Skip to main content
Log in

Different aspects of slope failures considering large deformation: application of smoothed particle hydrodynamics (SPH)

  • Technical paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Understanding the insight of slope collapse is necessary for effective hazard mitigation policy. The conventional method may not be able to capture the actual failure mechanics as these methods are based on simplified assumptions of the predetermined slip surface. Highlighting this real engineering problem, an attempt is made in this research to simulate different aspects of slope collapse numerically. Lagrangian particle-based continuum model, namely, smoothed particle hydrodynamics (SPH) has been used to develop a three-dimensional numerical slope model to understand the failure mechanics of unstable slopes. Both homogeneous and non-homogeneous slope models have been simulated, and the time history of naturally occurring failure planes has been tracked. A distinct slip surface has been seen from displacement contour of particles, which portray the innate response of a collapsed slope. The effect of soil properties on the response of slope surface has also been evaluated quantitatively by the different combination of non-homogeneous slope models. Afterwards, two conventional remedial measures have been simulated, and significant reduction of run-out length is seen, which can put a spotlight on future mitigation strategy in geotechnical hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. De Blasio FV (2011) Introduction to the physics of landslides. Springer, New York

    Google Scholar 

  2. Huang YPH (2014) Slope stability analysis by the limit equilibrium method: Fundamentals and methods. ASCE Press, Reston

    Book  Google Scholar 

  3. Shi B, Zhang Y, Zhang W (2018) Analysis of the entire failure process of the rotational slide using the material point method. Int J Geomech 18:1–13. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001211

    Article  Google Scholar 

  4. Kostić S, Vasović N, Sunarić D (2016) Slope stability analysis based on experimental design. Int J Geomech 16:1–11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000551

    Article  Google Scholar 

  5. Erguler ZA, Karakuş H, Ediz IG, Şensöğüt C (2020) Assessment of design parameters and the slope stability analysis of weak clay-bearing rock masses and associated spoil piles at Tunçbilek basin. Arab J Geosci. https://doi.org/10.1007/s12517-019-5030-8

    Article  Google Scholar 

  6. Pei H, Jing J, Zhang S (2020) Experimental study on a new FBG-based and Terfenol-D inclinometer for slope displacement monitoring. Meas J Int Meas Confed 151:107172. https://doi.org/10.1016/j.measurement.2019.107172

    Article  Google Scholar 

  7. Helwany S (2007) Applied soil mechanics: with ABAQUS applications. Wiley, New York

    Book  Google Scholar 

  8. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific Publishing Co. Pte. Ltd.

  9. Huang Y, Dai Z, Zhang W (2014) Geo-disaster modeling and analysis: an SPH-based approach. Springer, Berlin

    Google Scholar 

  10. Rahman MA, Konagai K (2018) A hands-on approach to estimate debris flow velocity for rational mitigation of debris hazard. Can Geotech J 55:941–955. https://doi.org/10.1139/cgj-2017-0211

    Article  Google Scholar 

  11. Islam MR, Hayano K, Rahman MA (2019) Insights into effects of seepage on failure of breakwater mound: experimental and numerical investigations. Indian Geotech J. https://doi.org/10.1007/s40098-019-00356-8

    Article  Google Scholar 

  12. Islam MR, Rahman MA, Hayano K (2020) Application of smoothed particle hydrodynamics (SPH) for simulating various geotechnical problems. SN Appl Sci. https://doi.org/10.1007/s42452-020-2379-y

    Article  Google Scholar 

  13. Wang G, Riaz A, Balachandran B (2019) Smooth particle hydrodynamics studies of wet granular column collapses. Acta Geotech. https://doi.org/10.1007/s11440-019-00828-4

    Article  Google Scholar 

  14. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J. https://doi.org/10.1086/112164

    Article  Google Scholar 

  15. Gomez-Gesteira M, Dalrymple RA (2004) Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. J Waterw Port Coastal Ocean Eng 130:63–69

