Skip to main content

Advertisement

Log in

Progress in sustainable structural engineering: a review

  • Review
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

This paper reports an extensive review on the development of sustainability practices in structural engineering. Using the systematic review approach, the historical development, application, and advancements of sustainability concepts and practices in structural engineering are presented. Reviews are conducted in terms of structural design, construction materials, and sustainability assessment tools with regard to the triple bottom line aspect of sustainability and multi-hazard resilience. All three factors are summed up, and future avenues are discussed in the paper. The findings highlight that more integrated approaches are needed in the future to assure sustainability practices in structural engineering. Furthermore, it is concluded that the endorsement of sustainability approaches in structural engineering would be a pertinent solution for the changing landscape of structural engineering amidst the multi-hazard challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abd Elhakam A, Mohamed AE, Awad E (2012) Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2012.04.013

    Article  Google Scholar 

  2. Abergel T, Dean B, Dulac J (2017) Towards a zero-emission, efficient, and resilient buildings and construction sector: global status report 2017. UN Environment and International Energy Agency, Paris, France

    Google Scholar 

  3. Achour N, Pantzartzis E, Pascale F, Price ADF (2015) Integration of resilience and sustainability: from theory to application. Int J Disaster Resil Built Environ 6(3):347–362. https://doi.org/10.1108/IJDRBE-05-2013-0016

    Article  Google Scholar 

  4. Adeli H (2002) Sustainable infrastructure systems and environmentally-conscious design—a view for the next decade. J Comput Civ Eng. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:4(231)

    Article  Google Scholar 

  5. Adhikari R, Gautam D, Jha P, Aryal B, Ghalan K, Rupakhety R, Dong Y, Rodrigues H, Motra G (2019) Bridging multi-hazard vulnerability and sustainability: approaches and applications to Nepali highway bridges. Resil Struct Infrastruct. https://doi.org/10.1007/978-981-13-7446-3_14

    Article  Google Scholar 

  6. Adhikari P, Mahmoud H, Xie A, Simonen K, Ellingwood B (2020) Life-cycle cost and carbon footprint analysis for light-framed residential buildings subjected to tornado hazard. J Build Eng 32:101657. https://doi.org/10.1016/j.jobe.2020.101657

    Article  Google Scholar 

  7. Akadiri PO (2015) Understanding barriers affecting the selection of sustainable materials in building projects. J Build Eng 4:86–93. https://doi.org/10.1016/j.jobe.2015.08.006

    Article  Google Scholar 

  8. Aktas CB, Bilec MM (2012) Impact of lifetime on us residential building LCA results. Int J Life Cycle Assess 17(3):337–349. https://doi.org/10.1007/s11367-011-0363-x

    Article  Google Scholar 

  9. Ali MM, Moon KS (2007) Structural developments in tall buildings: current trends and future prospects. Archit Sci Rev 50(3):205–223. https://doi.org/10.3763/asre.2007.5027

    Article  Google Scholar 

  10. Ali MM, Moon KS (2018) Advances in structural systems for tall buildings: emerging developments for contemporary urban giants. Buildings. https://doi.org/10.3390/buildings8080104

    Article  Google Scholar 

  11. Alleman JE, Berman NA (1984) Constructive sludge management: biobrick. J Environ Eng (US) 110(2):301–311. https://doi.org/10.1061/(ASCE)0733-9372(1984)110:2(301)

    Article  Google Scholar 

  12. American Society of Civil Engineers (ASCE) (2010) Sustainability guidelines for the structural engineer. Structural Engineering Institute, Reston, VA. 2010. https://ascelibrary.org/doi/book/10.1061/9780784411193

  13. Anand CK, Amor B (2017) Recent developments, future challenges and new research directions in LCA of buildings: a critical review. Renew Sustain Energy Rev 67:408–416. https://doi.org/10.1016/j.rser.2016.09.058

    Article  Google Scholar 

  14. Anderies JM (2014) Embedding built environments in social-ecological systems: resilience-based design principles. Build Res Inf. https://doi.org/10.1080/09613218.2013.857455

    Article  Google Scholar 

  15. Anderson JE, Silman R (2009) A life cycle inventory of structural engineering design strategies for greenhouse gas reduction. Struct Eng Int J Int Assoc Bridge Struct Eng (IABSE) 19(3):283–288. https://doi.org/10.2749/101686609788957946

    Article  Google Scholar 

  16. Anić F, Penava D, Abrahamczyk L, Sarhosis V (2020) A review of experimental and analytical studies on the out-of-plane behaviour of masonry infilled frames. Bull Earthq Eng. https://doi.org/10.1007/s10518-019-00771-5

    Article  Google Scholar 

  17. Anwar GA, Dong Y, Zhai C (2019) Performance-based probabilistic framework for seismic risk, resilience, and sustainability assessment of reinforced concrete structures. Adv Struct Eng. https://doi.org/10.1177/1369433219895363

    Article  Google Scholar 

  18. Aoude H, Dagenais FP, Burrell RP, Saatcioglu M (2015) Behavior of ultra-high performance fiber reinforced concrete columns under blast loading. Int J Impact Eng. https://doi.org/10.1016/j.ijimpeng.2015.02.006

    Article  Google Scholar 

  19. Asadi E, Adeli H (2017) Diagrid: an innovative, sustainable, and efficient structural system. Struct Des Tall Spec Build 26(8):1–11. https://doi.org/10.1002/tal.1358

    Article  Google Scholar 

  20. Aswegan K, Larsen R, Klemencic R, Hooper J, Hasselbauer J (2017) Performance-based wind and seismic engineering: benefits of considering multiple hazards. In: Structures congress 2017. American Society of Civil Engineers, Reston, VA. pp 473–84. https://doi.org/10.1061/9780784480410.039

  21. Attary N, Unnikrishnan VU, van de Lindt JW, Cox DT, Barbosa AR (2017) Performance-based tsunami engineering methodology for risk assessment of structures. Eng Struct 141:676–686. https://doi.org/10.1016/j.engstruct.2017.03.071

    Article  Google Scholar 

  22. Azapagi A (1999) Life cycle assessment and its application Tp process selection, design and optimization—review article. Chem Eng J 73(1385):1028–1041

    Google Scholar 

  23. Baharetha SM, Al-Hammad AA, Alshuwaikhat HM (2013) Towards a unified set of sustainable building materials criteria. In: ICSDEC 2012: developing the frontier of sustainable design, engineering, and construction—proceedings of the 2012 international conference on sustainable design and construction. https://doi.org/10.1061/9780784412688.088

  24. Barbato M, Petrini F, Unnikrishnan VU, Ciampoli M (2013) Performance-based hurricane engineering (PBHE) framework. Struct Saf 45:24–35. https://doi.org/10.1016/j.strusafe.2013.07.002

    Article  Google Scholar 

  25. Belucio M, Rodrigues C, Henggeler C, Freire F, Dias LC (2020) Eco-efficiency in early design decisions: a multimethodology approach. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.124630

    Article  Google Scholar 

  26. Benachio GLF, do Carmo Duarte Freitas M, Fernando Tavares S (2020) Circular economy in the construction industry: a systematic literature review. J Clean Prod 260:121046. https://doi.org/10.1016/j.jclepro.2020.121046

    Article  Google Scholar 

  27. Billah AHMM, Alam MS (2018) Probabilistic seismic risk assessment of concrete bridge piers reinforced with different types of shape memory alloys. Eng Struct. https://doi.org/10.1016/j.engstruct.2018.02.034

    Article  Google Scholar 

  28. Biondini F, Frangopol DM (2016) Life-cycle performance of deteriorating structural systems under uncertainty: review. J Struct Eng (US) 142(9):1–17. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001544

    Article  Google Scholar 

  29. Blebo FC, Roke DA (2018) Seismic-resistant self-centering rocking core system with buckling restrained columns. Eng Struct. https://doi.org/10.1016/j.engstruct.2018.06.117

    Article  Google Scholar 

  30. Boake TM (2013) Diagrid structures: innovation and detailing. In: Structures and architecture: concepts, applications and challenges—proceedings of the 2nd international conference on structures and architecture, ICSA 2013. pp 991–98

