Skip to main content

Advertisement

Log in

A comparative review on foam-based versus lightweight aggregate-based alkali-activated materials and geopolymer

  • State-of-the-art paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Alkali-activated materials and geopolymer are major sustainable alternative binding materials to ordinary Portland cement products with higher thermal resistance and often better durability properties. In lightweight form, they have an unmatched lowered thermal conductivity and insulating properties making them a perfect fit for optimized structural components with highest strength to density ratio and major energy savings in green buildings. For them to produce lightweight materials, generally either certain foaming agent or some types of lightweight aggregates in virgin, expanded, or recycled form are utilized that reduce the overall density through higher overall porosity. In accordance, this review provides an updated information on recent advances while stressing the sustainability of lightweight geopolymer materials over ordinary Portland cement products that are vastly in use. In the end, recent mechanical and durability properties developed and documented are reviewed and provided for future applications. Based on the result of this review, the most common lightweight aggregates used in literature are perlite, pumice, shale, ceramsite, and slate sand, in expanded and porous form, along with recycled thermosetting (e.g., rubber), or thermoplastic (e.g., polyethylene) materials. In foam form, chemical and mechanical foaming are the most commonly used foaming techniques to increase porosity of final materials. The pore mechanism of foam-based geopolymer is found to be different from that of lightweight aggregate-based geopolymer. This variation results in different physico-mechanical and durability properties such as better insulation properties (and lower thermal conductivity) for foam-based versus better mechanical properties for lightweight aggregate-based geopolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data gathered are available as the supplementary material.

Code availability

The authors declare that no code is used for the purpose of this article.

References

  1. International Energy Agency (2020) Cement—Analysis—IEA

  2. Elalaoui O, Ghorbel E, Ouezdou MB (2018) Influence of flame retardant addition on the durability of epoxy based polymer concrete after exposition to elevated temperature. Constr Build Mater 192:233–239. https://doi.org/10.1016/j.conbuildmat.2018.10.132

    Article  Google Scholar 

  3. Laidoudi B, Flamin C, Crigny A, Ferrari J, Galzy G, Dupré B (2015) Bio based concrete with crushed rape straw, a good alternative to develop an affordable bio based concrete for construction and renovation. First Int Conf Bio Based Build Mater 33(2):23–30

    Google Scholar 

  4. Nodehi M, Taghvaee VM (2021) Alkali-activated materials and geopolymer: a review of common precursors and activators addressing circular economy. Circ Econ Sustain. https://doi.org/10.1007/s43615-021-00029-w

    Article  Google Scholar 

  5. Arrigoni A et al (2020) Life cycle greenhouse gas emissions of concrete containing supplementary cementitious materials: cut-off vs. substitution. J Clean Prod 263:121465. https://doi.org/10.1016/j.jclepro.2020.121465

    Article  Google Scholar 

  6. Teixeira ER, Mateus R, Camões AF, Bragança L, Branco FG (2016) Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. J Clean Prod 112:2221–2230. https://doi.org/10.1016/j.jclepro.2015.09.124

    Article  Google Scholar 

  7. Miller SA (2018) Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: can there be too much of a good thing? J Clean Prod 178:587–598. https://doi.org/10.1016/j.jclepro.2018.01.008

    Article  Google Scholar 

  8. Nodehi M, Taghvaee VM (2021) Sustainable concrete for circular economy: a review on use of waste glass. Glass Struct Eng. https://doi.org/10.1007/s40940-021-00155-9

    Article  Google Scholar 

  9. Purdon AO (1940) The action of alkalis on blast-furnace slag. J Soc Chem Ind 9(59):191–202

    Google Scholar 

  10. Kuenzel C, Grover LM, Vandeperre L, Boccaccini AR, Cheeseman CR (2013) Production of nepheline/quartz ceramics from geopolymer mortars. J Eur Ceram Soc 33(2):251–258. https://doi.org/10.1016/j.jeurceramsoc.2012.08.022

    Article  Google Scholar 

  11. Liew YM et al (2017) Formation of one-part-mixing geopolymers and geopolymer ceramics from geopolymer powder. Constr Build Mater 156:9–18. https://doi.org/10.1016/j.conbuildmat.2017.08.110

    Article  Google Scholar 

  12. Bernal SA, Bejarano J, Garzón C, De Gutiérrez RM, Delvasto S, Rodríguez ED (2012) Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites. Compos Part B Eng 43(4):1919–1928. https://doi.org/10.1016/j.compositesb.2012.02.027