    Article  Google Scholar 

  16. Fang J, Owens RG, Tacher L, Parriaux A (2006) A numerical study of the SPH method for simulating transient viscoelastic free surface flows. J Nonnewton Fluid Mech 139:68–84. https://doi.org/10.1016/j.jnnfm.2006.07.004

    Article  Google Scholar 

  17. Akbari H (2017) Simulation of wave overtopping using an improved SPH method. Coast Eng 126:51–68. https://doi.org/10.1016/j.coastaleng.2017.04.010

    Article  Google Scholar 

  18. Crespo AJ, Gómez-Gesteira M, Dalrymple RA (2008) Modeling Dam Break Behavior over a Wet Bed by a SPH Technique. J Waterw Port Coastal Ocean Eng 134:313–320. https://doi.org/10.1061/(asce)0733-950x(2008)134:6(313)

    Article  Google Scholar 

  19. Parmas B, Vosoughifar HR (2016) Novel method of boundary condition of dam-break phenomena using ghost-particle SPH. Nat Hazards 84:897–910. https://doi.org/10.1007/s11069-016-2463-1

    Article  Google Scholar 

  20. Ran Q, Tong J, Shao S et al (2015) Advances in Water Resources Incompressible SPH scour model for movable bed dam break flows. Adv Water Resour 82:39–50. https://doi.org/10.1016/j.advwatres.2015.04.009

    Article  Google Scholar 

  21. Shao JR, Li HQ, Liu GR, Liu MB (2012) An improved SPH method for modeling liquid sloshing dynamics. Comput Struct 100–101:18–26. https://doi.org/10.1016/j.compstruc.2012.02.005

    Article  Google Scholar 

  22. Wang G, Riaz A, Balachandran B (2017) Computational studies on interactions between robot leg and deformable terrain. Procedia Eng 199:2439–2444. https://doi.org/10.1016/j.proeng.2017.09.376

    Article  Google Scholar 

  23. Ghadampour Z, Hashemi MR, Talebbeydokhti N et al (2015) Some numerical aspects of modelling flow around hydraulic structures using incompressible SPH. Comput Math Appl 69:1470–1483. https://doi.org/10.1016/j.camwa.2015.04.001

    Article  Google Scholar 

  24. Zheng X, Duan WY (2010) Numerical simulation of dam breaking using smoothed particle hydrodynamics and viscosity behavior. J Mar Sci Appl 9:34–41. https://doi.org/10.1007/s11804-010-8037-9

    Article  Google Scholar 

  25. Ferrari A, Dumbser M, Toro EF, Armanini A (2009) A new 3D parallel SPH scheme for free surface flows. Comput Fluids 38:1203–1217. https://doi.org/10.1016/j.compfluid.2008.11.012

    Article  Google Scholar 

  26. Dalrymple RA, Rogers BD (2006) Numerical modeling of water waves with the SPH method. Coast Eng 53:141–147. https://doi.org/10.1016/j.coastaleng.2005.10.004

    Article  Google Scholar 

  27. Jian W, Liang D, Shao S et al (2015) SPH study of the evolution of water–water interfaces in dam break flows. Nat Hazards 78:531–553. https://doi.org/10.1007/s11069-015-1726-6

    Article  Google Scholar 

  28. Ferrari A (2010) SPH simulation of free surface flow over a sharp-crested weir. Adv Water Resour 33:270–276. https://doi.org/10.1016/j.advwatres.2009.12.005

    Article  Google Scholar 

  29. Chang TJ, Kao HM, Chang KH, Hsu MH (2011) Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics. J Hydrol 408:78–90. https://doi.org/10.1016/j.jhydrol.2011.07.023

    Article  Google Scholar 

  30. Ghaïtanellis A, Violeau D, Ferrand M et al (2018) A SPH elastic-viscoplastic model for granular flows and bed-load transport. Adv Water Resour 111:156–173. https://doi.org/10.1016/j.advwatres.2017.11.007