  31. Bocchini P, Frangopol DM, Ummenhofer T, Zinke T (2014) Resilience and sustainability of civil infrastructure: toward a unified approach. J Infrastruct Syst 20(2):1–16. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000177

    Article  Google Scholar 

  32. Brundtland GH (1987) Our common future: brundtland-report. Oxford, UK

  33. Bruneau M, Keller D (2009) Multi-hazard resistant steel plate shear wall bridge pier concept. Behav Steel Struct Seism Areas. https://doi.org/10.1201/9780203861592.ch121

    Article  Google Scholar 

  34. Bruneau M, El-Bahey S, Fujikura S, Keller d (2011) Structural fuses and concrete-filled steel shapes for seismic and multi-hazard resistant design. Bull N Z Soc Earthq Eng. https://doi.org/10.5459/bnzsee.44.1.45-52

    Article  Google Scholar 

  35. Bruneau M, Barbato M, Padgett JE, Zaghi AE, Mitrani-Reiser J, Li Y (2017) State of the art of multihazard design. J Struct Eng (US) 143(10):1–25. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001893

    Article  Google Scholar 

  36. BSI EN 15804 (2014) BS EN 15804:2012—standards publication sustainability of construction works—environmental product declarations—core rules for the product category of construction products. International Standard, no. February: 70

  37. Buschmeyer W, Fastabend M (2004) Methods for raising sustainable design of concrete structures. Struct Eng Int J Int Assoc Bridge Struct Eng (IABSE). https://doi.org/10.2749/101686604777963766

    Article  Google Scholar 

  38. Cabeza LF, Rincón L, Vilariño V, Pérez G, Castell A (2014) Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: a review. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2013.08.037

    Article  Google Scholar 

  39. Caniato M, Bettarello F, Fausti P, Ferluga A, Marsich L, Schmid C (2017) Impact sound of timber floors in sustainable buildings. Build Environ. https://doi.org/10.1016/j.buildenv.2017.05.015

    Article  Google Scholar 

  40. Caruso MC, Menna C, Asprone D, Prota A, Manfredi G (2017) Methodology for life-cycle sustainability assessment of building structures. ACI Struct J. https://doi.org/10.14359/51689426

    Article  Google Scholar 

  41. Chancellor NB, Eatherton MR, Roke DA, Akbas T (2014) Self-centering seismic lateral force resisting systems: high performance structures for the city of tomorrow. Buildings. https://doi.org/10.3390/buildings4030520

    Article  Google Scholar 

  42. Chandrasekaran S, Banerjee S (2016) Retrofit optimization for resilience enhancement of bridges under multihazard scenario. J Struct Eng (US). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001396

    Article  Google Scholar 

  43. Chen X, Yang H, Lin L (2015) A comprehensive review on passive design approaches in green building rating tools. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2015.06.003

    Article  Google Scholar 

  44. Chen J, Qiu Q, Han Y, Lau D (2019) Piezoelectric materials for sustainable building structures: fundamentals and applications. Renew Sustain Energy Rev 101:14–25. https://doi.org/10.1016/j.rser.2018.09.038

    Article  Google Scholar 

  45. Chopra SS, Dillon T, Bilec MM, Khanna V (2016) A network-based framework for assessing infrastructure resilience: a case study of the London metro system. J R Soc Interface. https://doi.org/10.1098/rsif.2016.0113

    Article  Google Scholar 

  46. Chou CC, Chen YC (2015) Development of steel dual-core self-centering braces: quasi-static cyclic tests and finite element analyses. Earthq Spectra. https://doi.org/10.1193/082712EQS272M

    Article  Google Scholar 

  47. Ciampoli M, Petrini F, Augusti G (2011) Performance-based wind engineering: towards a general procedure. Struct Saf. https://doi.org/10.1016/j.strusafe.2011.07.001

    Article  Google Scholar 

  48. Cole RJ (1999) building environmental assessment methods: clarifying intentions. Build Res Inf. https://doi.org/10.1080/096132199369354

    Article  Google Scholar 

  49. Collinge WO, Landis AE, Jones AK, Schaefer LA, Bilec MM (2013) Dynamic Life cycle assessment: framework and application to an institutional building. Int J Life Cycle Assess 18(3):538–552. https://doi.org/10.1007/s11367-012-0528-2

    Article  Google Scholar 

  50. Collings D (2006) An environmental comparison of bridge forms. Proc Inst Civ Eng Bridge Eng 159(4):1. https://doi.org/10.1680/bren.2006.159.4.163

    Article  Google Scholar 

  51. Collins A, Watts S, McAlister M (2008) The economics of sustainable tall buildings. In: CTBUH 2008, 8th world congress—tall and green: typology for a sustainable urban future, congress proceedings. Council on Tall Buildings and Urban Habitat, pp 176–85

  52. Comber MV, Poland CD (2013) Disaster resilience and sustainable design: quantifying the benefits of a holistic design approach. In: Structures congress 2013: bridging your passion with your profession—proceedings of the 2013 structures congress. pp 2717–2728. https://doi.org/10.1061/9780784412848.236

  53. Costa D, Quinteiro P, Dias AC (2019) Science of the total environment a systematic review of life cycle sustainability assessment: current state, methodological challenges, and implementation issues. Sci Total Environ 686:774–787. https://doi.org/10.1016/j.scitotenv.2019.05.435

    Article  Google Scholar 

  54. Cutter SL, Barnes L, Berry M, Burton C, Evans E, Tate E, Webb J (2008) A place-based model for understanding community resilience to natural disasters. Glob Environ Change. https://doi.org/10.1016/j.gloenvcha.2008.07.013

    Article  Google Scholar 

  55. D’Amico B, Pomponi F, Hart J (2021) Global potential for material substitution in building construction: the case of cross laminated timber. J Clean Prod 279:123487. https://doi.org/10.1016/j.jclepro.2020.123487

    Article  Google Scholar 

  56. Danatzko JM, Sezen H (2011) Sustainable structural design methodologies. Pract Period Struct Des Constr 16(4):186–190. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000095

    Article  Google Scholar 

  57. Danatzko JM, Sezen H, Chen Q (2013) Sustainable design and energy consumption analysis for structural components. J Green Build 8(1):120–135. https://doi.org/10.3992/jgb.8.1.120

    Article  Google Scholar 

  58. Di Maria A, Snellings R, Alaert L, Quaghebeur M, Van Acker K (2020) Environmental Assessment of CO2 mineralisation for sustainable construction materials. Int J Greenhouse Gas Control 93:102882. https://doi.org/10.1016/j.ijggc.2019.102882

    Article  Google Scholar 

  59. Ding GKC (2008) Sustainable construction—the role of environmental assessment tools. J Environ Manag 86(3):451–464

    Article  Google Scholar 

  60. Ding GKC (2013) Life cycle assessment (LCA) of sustainable building materials: an overview. In: Eco-efficient construction and building materials: life cycle assessment (LCA), eco-labelling and case studies. pp 38–62. https://doi.org/10.1533/9780857097729.1.38

  61. Doan DT, Ghaffarianhoseini A, Naismith N, Zhang T, Ghaffarianhoseini A, Tookey J (2017) A critical comparison of green building rating systems. Build Environ. https://doi.org/10.1016/j.buildenv.2017.07.007

    Article  Google Scholar 

  62. Dong YH, Ng ST (2015) A social life cycle assessment model for building construction in Hong Kong. Int J Life Cycle Assess 20(8):1166–1180. https://doi.org/10.1007/s11367-015-0908-5

    Article  Google Scholar 

  63. Dong YH, Ng ST (2016) A modeling framework to evaluate sustainability of building construction based on LCSA. Int J Life Cycle Assess 21(4):555–568. https://doi.org/10.1007/s11367-016-1044-6

    Article  Google Scholar 

  64. Dong S, Feng C, Kamat VR (2013) Sensitivity analysis of augmented reality-assisted building damage reconnaissance using virtual prototyping. Autom Constr. https://doi.org/10.1016/j.autcon.2012.09.005

    Article  Google Scholar 

  65. DuToit NE, Wardle BL, Kim SG (2005) Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr. https://doi.org/10.1080/10584580590964574

