X, Huang S-J, Ke J-H, Liu Y-S, Chiu C-C, Wang L-F (2015) Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery. Nanoscale 7:8554–8565

    Article  CAS  Google Scholar 

  112. Zheng SW, Liu G, Hong RY, Li HZ, Li YG, Wei DG (2012) Preparation and characterization of magnetic gene vectors for targeting gene delivery. Appl Surf Sci 259:201–207

    Article  CAS  Google Scholar 

  113. Takafuji M, Kitaura K, Nishiyama T, Govindarajan S, Gopal V, Imamura T, Ihara H (2014) Chemically tunable cationic polymer-bonded magnetic nanoparticles for gene magnetofection. J Mater Chem B 2:644–650

    Article  CAS  Google Scholar 

  114. Agopian K, Wei BL, Garcia JV, Gabuzda D (2006) A hydrophobic binding surface on the human immunodeficiency virus type 1 Nef core is critical for association with p21-activated kinase 2. J Virol 80:3050–3061

    Article  CAS  Google Scholar 

  115. Li QG, Lindman K, Wadell G (1997) Hydropathic characteristics of adenovirus hexons. Arch Virol 142:1307–1322

    Article  CAS  Google Scholar 

  116. Jochum FD, zur Borg L, Roth PJ, Theato P (2009) Thermo- and light-responsive polymers containing photoswitchable azobenzene end groups. Macromolecules 42:7854–7862

    Article  CAS  Google Scholar 

  117. Nagasaki T, Wada K, Tamagaki S (2003) Photo-enhancement of transfection efficiency with a novel azobenzene-based cationic lipid. Chem Lett 32:88–89

    Article  CAS  Google Scholar 

  118. Hamada T, Sato YT, Yoshikawa K, Nagasaki T (2005) Reversible photoswitching in a cell-sized vesicle. Langmuir 21:7626–7628

    Article  CAS  Google Scholar 

  119. Liu YC, Le Ny AL, Schmidt J, Talmon Y, Chmelka BF, Lee CT Jr (2009) Photo-assisted gene delivery using light-responsive catanionic vesicles. Langmuir 25:5713–5724

    Article  CAS  Google Scholar 

  120. Li Y, Yang J, Sun L, Wang W, Liu W (2014) UV light-triggered unpacking of DNA to enhance gene transfection of azobenzene-containing polycations. J Mater Chem B 2:3868

    Article  CAS  Google Scholar 

  121. Kim MS, Diamond SL (2006) Controlled release of DNA/polyamine complex by photoirradiation of a solid phase presenting o-nitrobenzyl ether tethered spermine or polyethyleneimine. Bioorg Med Chem Lett 16:5572–5575

    Article  CAS  Google Scholar 

  122. Deng X, Zheng N, Song Z, Yin L, Cheng J (2014) Trigger-responsive, fast-degradable poly(beta-amino ester)s for enhanced DNA unpackaging and reduced toxicity. Biomaterials 35:5006–5015

    Article  CAS  Google Scholar 

  123. Hu X, Li Y, Liu T, Zhang G, Liu S (2014) Photodegradable neutral-cationic brush block copolymers for nonviral gene delivery. Chem Asian J 9:2148–2155

    Article  CAS  Google Scholar 

  124. Lee H, Kim Y, Schweickert PG, Konieczny SF, Won YY (2014) A photo-degradable gene delivery system for enhanced nuclear gene transcription. Biomaterials 35:1040–1049

    Article  CAS  Google Scholar 

  125. Wijaya A, Schaffer SB, Pallares IG, Hamad-Schifferli K (2009) Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 3:80–86

    Article  CAS  Google Scholar 

  126. Huschka R, Barhoumi A, Liu Q, Roth JA, Ji L, Halas NJ (2012) Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano 6:7681–7691

    Article  CAS  Google Scholar 

  127. Jayakumar MKG, Idris NM, Zhang Y (2012) Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc Natl Acad Sci USA 109:8483–8488

    Article  CAS  Google Scholar 

  128. Anal AK (2007) Stimuli-induced pulsatile or triggered release delivery systems for bioactive compounds. Recent Pat Endocr Metab Immune Drug Discov 1:83–90

    Article  CAS  Google Scholar 

  129. Nair M, Guduru R, Liang P, Hong J, Sagar V, Khizroev S (2013) Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nat Commun 4:1707

    Article  CAS  Google Scholar 

  130. Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60

    Article  Google Scholar 

  131. Servant A, Leon V, Jasim D, Methven L, Limousin P, Fernandez-Pacheco EV, Prato M, Kostarelos K (2014) Graphene-based electroresponsive scaffolds as polymeric implants for on-demand drug delivery. Adv Healthc Mater 3:1334–1343

    Article  CAS  Google Scholar 

  132. Servant A, Methven L, Williams RP, Kostarelos K (2013) Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo. Adv Healthc Mater 2:806–811

    Article  CAS  Google Scholar 

  133. Weaver CL, LaRosa JM, Luo XL, Cui XT (2014) Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano 8:1834–1843

    Article  CAS  Google Scholar 

  134. Ying X, Wang Y, Liang J, Yue J, Xu C, Lu L, Xu Z, Gao J, Du Y, Chen Z (2014) Angiopep-conjugated electro-responsive hydrogel nanoparticles: Therapeutic potential for epilepsy. Angew Chem Int Ed Engl 53:12436–12440