    Article  Google Scholar 

  31. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int J Numer Anal Methods Geomech 32:1537–1570. https://doi.org/10.1002/nag

    Article  Google Scholar 

  32. Zhu C, Huang Y, Zhan LT (2018) SPH-based simulation of flow process of a landslide at Hongao landfill in China. Nat Hazards 93:1113–1126. https://doi.org/10.1007/s11069-018-3342-8

    Article  Google Scholar 

  33. Huang Y, Dai Z, Zhang W, Chen Z (2011) Visual simulation of landslide fluidized movement based on smoothed particle hydrodynamics. Nat Hazards 59:1225–1238. https://doi.org/10.1007/s11069-011-9859-8

    Article  Google Scholar 

  34. Dai Z, Huang Y, Cheng H, Xu Q (2014) 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake. Eng Geol 180:21–33. https://doi.org/10.1016/j.enggeo.2014.03.018

    Article  Google Scholar 

  35. Dai Z, Huang Y, Cheng H, Xu Q (2017) SPH model for fluid–structure interaction and its application to debris flow impact estimation. Landslides 14:917–928. https://doi.org/10.1007/s10346-016-0777-4

    Article  Google Scholar 

  36. Nguyen CT, Nguyen CT, Bui HH et al (2017) A new SPH-based approach to simulation of granular flows using viscous damping and stress regularisation. Landslides 14:69–81. https://doi.org/10.1007/s10346-016-0681-y

    Article  Google Scholar 

  37. Huang Y, Cheng H, Dai Z et al (2015) SPH-based numerical simulation of catastrophic debris flows after the 2008 Wenchuan earthquake. Bull Eng Geol Environ 74:1137–1151. https://doi.org/10.1007/s10064-014-0705-6

    Article  Google Scholar 

  38. Wang W, Chen G, Han Z et al (2016) 3D numerical simulation of debris-flow motion using SPH method incorporating non-Newtonian fluid behavior. Nat Hazards 81:1981–1998. https://doi.org/10.1007/s11069-016-2171-x

    Article  Google Scholar 

  39. Braun A, Cuomo S, Petrosino S et al (2018) Numerical SPH analysis of debris flow run-out and related river damming scenarios for a local case study in SW China. Landslides 15:535–550. https://doi.org/10.1007/s10346-017-0885-9

    Article  Google Scholar 

  40. Hu M, Liu MB, Xie MW, Liu GR (2015) Three-dimensional run-out analysis and prediction of flow-like landslides using smoothed particle hydrodynamics. Environ Earth Sci 73:1629–1640. https://doi.org/10.1007/s12665-014-3513-1

    Article  Google Scholar 

  41. Rahman MA, Konagai K (2017) Substantiation of debris flow velocity from super-elevation: a numerical approach. Landslides 14:633–647. https://doi.org/10.1007/s10346-016-0725-3

    Article  Google Scholar 

  42. Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149:135–143

    Google Scholar 

  43. Lube G, Huppert HE, Sparks RSJ, Hallworth MA (2004) Axisymmetric collapses of granular columns. J Fluid Mech. https://doi.org/10.1017/S0022112004009036

    Article  Google Scholar 

  44. Rahman MA (2016) Ascertaining a hands-on approach to estimate debris flow velocities for rational debris hazard mitigation. PhD Diss Yokohama Natl Univ

Download references

Acknowledgement

Not Applicable.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Aftabur Rahman.

Ethics declarations

Ethical Statement

The submitted paper complies with the Ethical Standard of the journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.A., Tabassum, N. & Islam, M.R. Different aspects of slope failures considering large deformation: application of smoothed particle hydrodynamics (SPH). Innov. Infrastruct. Solut. 6, 37 (2021). https://doi.org/10.1007/s41062-020-00405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-020-00405-9

Keywords

Navigation