    Article  Google Scholar 

  66. Echevarria A, Zaghi AE, Christenson R, Plank R (2015) Residual axial capacity comparison of CFFT and RC bridge columns after fire. Polymers. https://doi.org/10.3390/polym7050876

    Article  Google Scholar 

  67. Echevarria A, Zaghi AE, Christenson R, Accorsi M (2016) CFFT bridge columns for multihazard resilience. J Struct Eng (US). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001292

    Article  Google Scholar 

  68. Eleftheriadis S, Mumovic D, Greening P (2017) Life cycle energy efficiency in building structures: a review of current developments and future outlooks based on BIM capabilities. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2016.09.028

    Article  Google Scholar 

  69. Elkington J (1997) Cannibals with forks: the triple bottom line of 21st century. Altern Manag Observ. https://doi.org/10.1002/tqem.3310080106

    Article  Google Scholar 

  70. Elnimeiri M, Gupta P (2008) Sustainable structure of tall buildings. Struct Des Tall Spec Build 17(5):881–894. https://doi.org/10.1002/tal.471

    Article  Google Scholar 

  71. Erturk A (2011) Piezoelectric energy harvesting for civil infrastructure system applications: moving loads and surface strain fluctuations. J Intell Mater Syst Struct. https://doi.org/10.1177/1045389X11420593

    Article  Google Scholar 

  72. European Committee for Standardization (2011) UNE-EN 15978:2011 sustainability of construction works—assessment of environmental performance of buildings—calculation method. International Standard

  73. Fantilli AP, Mancinelli O, Chiaia B (2019) The carbon footprint of normal and high-strength concrete used in low-rise and high-rise buildings. Case Stud Constr Mater 11:e00296. https://doi.org/10.1016/j.cscm.2019.e00296

    Article  Google Scholar 

  74. Fauzi RT, Lavoie P, Sorelli L, Heidari MD, Amor B (2019) Exploring the current challenges and opportunities of life cycle sustainability assessment. Sustainability (Switzerland) 11(3):1–17. https://doi.org/10.3390/su11030636

    Article  Google Scholar 

  75. Fenner AE, Kibert CJ, Woo J, Morque S, Razkenari M, Hakim H, Xiaoshu L (2018) The carbon footprint of buildings: a review of methodologies and applications. Renew Sustain Energy Rev 94(March):1142–1152. https://doi.org/10.1016/j.rser.2018.07.012

    Article  Google Scholar 

  76. Ferrández-García A, Ibáñez-Forés V, Bovea MD (2016) Eco-efficiency analysis of the life cycle of interior partition walls: a comparison of alternative solutions. J Clean Prod 112(1):649–665. https://doi.org/10.1016/j.jclepro.2015.07.136

    Article  Google Scholar 

  77. Fick G, Mirgaux O, Neau P, Patisson F (2014) Using biomass for pig iron production: a technical, environmental and economical assessment. Waste Biomass Valoriz 5(1):43–55. https://doi.org/10.1007/s12649-013-9223-1

    Article  Google Scholar 

  78. Fiksel J (2003) Designing resilient, sustainable systems. Environ Sci Technol 37(23):5330–5339. https://doi.org/10.1021/es0344819

    Article  Google Scholar 

  79. Finkbeiner M, Schau EM, Lehmann A, Traverso M (2010) Towards life cycle sustainability assessment. Sustainability. https://doi.org/10.3390/su2103309

    Article  Google Scholar 

  80. Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21

    Article  Google Scholar 

  81. Fouche PP (2014) Blast and seismic resistant concrete-filled double skin tubes and modified steel jacketed bridge columns. State University of New York, Buffalo

    Google Scholar 

  82. Fouché P, Bruneau M, Chiarito VP (2016) Modified steel-jacketed columns for combined blast and seismic retrofit of existing bridge columns. J Bridge Eng. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000882

    Article  Google Scholar 

  83. Frangopol DM (2015) Risk, resilience, and sustainability assessment of infrastructure systems in a life-cycle context considering uncertainties. pp 1–8

  84. Fujikura S, Bruneau M (2011) Experimental investigation of seismically resistant bridge piers under blast loading. J Bridge Eng. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000124

    Article  Google Scholar 

  85. Fujikura S, Bruneau M (2012) Dynamic analysis of multihazard-resistant bridge piers having concrete-filled steel tube under blast loading. J Bridge Eng. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000270

    Article  Google Scholar 

  86. Fujikura S, Bruneau M, Lopez-Garcia D (2008) Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading. J Bridge Eng. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:6(586)

    Article  Google Scholar 

  87. Furtado A, Rodrigues H, Arêde A, Varum H (2015) Experimental characterization of the in-plane and out-of-plane behaviour of infill masonry walls. Procedia Eng. https://doi.org/10.1016/j.proeng.2015.08.041

    Article  Google Scholar 

  88. Furtado A, Rodrigues H, Arêde A, Varum H (2020) Effect of the panel width support and columns axial load on the infill masonry walls out-of-plane behavior. J Earthq Eng. https://doi.org/10.1080/13632469.2018.1453400

    Article  Google Scholar 

  89. Furuta H, Kameda T, Fukuda Y, Frangopol DM (2003) Life-cycle cost analysis for infrastructure systems: life-cycle cost vs. safety level vs. service life. Life Cycle Perform Deterior Struct. https://doi.org/10.1061/40707(240)3

    Article  Google Scholar 

  90. Gan W, Chen C, Wang Z, Song J, Kuang Y, He S, Mi R, Sunderland PB, Liangbing H (2019) Dense, self-formed char layer enables a fire-retardant wood structural material. Adv Funct Mater. https://doi.org/10.1002/adfm.201807444

    Article  Google Scholar 

  91. Gautam D, Dong Y (2018) Multi-hazard vulnerability of structures and lifelines due to the 2015 gorkha earthquake and 2017 central Nepal flash flood. J Build Eng. https://doi.org/10.1016/j.jobe.2018.02.016

    Article  Google Scholar 

  92. Gautam D, Adhikari R, Jha P, Rupakhety R, Yadav M (2020) Windstorm vulnerability of residential buildings and infrastructures in south-central Nepal. J Wind Eng Ind Aerodyn. https://doi.org/10.1016/j.jweia.2020.104113

    Article  Google Scholar 

  93. Gencturk B, Hossain K, Lahourpour S (2016) Life cycle sustainability assessment of rc buildings in seismic regions. Eng Struct 110:347–362. https://doi.org/10.1016/j.engstruct.2015.11.037

    Article  Google Scholar 

  94. Gerbens-Leenes PW, Hoekstra AY, Bosman R (2018) The blue and grey water footprint of construction materials: steel, cement and glass. Water Resour Ind 19:1–12. https://doi.org/10.1016/j.wri.2017.11.002

    Article  Google Scholar 

  95. Gervásio HMS (2010) Sustainable design and integral life-cycle analysis of bridges

  96. Gervásio H (2017) Structural eco-efficiency: harmonising structural and environmental assessments. Eur J Environ Civ Eng 8189:1–12. https://doi.org/10.1080/19648189.2016.1277374

    Article  Google Scholar 

  97. Gervásio H, da Silva LS (2008) Comparative life-cycle analysis of steel-concrete composite bridges. Struct Infrastruct Eng. https://doi.org/10.1080/15732470600627325

    Article  Google Scholar 

  98. González-Vallejo P, Muntean R, Solís-Guzmán J, Marrero M (2020) Carbon footprint of dwelling construction in Romania and Spain. a comparative analysis with the OERCO2 tool. Sustainability (Switzerland). https://doi.org/10.3390/SU12176745

    Article  Google Scholar 

  99. Grigorian M, Grigorian CE (2018) Sustainable earthquake-resisting system. J Struct Eng (US) 144(2):1–13. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001900

    Article  Google Scholar 

  100. Gustavsson L, Sathre R (2006) Variability in energy and carbon dioxide balances of wood and concrete building materials. Build Environ. https://doi.org/10.1016/j.buildenv.2005.04.008