    Article  Google Scholar 

  13. Ohno M, Li VC (2014) A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites. Constr Build Mater 57:163–168. https://doi.org/10.1016/j.conbuildmat.2014.02.005

    Article  Google Scholar 

  14. Natali A, Manzi S, Bignozzi MC (2011) Novel fiber-reinforced composite materials based on sustainable geopolymer matrix. Procedia Eng 21:1124–1131. https://doi.org/10.1016/j.proeng.2011.11.2120

    Article  Google Scholar 

  15. Provis JL, Bernal SA (2014) Binder chemistry—blended systems and intermediate Ca content. RILEM State-of-the-Art Reports, vol 13, pp 125–144. https://doi.org/10.1007/978-94-007-7672-2_5

  16. Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A (2015) An overview of the chemistry of alkali-activated cement-based binders. Woodhead Publishing Limited, Sawston

    Book  Google Scholar 

  17. Provis JL, Van Deventer JSJ (2009) Geopolymers: structures, processing, properties and industrial applications. Woodhead pubishing, Sawston

    Book  Google Scholar 

  18. Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, MacPhee DE (2011) Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO 2–H2O. Cem Concr Res 41(9):923–931. https://doi.org/10.1016/j.cemconres.2011.05.006

    Article  Google Scholar 

  19. Shi C, Roy D, Krivenko P (2003) Alkali-activated cements and concretes. CRC Press, Boca Raton

    Book  Google Scholar 

  20. Turner LK, Collins FG (2013) Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater 43:125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023

    Article  Google Scholar 

  21. Merikallio T, Mannonen R, Penttala V (1996) Drying of lightweight concrete produced from crushed expanded clay aggregates. Cem Concr Res 26(9):1423–1433. https://doi.org/10.1016/0008-8846(96)00116-0

    Article  Google Scholar 

  22. Zhang M-H, Gjørv OE (1990) Pozzolanic reactivity of lightweight aggregates. Cem Concr Res 20(6):884–890. https://doi.org/10.1016/0008-8846(90)90050-8

    Article  Google Scholar 

  23. Zhang MH, Gjørv OE (1990) Microstructure of the interfacial zone between lightweight aggregate and cement paste. Cem Concr Res 20(4):610–618. https://doi.org/10.1016/0008-8846(90)90103-5

    Article  Google Scholar 

  24. Sarkar SL, Satish C, Leif B (1992) Interdependence of microstructure and strength of structural lightweight aggregate concrete. Cem Concr Compos 14(4):239–248. https://doi.org/10.1016/0958-9465(92)90022-N

    Article  Google Scholar 

  25. Nyame BK, Buenfeld N (1986) Permeability of normal and lightweight mortars. Mag Concr Res 38(134):51–53. https://doi.org/10.1680/macr.1986.38.134.51

    Article  Google Scholar 

  26. Akçaözoǧlu S, Atiş CD, Akçaözoǧlu K (2010) An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Manag 30(2):285–290. https://doi.org/10.1016/j.wasman.2009.09.033

    Article  Google Scholar 

  27. Topçu IB, Uygunoǧlu T (2007) Properties of autoclaved lightweight aggregate concrete. Build Environ 42(12):4108–4116. https://doi.org/10.1016/j.buildenv.2006.11.024

    Article  Google Scholar 

  28. Babu DS, Ganesh Babu K, Wee TH (2005) Properties of lightweight expanded polystyrene aggregate concretes containing fly ash. Cem Concr Res 35(6):1218–1223. https://doi.org/10.1016/j.cemconres.2004.11.015

    Article  Google Scholar 

  29. Zhang H (2011) Building materials in civil engineering. In: Zhang H (ed) Building materials in civil engineering. Elsevier, Amsterdam, pp 81–423

    Chapter  Google Scholar 

  30. Mallick PK (2010) Thermoplastics and thermoplastic-matrix composites for lightweight automotive structures. In: Mater. Des. Manuf. Light. Veh., pp 174–207, doi: https://doi.org/10.1533/9781845697822.1.174

  31. Oderji SY, Chen B, Ahmad MR, Shah SFA (2019) Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: effect of slag and alkali activators. J Clean Prod 225:1–10. https://doi.org/10.1016/j.jclepro.2019.03.290

    Article  Google Scholar 

  32. Gao X, Yu QL (2019) Effects of an eco-silica source based activator on functional alkali activated lightweight composites. Constr Build Mater 215:686–695. https://doi.org/10.1016/j.conbuildmat.2019.04.251