    CAS  Google Scholar 

  135. Gautier C, Cougnon C, Pilard J-F, Casse N, Chenais B (2007) A poly(cyclopentadithiophene) matrix suitable for electrochemically controlled DNA delivery. Anal Chem 79:7920–7923

    Article  CAS  Google Scholar 

  136. Nicolau DV, Hook AL, Thissen HW, Hayes JP, Voelcker NH (2005) Development of an electro-responsive platform for the controlled transfection of mammalian cells.  Proc. SPIE 5651, Biomedical Applications of Micro- and Nanoengineering II, p 418

  137. An K, Zhao P, Lin C, Liu H (2014) A pH and redox dual responsive 4-arm poly(ethylene glycol)-block-poly(disulfide histamine) copolymer for non-viral gene transfection in vitro and in vivo. Int J Mol Sci 15:9067–9081

    Article  CAS  Google Scholar 

  138. Cai X, Dong C, Dong H, Wang G, Pauletti GM, Pan X, Wen H, Mehl I, Li Y, Shi D (2012) Effective gene delivery using stimulus-responsive catiomer designed with redox-sensitive disulfide and acid-labile imine linkers. Biomacromolecules 13:1024–1034

    Article  CAS  Google Scholar 

  139. Li Y, Hei M, Xu Y, Qian X, Zhu W (2016) Ammonium salt modified mesoporous silica nanoparticles for dual intracellular-responsive gene delivery. Int J Pharm 511:689–702

    Article  CAS  Google Scholar 

  140. Gupta MK, Lee SH, Crowder SW, Wang X, Hofmeister LH, Nelson CE, Bellan LM, Duvall CL, Sung H-J (2015) Oligoproline-derived nanocarrier for dual stimuli-responsive gene delivery. J Mater Chem B 3:7271–7280

    Article  CAS  Google Scholar 

  141. Liu X, Ni P, He J, Zhang M (2010) Synthesis and micellization of pH/temperature-responsive double-hydrophilic diblock copolymers polyphosphoester-block-poly[2-(dimethylamino)ethyl methacrylate] prepared via ROP and ATRP. Macromolecules 43:4771–4781

    Article  CAS  Google Scholar 

  142. Sun H, Zhu X, Zhang L, Gu X, Wang J, Li J, Zhang Y (2013) PDEA-coated magnetic nanoparticles for gene delivery to Hep G2 cells. Biotechnol Bioprocess Eng 18:648–654

    Article  CAS  Google Scholar 

  143. Mok H, Veiseh O, Fang C, Kievit FM, Wang FY, Park JO, Zhang M (2010) pH-sensitive siRNA nanovector for targeted gene silencing and cytotoxic effect in cancer cells. Mol Pharm 7:1930–1939

    Article  CAS  Google Scholar 

  144. Huang RY, Chiang PH, Hsiao WC, Chuang CC, Chang CW (2015) Redox-sensitive polymer/SPIO nanocomplexes for efficient magnetofection and MR imaging of human cancer cells. Langmuir 31:6523–6531

    Article  CAS  Google Scholar 

  145. Li D, Tang X, Pulli B, Lin C, Zhao P, Cheng J, Lv Z, Yuan X, Luo Q, Cai H, Ye M (2014) Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging. Int J Nanomed 9:3347–3361

    Google Scholar 

  146. Yang Y, Xie X, Yang Y, Li Z, Yu F, Gong W, Li Y, Zhang H, Wang Z, Mei X (2016) Polymer nanoparticles modified with photo- and pH-dual-responsive polypeptides for enhanced and targeted cancer therapy. Mol Pharm 13:1508–1519

    Article  CAS  Google Scholar 

  147. Wang F, Shen Y, Zhang W, Li M, Wang Y, Zhou D, Guo S (2014) Efficient, dual-stimuli responsive cytosolic gene delivery using a RGD modified disulfide-linked polyethylenimine functionalized gold nanorod. J Control Release 196:37–51

    Article  CAS  Google Scholar 

  148. Guo W, Wang T, Tang X, Zhang Q, Yu F, Pei M (2014) Triple stimuli-responsive amphiphilic glycopolymer. J Polym Sci Part A Polym Chem 52:2131–2138

    Article  CAS  Google Scholar 

  149. Klaikherd A, Nagamani C, Thayumanavan S (2009) Multi-Stimuli Sensitive Amphiphilic Block Copolymer Assemblies. J Am Chem Soc 131:4830–4838

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51225305, U1401242), the Natural Science Foundation of Guangdong Province (2016A030313315, 2014A030312018), the Science and Technology Planning Project of Guangdong Province (2015A050502024), the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (2014TQ01R651), the Fundamental Research Funds for the Central Universities (161gzd05) and the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Liu or Xintao Shuai.

Additional information

Y. Li and J. Gao contributed equally to this work.

This article is part of the Topical Collection “Polymeric Gene Delivery Systems”; edited by Yiyun Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Gao, J., Zhang, C. et al. Stimuli-Responsive Polymeric Nanocarriers for Efficient Gene Delivery. Top Curr Chem (Z) 375, 27 (2017). https://doi.org/10.1007/s41061-017-0119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0119-6

Keywords

Navigation