    Article  Google Scholar 

  101. Haapio A, Viitaniemi P (2008) A critical review of building environmental assessment tools. Environ Impact Assess Rev 28(7):469–482. https://doi.org/10.1016/j.eiar.2008.01.002

    Article  Google Scholar 

  102. Halis Gunel M, Emre Ilgin H (2007) A proposal for the classification of structural systems of tall buildings. Build Environ 42(7):2667–2675. https://doi.org/10.1016/j.buildenv.2006.07.007

    Article  Google Scholar 

  103. Hammervold J, Reenaas M, Brattebø H (2013) environmental life cycle assessment of bridges. J Bridge Eng. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000328

    Article  Google Scholar 

  104. Han G, Srebric J, Enache-Pommer E (2014) Variability of optimal solutions for building components based on comprehensive life cycle cost analysis. Energy Build 79:223–231. https://doi.org/10.1016/j.enbuild.2013.10.036

    Article  Google Scholar 

  105. Han MY, Chen GQ, Jing Meng X, Alsaedi A, Ahmad B (2016) Virtual water accounting for a building construction engineering project with nine sub-projects: a case in E-town, beijing. J Clean Prod 112:4691–4700. https://doi.org/10.1016/j.jclepro.2015.07.048

    Article  Google Scholar 

  106. Hashemi A, Zarnani P, Masoudnia R, Quenneville P (2017) Seismic resistant rocking coupled walls with innovative resilient slip friction (RSF) joints. J Constr Steel Res. https://doi.org/10.1016/j.jcsr.2016.11.016

    Article  Google Scholar 

  107. Hasik V, Chhabra JPS, Warn GP, Bilec MM (2017) Investigation of the sustainability and resilience characteristics of buildings including existing and potential assessment metrics. In: AEI 2017: resilience of the integrated building—proceedings of the architectural engineering national conference 2017. pp 1019–33. https://doi.org/10.1061/9780784480502.085

  108. Hasik V, Ororbia M, Warn GP, Bilec MM (2019) Whole building life cycle environmental impacts and costs: a sensitivity study of design and service decisions. Build Environ 163:106316. https://doi.org/10.1016/j.buildenv.2019.106316

    Article  Google Scholar 

  109. Hoekstra AY, Chapagain AK, Mekonnen MM, Aldaya MM (2011) The water footprint assessment manual: setting the global standard. Routledge, Abingdon

    Google Scholar 

  110. Hong J, Shen Q, Xue F (2016) A multi-regional structural path analysis of the energy supply chain in China’s construction industry. Energy Policy. https://doi.org/10.1016/j.enpol.2016.01.017

    Article  Google Scholar 

  111. Hossain MU, Poon CS, Dong YH, Lo IMC, Cheng JCP (2018) development of social sustainability assessment method and a comparative case study on assessing recycled construction materials. Int J Life Cycle Assess 23(8):1654–1674. https://doi.org/10.1007/s11367-017-1373-0

    Article  Google Scholar 

  112. Hossaini N, Reza B, Akhtar S, Sadiq R, Hewage K (2015) AHP based life cycle sustainability assessment (LCSA) framework: a case study of six storey wood frame and concrete frame buildings in Vancouver. J Environ Plan Manag 58(7):1217–1241. https://doi.org/10.1080/09640568.2014.920704

    Article  Google Scholar 

  113. Hosseinian SM, Ghahari SM (2021) The relationship between structural parameters and water footprint of residential buildings. J Clean Prod 279:123562. https://doi.org/10.1016/j.jclepro.2020.123562

    Article  Google Scholar 

  114. Hosseinian SM, Nezamoleslami R (2019) Environmental water footprints, environmental water footprints. energy and building sectors. Springer, Singapore. https://doi.org/10.1007/978-981-13-2739-1

    Book  Google Scholar 

  115. Hosseinijou SA, Mansour S, Shirazi MA (2014) Social life cycle assessment for material selection: a case study of building materials. Int J Life Cycle Assess 19(3):620–645. https://doi.org/10.1007/s11367-013-0658-1

    Article  Google Scholar 

  116. Hu M, Kleijn R, Bozhilova-Kisheva KP, Di Maio F (2013) An approach to LCSA: the case of concrete recycling. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-013-0599-8

    Article  Google Scholar 

  117. Huang W, Li F, Cui SH, Huang L, Lin JY (2017) Carbon footprint and carbon emission reduction of urban buildings: a case in Xiamen City, China. Procedia Eng 198:1007–1017. https://doi.org/10.1016/j.proeng.2017.07.146

    Article  Google Scholar 

  118. Hung CC, El-Tawil S (2011) seismic behavior of a coupled wall system with HPFRC materials in critical regions. J Struct Eng. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000393

    Article  Google Scholar 

  119. Ibáñez-Forés V, Bovea MD, Azapagic A (2013) Assessing the sustainability of best available techniques (BAT): Methodology and application in the ceramic tiles industry. J Clean Prod 51(July):162–176. https://doi.org/10.1016/j.jclepro.2013.01.020

    Article  Google Scholar 

  120. Illankoon IM, Chethana S, Tam VWY, Khoa NL (2017) Environmental, Economic, and social parameters in international green building rating tools. J Prof Issues Eng Educ Pract. https://doi.org/10.1061/(ASCE)EI.1943-5541.0000313

    Article  Google Scholar 

  121. Imani R, Mosqueda G, Bruneau M (2015) Finite element simulation of concrete-filled double-skin tube columns subjected to postearthquake fires. J Struct Eng 141(12):4015055

    Article  Google Scholar 

  122. ISO (2006) 14040: Environmental management-life cycle assessment—principles and framework. International Organization for Standardization, Geneva

    Google Scholar 

  123. ISO (2006) “ISO 14044:2006”. Environmental management—life cycle assessement—requirements and guidelines, ISO 14044. International Organization for Standardization, Geneva. https://doi.org/10.1007/s11367-011-0297-3

    Book  Google Scholar 

  124. ISO (2015) ISO 14046:2014, Water footprint: principles, requirements and guidelines. Environmental management

  125. ISO (2017) 15686-5: 2017—buildings and constructed assets—service life planning—part 5: life cycle costing. ISO, Geneva

    Google Scholar 

  126. ISO (2017) 21930: 2017-Sustainability in buildings and civil engineering works-core rules for environmental product declarations of construction products and services. International Organization for Standardization, Geneva (Switzerland)

    Google Scholar 

  127. ISO EN (2018) “14067, 2018.” Greenhouse gases. Carbon footprint of products. Requirements and guidelines for quantification. Julkaistu 9

  128. ISO (2019) ISO 15392:2019 sustainability in buildings and civil engineering works-general principles. ISO 15392

  129. ISO 14045 (2012) ISO 14045: environmental management—eco-efficiency assessment of product systems—principles—requirements and guidelines. International Organization for Standardization, Geneva

    Google Scholar 

  130. ISO TS (2011) ISO/TS 21929-1: 2011, sustainability in building construction—sustainability indicators—part 1: framework for the development of indicators for buildings, 2011th edn. ISO, Geneva, pp 1–24

    Google Scholar 

  131. Itoh Y, Kitagawa T (2003) Using CO2 emission quantities in bridge lifecycle analysis. Eng Struct. https://doi.org/10.1016/S0141-0296(02)00167-0

    Article  Google Scholar 

  132. Itoh Y, Nagata H, Liu C, Nishikawa K (2000) Comparative study of optimized and conventional bridges: life cycle cost and environmental impact. In: Proceedings of the 1st US–Japan workshop on life-cycle cost analysis and design of civil infrastructure systems—life-cycle cost analysis and design of civil infrastructure systems, vol. 304. https://doi.org/10.1061/40571(304)8

  133. Janjua SY, Sarker PK, Biswas WK (2019) Sustainability assessment of a residential building using a life cycle assessment approach. Chem Eng Trans 72:19–24. https://doi.org/10.3303/CET1972004

    Article  Google Scholar 

  134. Jayalath A, Navaratnam S, Ngo T, Mendis P, Hewson N, Aye L (2020) Life cycle performance of cross laminated timber mid-rise residential buildings in Australia. Energy Build 223:110091. https://doi.org/10.1016/j.enbuild.2020.110091