    Article  Google Scholar 

  33. Yang SL, Millard SG, Soutsos MN, Barnett SJ, Le TT (2009) Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC). Constr Build Mater 23(6):2291–2298. https://doi.org/10.1016/j.conbuildmat.2008.11.012

    Article  Google Scholar 

  34. Boarder RFW, Owens PL, Khatib JM (2016) In: The sustainability of lightweight aggregates manufactured from clay wastes for reducing the carbon footprint of structural and foundation concrete, Second edn., Elsevier Ltd

  35. Sataloff RT, Johns MM, Kost KM (2015) Advanced concrete technology. Geriatric Otolaryngology, ISBN:9781626239777

  36. Yoon JY, Kim JH, Hwang YY, Shin DK (2015) Lightweight concrete produced using a two-stage casting process. Materials 8(4):1384–1397. https://doi.org/10.3390/ma8041384 (Basel)

    Article  Google Scholar 

  37. Bhatnagar N, Asija N (2016) Durability of high-performance ballistic composites. In: Lightweight ballistic composites. Elsevier, pp 231–283

  38. Colangelo F et al (2018) Mechanical and thermal properties of lightweight geopolymer composites. Cem Concr Compos 86:266–272. https://doi.org/10.1016/j.cemconcomp.2017.11.016

    Article  Google Scholar 

  39. Rashad AM (2016) A synopsis about perlite as building material—A best practice guide for civil engineer. Constr Build Mater 121:338–353. https://doi.org/10.1016/j.conbuildmat.2016.06.001

    Article  Google Scholar 

  40. Tsaousi GM, Douni I, Panias D (2016) Characterization of the properties of perlite geopolymer pastes. Mater Constr 66(324):1–8. https://doi.org/10.3989/mc.2016.10415

    Article  Google Scholar 

  41. Anwar Hossain KM (2004) Properties of volcanic pumice based cement and lightweight concrete. Cem Concr Res 34(2):283–291. https://doi.org/10.1016/j.cemconres.2003.08.004

    Article  Google Scholar 

  42. Restuccia F, Ptak N, Rein G (2017) Self-heating behavior and ignition of shale rock. Combust Flame 176:213–219. https://doi.org/10.1016/j.combustflame.2016.09.025

    Article  Google Scholar 

  43. Dong S, Yang W, Ge Y, Jiang S, Sun T, Deng J (2015) Mechanical properties of concrete containing ceramsite sand. In: ICTE 2015, Sep. 2015, pp 1259–1265. https://doi.org/10.1061/9780784479384.158

  44. Chen Y, Hui Q, Zhang H, Zhu Z, Wang C, Zhao J (2020) Experiment and application of ceramsite concrete used to maintain roadway in coal mine. Meas Control 53(9–10):1832–1840. https://doi.org/10.1177/0020294020947134 (United Kingdom)

    Article  Google Scholar 

  45. Yang J, Huang W, Luo B (2018) Silt ceramsite mechanical properties for reduction of solid waste pollution. Chem Eng Trans 71:1411–1416. https://doi.org/10.3303/CET1871236

    Article  Google Scholar 

  46. Wichert J (2020) Properties of slate. In: Wichert J (ed) Slate as dimension stone: origin, standards, properties, mining and deposits. Springer International Publishing, Cham, pp 61–134

    Chapter  Google Scholar 

  47. Rowe DB, Monterusso MA, Rugh CL (2006) Assessment of heat-expanded slate and fertility requirements in green roof substrates. HortTechnology 16(3):471–477. https://doi.org/10.21273/horttech.16.3.0471

    Article  Google Scholar 

  48. Zipf MS, Pinheiro IG, Conegero MG (2016) Simplified greywater treatment systems: slow filters of sand and slate waste followed by granular activated carbon. J Environ Manag 176:119–127. https://doi.org/10.1016/j.jenvman.2016.03.035

    Article  Google Scholar 

  49. Arulrajah A, Piratheepan J, Disfani MM, Bo MW (2013) Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. J Mater Civ Eng 25(8):1077–1088. https://doi.org/10.1061/(asce)mt.1943-5533.0000652

    Article  Google Scholar 

  50. Valore RC (1961) Foam and gas concretes

  51. Zhang Z, Provis JL, Reid A, Wang H (2014) Geopolymer foam concrete: an emerging material for sustainable construction. Constr Build Mater 56:113–127. https://doi.org/10.1016/j.conbuildmat.2014.01.081