    Article  Google Scholar 

  135. Johnson KJ, Fung JF, McAllister TP, McCabe SL, Sattar S, Segura CL Jr (2020) Social and economic components of resilient multihazard building design. Nat Hazards Rev 21(1):1–6. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000334

    Article  Google Scholar 

  136. Kamali M, Hewage K, Sadiq R (2019) Conventional versus modular construction methods: a comparative cradle-to-gate LCA for residential buildings. Energy Build 204:109479. https://doi.org/10.1016/j.enbuild.2019.109479

    Article  Google Scholar 

  137. Kang GS, Ap L, Kren A (2006) Structural engineering strategies towards sustainable design. In: SEAOC proceedings. pp 473–90

  138. Khan J, Zakaria R, Shamsudin S, Abidin N, Sahamir S, Abbas D, Aminudin E (2019) Evolution to emergence of green buildings: a review. Admin Sci 9(1):6. https://doi.org/10.3390/admsci9010006

    Article  Google Scholar 

  139. Kibert CJ (1994) Sustainable construction: proceedings of the first international conference of CIB TG 16. Univ of Florida Center, Tampa

    Google Scholar 

  140. Kloepffer W (2008) Life cycle sustainability assessment of products. Int J Life Cycle Assess. https://doi.org/10.1065/lca2008.02.376

    Article  Google Scholar 

  141. Kölsch D, Saling P, Kicherer A, Grosse-Sommer A, Schmidt I (2008) How to measure social impacts? A socio-eco-efficiency analysis by the SEEBALANCE® method. Int J Sustain Dev 11(1):1–23. https://doi.org/10.1504/IJSD.2008.020380

    Article  Google Scholar 

  142. Kucukvar M, Tatari O (2013) Towards a triple bottom-line sustainability assessment of the U.S. construction industry. Int J Life Cycle Assess 18(5):958–972. https://doi.org/10.1007/s11367-013-0545-9

    Article  Google Scholar 

  143. Lamperti Tornaghi M, Loli A, Negro P (2018) Balanced evaluation of structural and environmental performances in building design. Buildings. https://doi.org/10.3390/buildings8040052

    Article  Google Scholar 

  144. Lange D, Devaney S, Usmani A (2014) An application of the PEER performance based earthquake engineering framework to structures in fire. Eng Struct 66:100–115. https://doi.org/10.1016/j.engstruct.2014.01.052

    Article  Google Scholar 

  145. Leon RT, Gao Y (2016) Resiliency of steel and composite structures. Front Struct Civ Eng. https://doi.org/10.1007/s11709-016-0349-7

    Article  Google Scholar 

  146. Lertcumfu N, Pengpat K, Eitssayeam S, Tunkasiri T, Rujijanagul G (2015) Electrical properties of BZT/mullite ceramic composites. Ceram Int. https://doi.org/10.1016/j.ceramint.2015.03.191

    Article  Google Scholar 

  147. Li Y, Ellingwood BR (2009) Framework for multihazard risk assessment and mitigation for wood-frame residential construction. J Struct Eng 135(2):159–168. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:2(159)

    Article  Google Scholar 

  148. Li Y, Ahuja A, Padgett JE (2012) Review of methods to assess, design for, and mitigate multiple hazards. J Perform Constr Facil 26(1):104–117. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000279

    Article  Google Scholar 

  149. Li YL, Han MY, Liu SY, Chen GQ (2019) Energy consumption and greenhouse gas emissions by buildings: a multi-scale perspective. Build Environ 151:240–250. https://doi.org/10.1016/j.buildenv.2018.11.003

    Article  Google Scholar 

  150. Li Y, Dong Y, Frangopol DM, Gautam D (2020) Long-term resilience and loss assessment of highway bridges under multiple natural hazards. Struct Infrastructure Eng. https://doi.org/10.1080/15732479.2019.1699936

    Article  Google Scholar 

  151. Li Y, Dong Y, Frangopol DM, Gautam D (2020) Long-term resilience and loss assessment of highway bridges under multiple natural hazards. Struct Infrastruct Eng. https://doi.org/10.1080/15732479.2019.1699936

    Article  Google Scholar 

  152. Liew KM, Sojobi AO, Zhang LW (2017) Green concrete: prospects and challenges. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.09.008

    Article  Google Scholar 

  153. Liu G, Baniyounes A, Rasul MG, Amanullah MTO, Khan MMK, United Nations Environmental Program (UNEP) et al (2013) Towards a life cycle sustainability a ssessment: making informed choices on products. Int J Life Cycle Assess 18(4):1710–1721. https://doi.org/10.1007/s11367-012-0482-z

    Article  Google Scholar 

  154. Liu Y, Guo H, Sun C, Chang WS (2016) Assessing cross laminated timber (CLT) as an alternative material for mid-rise residential buildings in cold regions in china-a life-cycle assessment approach. Sustainability (Switzerland). https://doi.org/10.3390/su8101047

    Article  Google Scholar 

  155. Lombardi M, Laiola E, Tricase C, Rana R (2017) Assessing the urban carbon footprint: an overview. Environ Impact Assess Rev 1:1. https://doi.org/10.1016/j.eiar.2017.06.005

    Article  Google Scholar 

  156. Lounis Z, Daigle L (2010) Towards sustainable design of highway bridges. In: Bridge maintenance, safety, management and life-cycle optimization—proceedings of the 5th international conference on bridge maintenance, safety and management, pp 1245–1251

  157. Lu X, Chen C (2014) Research progress in structural systems with replaceable members. J Earthq Eng Eng Vib. https://doi.org/10.13197/j.eeev.2014.01.27.luxl.004

    Article  Google Scholar 

  158. Lu G, Li Y, Zhou M, Feng Q, Song G (2018) Detecting damage size and shape in a plate structure using PZT transducer array. J Aerosp Eng 31(5):04018075. https://doi.org/10.1061/(asce)as.1943-5525.0000904

    Article  Google Scholar 

  159. Luo S, Jie F, Zhou Y, Yi C (2017) The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag. Renew Energy 101:1030–1036. https://doi.org/10.1016/j.renene.2016.09.072

    Article  Google Scholar 

  160. Mahdi Hosseinian S, Nezamoleslami R (2019) An empirical investigation into water footprint of concrete industry in Iran. In: Environmental footprints and eco-design of products and processes. Springer, pp 47–75. https://doi.org/10.1007/978-981-13-2739-1_3

  161. Mahin S (2008) Sustainable design considerations in earthquake engineering. In: The 14th world conference on earthquake engineering. p 8

  162. Mahmoud S, Zayed T, Fahmy M (2019) Development of sustainability assessment tool for existing buildings. Sustain Cities Soc 44:99–119. https://doi.org/10.1016/j.scs.2018.09.024

    Article  Google Scholar 

  163. Marjaba GE, Chidiac SE (2016) Sustainability and resiliency metrics for buildings—critical review. Build Environ. https://doi.org/10.1016/j.buildenv.2016.03.002

    Article  Google Scholar 

  164. Matthews EC, Sattler M, Friedland CJ (2014) A critical analysis of hazard resilience measures within sustainability assessment frameworks. Environ Impact Assess Rev 48:59–69. https://doi.org/10.1016/j.eiar.2014.05.003

    Article  Google Scholar 

  165. Matthews EC, Friedland CJ, Orooji F (2016) Integrated environmental sustainability and resilience assessment model for coastal flood hazards. J Build Eng 8:141–151. https://doi.org/10.1016/j.jobe.2016.08.002

    Article  Google Scholar 

  166. Mattinzioli T, Sol-Sánchez M, Moreno B, Alegre J, Martínez G (2020) Sustainable building rating systems: a critical review for achieving a common consensus. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2020.1732781

    Article  Google Scholar 

  167. Mattoni B, Guattari C, Evangelisti L, Bisegna F, Gori P, Asdrubali F (2018) Critical review and methodological approach to evaluate the differences among international green building rating tools. Renew Sustain Energy Rev 82:950–960. https://doi.org/10.1016/j.rser.2017.09.105

    Article  Google Scholar 

  168. Maydl P (2004) Sustainable engineering: state-of-the-art and prospects. Struct Eng Int J Int Assoc Bridge Struct Eng (IABSE). https://doi.org/10.2749/101686604777963928

    Article  Google Scholar 

  169. Maydl P (2006) Structural sustainability—the fourth dimension? Struct Eng Int J Int Assoc Bridge Struct Eng (IABSE) 16(3):268–269. https://doi.org/10.2749/101686606778026475

    Article  Google Scholar 

  170. Menna C, Asprone D, Jalayer F, Prota A, Manfredi G (2013) Assessment of ecological sustainability of a building subjected to potential seismic events during its lifetime. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-012-0477-9

    Article  Google Scholar 

  171. Milana G, Olmati P, Gkoumas K, Bontempi F (2015) Ultimate capacity of diagrid systems for tall buildings in nominal configuration and damaged state. Periodica Polytech Civ Eng 59(3):381–391. https://doi.org/10.3311/PPci.7795

    Article  Google Scholar 

  172. Miyatake Y (1996) Technology development and sustainable construction. J Manag Eng 12(4):23–27. https://doi.org/10.1061/(ASCE)0742-597X(1996)12:4(23)

    Article  Google Scholar 

  173. Monteiro PJM, Miller SA, Horvath A (2017) Towards sustainable concrete. Nat Mater. https://doi.org/10.1038/nmat4930

    Article  Google Scholar 

  174. Moon KS (2008) Sustainable structural engineering strategies for tall buildings. Struct Des Tall Spec Build 17(5):895–914. https://doi.org/10.1002/tal.475

    Article  Google Scholar 

  175. Moon KS (2010) Stiffness-based design methodology for steel braced tube structures: a sustainable approach. Eng Struct 32(10):3163–3170. https://doi.org/10.1016/j.engstruct.2010.06.004

    Article  Google Scholar 

  176. Moon KS (2011) Sustainable structural systems and configurations for tall buildings. In: AEI 2011: Building integrated solutions—proceedings of the AEI 2011 conference, no. 203. pp 196–203. https://doi.org/10.1061/41168(399)24

  177. Moon KS (2014) Comparative efficiency of structural systems for steel tall buildings. Int J Sustain Build Technol Urban Dev 5(3):230–237. https://doi.org/10.1080/2093761X.2014.948099

    Article  Google Scholar 

  178. Mosalam KM, Alibrandi U, Lee H, Armengou J (2018) Performance-based engineering and multi-criteria decision analysis for sustainable and resilient building design. Struct Saf 74:1–13. https://doi.org/10.1016/j.strusafe.2018.03.005

    Article  Google Scholar 

  179. Müllera HS, Breinera R, Moffatta JS, Haista M (2014) Design and properties of sustainable concrete. Procedia Eng 95:290–304. https://doi.org/10.1016/j.proeng.2014.12.189

    Article  Google Scholar 

  180. Nadoushani M, Zahra S, Akbarnezhad A (2015) Effects of structural system on the life cycle carbon footprint of buildings. Energy Build 102:337–346. https://doi.org/10.1016/j.enbuild.2015.05.044

    Article  Google Scholar 

  181. Naser MZ, Hawileh RA, Abdalla JA (2019) Fiber-reinforced polymer composites in strengthening reinforced concrete structures: a critical review. Eng Struct 198(June):109542. https://doi.org/10.1016/j.engstruct.2019.109542

    Article  Google Scholar 

  182. Navarro IJ, Yepes V, Martí JV (2018) Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environ Impact Assess Rev 72(May):50–63. https://doi.org/10.1016/j.eiar.2018.05.003

    Article  Google Scholar 

  183. Nezamoleslami R, Hosseinian SM (2020) An improved water footprint model of steel production concerning virtual water of personnel: the case of Iran. J Environ Manag 260:110065. https://doi.org/10.1016/j.jenvman.2020.110065

    Article  Google Scholar 

  184. Nidheesh PV, Suresh Kumar M (2019) An overview of environmental sustainability in cement and steel production. J Clean Prod 231:856–871. https://doi.org/10.1016/j.jclepro.2019.05.251

    Article  Google Scholar 

  185. Noël M, Sanchez L, Fathifazl G (2016) Recent advances in sustainable concrete for structural applications. In: Sustainable construction materials and technologies, vol 2016-Augus. International Committee of the SCMT conferences

  186. Nwodo MN, Anumba CJ (2019) A review of life cycle assessment of buildings using a systematic approach. Build Environ 162:106290. https://doi.org/10.1016/j.buildenv.2019.106290

    Article  Google Scholar 

  187. O’Brien M, Doig A, Clift R (1996) Social and environmental life cycle assessment (SELCA). Int J Life Cycle Assess. https://doi.org/10.1007/bf02978703

    Article  Google Scholar 

  188. Ochsendorf JA (2005) sustainable engineering: the future of structural design. Proc Struct Cong Expos. https://doi.org/10.1061/40753(171)146

    Article  Google Scholar 

  189. Öko-Institut (1987) Ökobilanzen Und Produktlinienanalysen. Öko-Inst

  190. Onat NC, Kucukvar M, Tatari O (2014) Integrating triple bottom line input–output analysis into life cycle sustainability assessment framework: the case for US buildings. Int J Life Cycle Assess 19(8):1488–1505. https://doi.org/10.1007/s11367-014-0753-y

    Article  Google Scholar 

  191. Onat NC, Kucukvar M, Tatari O (2014) Scope-based carbon footprint analysis of U.S. residential and commercial buildings: an input–output hybrid life cycle assessment approach. Build Environ 72:53–62. https://doi.org/10.1016/j.buildenv.2013.10.009

    Article  Google Scholar 

  192. Padgett JE, Kameshwar S (2016) Supporting Life cycle management of bridges through multi-hazard reliability and risk assessment. Multi-Hazard Approaches Civ Infrastruct Eng. https://doi.org/10.1007/978-3-319-29713-2_3

    Article  Google Scholar 

  193. Padgett JE, Tapia C (2013) Sustainability of natural hazard risk mitigation: life cycle analysis of environmental indicators for bridge infrastructure. J Infrastruct Syst. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000138

    Article  Google Scholar 

  194. Pal SK, Takano A, Alanne K, Siren K (2017) A life cycle approach to optimizing carbon footprint and costs of a residential building. Build Environ 123:146–162. https://doi.org/10.1016/j.buildenv.2017.06.051

    Article  Google Scholar 

  195. Pan P, Zhang DB, Nie X, Chen HW (2017) Development of piezoelectric energy-harvesting tuned mass damper. Sci China Technol Sci. https://doi.org/10.1007/s11431-016-0280-5

    Article  Google Scholar 

  196. Park J, Yoon J, Kim KH (2017) Critical review of the material criteria of building sustainability assessment tools. Sustainability (Switzerland). https://doi.org/10.3390/su9020186

    Article  Google Scholar 

  197. Peñaloza D, Erlandsson M, Berlin J, Wålinder M, Falk A (2018) Future scenarios for climate mitigation of new construction in sweden: effects of different technological pathways. J Clean Prod 187(June):1025–1035. https://doi.org/10.1016/j.jclepro.2018.03.285

    Article  Google Scholar 

  198. Pessiki S (2017) Sustainable seismic design. Procedia Eng 171:33–39. https://doi.org/10.1016/j.proeng.2017.01.307

    Article  Google Scholar 

  199. Petti L, Serreli M, Di Cesare S (2018) Systematic literature review in social life cycle assessment. Int J Life Cycle Assess 23(3):422–431. https://doi.org/10.1007/s11367-016-1135-4

    Article  Google Scholar 

  200. Phillips R, Troup L, Fannon D, Eckelman MJ (2017) Do resilient and sustainable design strategies conflict in commercial buildings? A critical analysis of existing resilient building frameworks and their sustainability implications. Energy Build 146:295–311. https://doi.org/10.1016/j.enbuild.2017.04.009

    Article  Google Scholar 

  201. Piacenza JR, Tumer IY, Haapala KR, Hoyle C (2013) Comparison of sustainability performance for cross laminated. In: Proceedings of the ASME 2013 international design engineering technical conferences and computers and information in engineering conference. pp 1–11

  202. Plank R (2008) The principles of sustainable construction. IES J Part A Civ Struct Eng 1(4):301–307. https://doi.org/10.1080/19373260802404482

    Article  Google Scholar 

  203. Politi S, Antonini E (2017) An expeditious method for comparing sustainable rating systems for residential buildings. Energy Procedia. https://doi.org/10.1016/j.egypro.2017.03.006

    Article  Google Scholar 

  204. Potong R, Rianyoi R, Ngamjarurojana A, Chaipanich A (2014) Fabrication and performance investigation of 2–2 connectivity lead-free barium zirconate titanate-portland cement composites. Ceram Int. https://doi.org/10.1016/j.ceramint.2014.01.091

    Article  Google Scholar 

  205. Potra FA, Simiu E (2009) Optimization and multihazard structural design. J Eng Mech 135(12):1472–1475. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000057

    Article  Google Scholar 

  206. Poveda CA, Lipsett M (2011) A review of sustainability assessment and sustainability/environmental rating systems and credit weighting tools. J Sustain Dev 4(6):36–55. https://doi.org/10.5539/jsd.v4n6p36

    Article  Google Scholar 

  207. Puskas A, Moga LM (2015) Sustainability of reinforced concrete frame structures—a case study. Int J Sustain Dev Plan 10(2):165–176. https://doi.org/10.2495/SDP-V10-N2-165-176

    Article  Google Scholar 

  208. Rafiei MH, Adeli H (2016) Sustainability in highrise building design and construction. Struct Des Tall Spec Build 25(13):643–658. https://doi.org/10.1002/tal.1276

    Article  Google Scholar 

  209. Ramesh T, Prakash R, Shukla KK (2010) Life cycle energy analysis of buildings: an overview. Energy Build. https://doi.org/10.1016/j.enbuild.2010.05.007

    Article  Google Scholar 

  210. Ramos Huarachi DA, Piekarski CM, Puglieri FN, de Francisco AC (2020) Past and future of social life cycle assessment: historical evolution and research trends. J Clean Prod 264:121506. https://doi.org/10.1016/j.jclepro.2020.121506

    Article  Google Scholar 

  211. Ricci P, Di Domenico M, Verderame GM (2020) Effects of the in-plane/out-of-plane interaction in URM infills on the seismic performance of RC buildings designed to eurocodes. J Earthquake Eng. https://doi.org/10.1080/13632469.2020.1733137

    Article  Google Scholar 

  212. Risse M, Weber-Blaschke G, Richter K (2019) Eco-efficiency analysis of recycling recovered solid wood from construction into laminated timber products. Sci Total Environ 661:107–119. https://doi.org/10.1016/j.scitotenv.2019.01.117

    Article  Google Scholar 

  213. Rodrigues C, Freire F (2017) Adaptive reuse of buildings: eco-efficiency assessment of retrofit strategies for alternative uses of an historic building. J Clean Prod 157:94–105. https://doi.org/10.1016/j.jclepro.2017.04.104

    Article  Google Scholar 

  214. Rodrigues JN, Providência P, Dias AMPG (2017) Sustainability and lifecycle assessment of timber-concrete composite bridges. J Infrastruct Syst. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000310

    Article  Google Scholar 

  215. Rojas-Cardenas JC, Hasanbeigi A, Sheinbaum-Pardo C, Price L (2017) Energy efficiency in the Mexican iron and steel industry from an international perspective. J Clean Prod 158:335–348. https://doi.org/10.1016/j.jclepro.2017.04.092

    Article  Google Scholar 

  216. Saghafi MD, Teshnizi ZSH (2011) Recycling value of building materials in building assessment systems. Energy Build 43(11):3181–3188

    Article  Google Scholar 

  217. Saling P (2016) Eco-efficiency assessment. https://doi.org/10.1007/978-94-017-7610-3_4

  218. Saling P (2017) Sustainability management in strategic decision-making processes nachhaltigkeits management in strategischen entscheidungsprozessen. Uwf UmweltWirtschaftsForum. https://doi.org/10.1007/s00550-017-0461-8

    Article  Google Scholar 

  219. Saling P, Perez AA, Kölsch P, Grünenwald T (2020) Generation, calculation and interpretation of social impacts with the social analysis of SEEbalance®. https://doi.org/10.1007/978-3-030-01508-4_8

  220. Sangadji S (2017) Can self-healing mechanism helps concrete structures sustainable? Procedia Eng 171:238–249. https://doi.org/10.1016/j.proeng.2017.01.331

    Article  Google Scholar 

  221. Sarkisian M, Hu L, Shook D (2012) Mapping a structure’s impact on the environment. In: Structures congress 2012—proceedings of the 2012 structures congress. pp 898–909. https://doi.org/10.1061/9780784412367.080

  222. Sauer AS, Calmon JL (2020) Life-cycle assessment applied to buildings: gaps in knowledge. Int J Environ Stud 77(5):767–785. https://doi.org/10.1080/00207233.2019.1704036

    Article  Google Scholar 

  223. Shan M, Hwang BG (2018) Green building rating systems: global reviews of practices and research efforts. Sustain Cities Soc 39:172–180. https://doi.org/10.1016/j.scs.2018.02.034

    Article  Google Scholar 

  224. Shi Y, Zohrevand P, Mirmiran A (2013) Assessment of cyclic behavior of hybrid FRP concrete columns. J Bridge Eng. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000397

    Article  Google Scholar 

  225. Shrivastava M, Abu A, Dhakal R, Moss P (2019) State-of-the-art of probabilistic performance based structural fire engineering. J Struct Fire Eng 10(2):175–192. https://doi.org/10.1108/JSFE-02-2018-0005

    Article  Google Scholar 

  226. Singh T, Page D, Simpson I (2019) Manufactured STRUCTURAL TIMBER BUILDING MATERIALS AND THEIR DURABILity. Constr Build Mater 217:84–92. https://doi.org/10.1016/j.conbuildmat.2019.05.036

    Article  Google Scholar 

  227. Stasiak-Betlejewska R, Potkány M (2015) Construction costs analysis and its importance to the economy. Procedia Econ Finance. https://doi.org/10.1016/s2212-5671(15)01598-1

    Article  Google Scholar 

  228. Suksuwan A, Spence SMJ (2018) Performance-based multi-hazard topology optimization of wind and seismically excited structural systems. Eng Struct 172(June):573–588. https://doi.org/10.1016/j.engstruct.2018.06.039

    Article  Google Scholar 

  229. Suopajärvi H, Umeki K, Mousa E, Hedayati A, Romar H, Kemppainen A, Wang C et al (2018) Use of biomass in integrated steelmaking—status quo, future needs and comparison to other low-CO2 steel production technologies. Appl Energy. https://doi.org/10.1016/j.apenergy.2018.01.060

    Article  Google Scholar 

  230. Sureau S, Neugebauer S, Achten WMJ (2020) different paths in social life cycle impact assessment (S-LCIA)—a classification of type II impact pathway approaches. Int J Life Cycle Assess 25(2):382–393. https://doi.org/10.1007/s11367-019-01693-9

    Article  Google Scholar 

  231. Takewaki I (2013) Critical excitation methods in earthquake engineering, 2nd edn. Elsevier, Amsterdam. https://doi.org/10.1016/C2012-0-06430-7

    Book  Google Scholar 

  232. Tam VWY, Senaratne S, Le KN, Shen LY, Perica J, Chethana IM, Illankoon S (2017) Life-cycle cost analysis of green-building implementation using timber applications. J Clean Prod 147:458–469. https://doi.org/10.1016/j.jclepro.2017.01.128

    Article  Google Scholar 

  233. Tamboli A, Joseph L, Vadnere U, Xu X (2008) Tall buildings: sustainable design opportunities. In: CTBUH 2008, 8th world congress—tall and green: typology for a sustainable urban future, congress proceedings. Council on Tall Buildings and Urban Habitat, pp 120–126

  234. Tapia C, Padgett JE (2012) Examining the integration of sustainability and natural hazard risk mitigation into life cycle analyses of structures. In: Structures congress 2012, 1929–40. American Society of Civil Engineers, Reston, VA. https://doi.org/10.1061/9780784412367.169

  235. Tatari O, Kucukvar M (2011) Evaluating Eco-efficiency of construction materials: a frontier approach. Congress on Computing in Civil Engineering, Proceedings. https://doi.org/10.1061/41182(416)91

    Article  Google Scholar 

  236. Tatari O, Kucukvar M (2012) Eco-efficiency of construction materials: data envelopment analysis. J Constr Eng Manag 138(6):733–741. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000484

    Article  Google Scholar 

  237. Teich M, Gebbeken N (2009) Assessing the effectiveness of blast and seismic mitigation measures in an integrated design context. In: TCLEE 2009: lifeline earthquake engineering in a multihazard environment, vol 357. https://doi.org/10.1061/41050(357)134

  238. Thibodeau C, Bataille A, Sié M (2019) Building rehabilitation life cycle assessment methodology-state of the art. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2018.12.037

    Article  Google Scholar 

  239. Thormark C (2000) Environmental analysis of a building with reused building materials. Int J Low Energy Sustain Build 1:1–18

    Google Scholar 

  240. United Nations Environmental Program (UNEP) (2011) Note 12: towards a life cycle sustainability a ssessment

  241. Van Caneghem J, Block C, Cramm P, Mortier R, Vandecasteele C (2010) Improving eco-efficiency in the steel industry: the arcelormittal gent case. J Clean Prod 18(8):807–814. https://doi.org/10.1016/j.jclepro.2009.12.016

    Article  Google Scholar 

  242. Van Dijk HAJ, Cobden PD, Lundqvist M, Cormos CC, Watson MJ, Manzolini G, Van Der Veer S, Mancuso L, Johns J, Sundelin B (2017) Cost effective CO2 reduction in the iron and steel industry by means of the SEWGS technology: STEPWISE project. Energy Procedia 114:6256–6265. https://doi.org/10.1016/j.egypro.2017.03.1764

    Article  Google Scholar 

  243. Varma CRS, Palaniappan S (2019) Comparision of green building rating schemes used in North America, Europe and Asia. Habitat Int 89:101989. https://doi.org/10.1016/j.habitatint.2019.05.008

    Article  Google Scholar 

  244. Vásquez-Ibarra L, Rebolledo-Leiva R, Angulo-Meza L, González-Araya MC, Iriarte A (2020) The joint use of life cycle assessment and data envelopment analysis methodologies for eco-efficiency assessment: a critical review, taxonomy and future research. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139538

    Article  Google Scholar 

  245. Venanzi I, Lavan O, Ierimonti L, Fabrizi S (2018) Multi-hazard loss analysis of tall buildings under wind and seismic loads. Struct Infrastruct Eng 14(10):1295–1311. https://doi.org/10.1080/15732479.2018.1442482

    Article  Google Scholar 

  246. Vierra S (2016) Green building standards and certification systems. Building 202:1–14

    Google Scholar 

  247. Walter Yang CS, DesRoches R, Leon RT (2010) Design and analysis of braced frames with shape memory alloy and energy-absorbing hybrid devices. Eng Struct. https://doi.org/10.1016/j.engstruct.2009.10.011

    Article  Google Scholar 

  248. Wang N, Adeli H (2014) Sustainable building design. J Civ Eng Manag 20(1):1–10. https://doi.org/10.3846/13923730.2013.871330

    Article  Google Scholar 

  249. Wang J, Zhao H (2018) High performance damage-resistant seismic resistant structural systems for sustainable and resilient city: a review. Shock Vib. https://doi.org/10.1155/2018/8703697

    Article  Google Scholar 

  250. Wang B, Zhu S (2018) Seismic behavior of self-centering reinforced concrete wall enabled by superelastic shape memory alloy bars. Bull Earthq Eng. https://doi.org/10.1007/s10518-017-0213-8

    Article  Google Scholar 

  251. Wang JC, Zheng P, Yin RQ, Zheng LM, Du J, Zheng L, Deng JX, Song KX, Qin HB (2015) Different piezoelectric grain size effects in BaTiO3 ceramics. Ceram Int. https://doi.org/10.1016/j.ceramint.2015.07.039

    Article  Google Scholar 

  252. Wang W, Jiang D, Chen D, Chen Z, Zhou W, Zhu B (2016) A material flow analysis (MFA)-based potential analysis of eco-efficiency indicators of China’s cement and cement-based materials industry. J Clean Prod 112:787–796. https://doi.org/10.1016/j.jclepro.2015.06.103

    Article  Google Scholar 

  253. Wen YK, Kang YJ (2001) Minimum building life-cycle cost design criteria I: methodolog. J Struct Eng N Y 127(3):330–337. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:3(330)

    Article  Google Scholar 

  254. Wen B, Musa N, Onn CC, Ramesh S, Liang L, Wang W (2020) Evolution of sustainability in global green building rating tools. J Clean Prod 259:120912. https://doi.org/10.1016/j.jclepro.2020.120912

    Article  Google Scholar 

  255. Wu P, Xia B, Pienaar J, Zhao X (2014) The past, present and future of carbon labelling for construction materials—a review. Build Environ. https://doi.org/10.1016/j.buildenv.2014.03.023

    Article  Google Scholar 

  256. Yang X, Mingming H, Jiangbo W, Zhao B (2018) building-information-modeling enabled life cycle assessment, a case study on carbon footprint accounting for a residential building in China. J Clean Prod 183:729–743. https://doi.org/10.1016/j.jclepro.2018.02.070

    Article  Google Scholar 

  257. Yang Y, Ng ST, Xu FJ, Skitmore M (2018) Towards sustainable and resilient high density cities through better integration of infrastructure networks. Sustain Cities Soc 42(July):407–422. https://doi.org/10.1016/j.scs.2018.07.013

    Article  Google Scholar 

  258. Yeo DH, Potra FA (2015) Sustainable design of reinforced concrete structures through CO2 emission optimization. J Struct Eng (US) 141(3):1–7. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000888

    Article  Google Scholar 

  259. Yılmaz M, Bakış A (2015) Sustainability in construction sector. Procedia Soc Behav Sci 195:2253–2262. https://doi.org/10.1016/j.sbspro.2015.06.312

    Article  Google Scholar 

  260. Yu C, Chen R, Li JJ, Li JJ, Drahansky M, Paridah MT, Moradbak A et al (2012) We are IntechOpen, the world’s leading publisher of open access books built by scientists, for scientists TOP 1%. Intech. https://doi.org/10.1016/j.colsurfa.2011.12.014

    Article  Google Scholar 

  261. Zabalza Bribián I, Capilla AV, Usón AA (2011) Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ 46(5):1133–1140. https://doi.org/10.1016/j.buildenv.2010.12.002

    Article  Google Scholar 

  262. Zappile T (2014) Department of homeland security (DHS). In: Encyclopedia of US intelligence-two volume set. Auerbach Publications, pp 295–304

  263. Zhang J, Maalej M, Quek ST (2007) Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(855)

    Article  Google Scholar 

  264. Zhang X, Zhan C, Wang X, Li G (2019) Asian green building rating tools: a comparative study on scoring methods of quantitative evaluation systems. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.01.192

    Article  Google Scholar 

  265. Zhao X, Li W, Stanbrook J (2014) A framework for the integration of performance based design and life cycle assessment to design sustainable structures. Adv Struct Eng 17(4):461–470. https://doi.org/10.1260/1369-4332.17.4.461

    Article  Google Scholar 

  266. Zhou L, Zheng Yu, Song G, Chen D, Ye Y (2019) Identification of the structural damage mechanism of BFRP bars reinforced concrete beams using smart transducers based on time reversal method. Constr Build Mater 220(September):615–627. https://doi.org/10.1016/j.conbuildmat.2019.06.056

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipendra Gautam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KC, S., Gautam, D. Progress in sustainable structural engineering: a review. Innov. Infrastruct. Solut. 6, 68 (2021). https://doi.org/10.1007/s41062-020-00419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-020-00419-3

Keywords

Navigation