    Article  Google Scholar 

  52. Dhasindrakrishna K, Pasupathy K, Ramakrishnan S, Sanjayan J (2021) Progress, current thinking and challenges in geopolymer foam concrete technology. Cem Concr Compos 116(November 2020):103886. https://doi.org/10.1016/j.cemconcomp.2020.103886

    Article  Google Scholar 

  53. Erdoğan ST (2015) Inexpensive intumescent alkali-activated natural pozzolan pastes. J Eur Ceram Soc 35(9):2663–2670. https://doi.org/10.1016/j.jeurceramsoc.2015.03.017

    Article  Google Scholar 

  54. Onutai S, Jiemsirilers S, Thavorniti P, Kobayashi T (2016) Fast microwave syntheses of fly ash based porous geopolymers in the presence of high alkali concentration. Ceram Int 42(8):9866–9874. https://doi.org/10.1016/j.ceramint.2016.03.086

    Article  Google Scholar 

  55. Jones MR, McCarthy A (2006) Heat of hydration in foamed concrete: effect of mix constituents and plastic density. Cem Concr Res 36(6):1032–1041. https://doi.org/10.1016/j.cemconres.2006.01.011

    Article  Google Scholar 

  56. Le VS et al (2020) Mechanical properties of geopolymer foam at high temperature. Sci Eng Compos Mater 27(1):129–138. https://doi.org/10.1515/secm-2020-0013

    Article  Google Scholar 

  57. Hassan HS, Abdel-Gawwad HA, García SRV, Israde-Alcántara I (2018) Fabrication and characterization of thermally-insulating coconut ash-based geopolymer foam. Waste Manag 80:235–240. https://doi.org/10.1016/j.wasman.2018.09.022

    Article  Google Scholar 

  58. Dhasindrakrishna K, Pasupathy K, Ramakrishnan S, Sanjayan J (2020) Effect of yield stress development on the foam-stability of aerated geopolymer concrete. Cem Concr Res 138(September):106233. https://doi.org/10.1016/j.cemconres.2020.106233

    Article  Google Scholar 

  59. Lertcumfu N, Kaewapai K, Jaita P, Tunkasiri T, Sirisoonthorn S, Rujijanagul G (2020) Effects of olive oil on physical and mechanical properties of ceramic waste-based geopolymer foam. J Reinf Plast Compos 39(3–4):111–118. https://doi.org/10.1177/0731684419896852

    Article  Google Scholar 

  60. Han L et al (2020) Synthesis of fly ash-based self-supported zeolites foam geopolymer via saturated steam treatment. J Hazard Mater 393(March):122468. https://doi.org/10.1016/j.jhazmat.2020.122468

    Article  Google Scholar 

  61. Dhasindrakrishna K, Pasupathy K, Ramakrishnan S, Sanjayan J (2020) Effect of yield stress development on the foam-stability of aerated geopolymer concrete. Cem Concr Res 138(April):106233. https://doi.org/10.1016/j.cemconres.2020.106233

    Article  Google Scholar 

  62. Dhasindrakrishna K, Pasupathy K, Ramakrishnan S, Sanjayan J (2021) Progress, current thinking and challenges in geopolymer foam concrete technology. Cem Concr Compos 116(September 2020):103886. https://doi.org/10.1016/j.cemconcomp.2020.103886

    Article  Google Scholar 

  63. Masi G, Rickard WDA, Vickers L, Bignozzi MC, Van Riessen A (2014) A comparison between different foaming methods for the synthesis of light weight geopolymers. Ceram Int 40(9 PART A):13891–13902. https://doi.org/10.1016/j.ceramint.2014.05.108

    Article  Google Scholar 

  64. Delair S et al (2012) Durability of inorganic foam in solution: the role of alkali elements in the geopolymer network. Corros Sci 59:213–221. https://doi.org/10.1016/j.corsci.2012.03.002

    Article  Google Scholar 

  65. Huang Y, Gong L, Shi L, Cao W, Pan Y, Cheng X (2018) Experimental investigation on the influencing factors of preparing porous fly ash-based geopolymer for insulation material. Energy Build 168:9–18. https://doi.org/10.1016/j.enbuild.2018.02.043

    Article  Google Scholar 

  66. Bai C, Conte A, Colombo P (2017) Open-cell phosphate-based geopolymer foams by frothing. Mater Lett 188:379–382. https://doi.org/10.1016/j.matlet.2016.11.103

    Article  Google Scholar 

  67. Al Saadi THA, Badanoiu AI, Nicoara AI, Stoleriu S, Voicu G (2017) Synthesis and properties of alkali activated borosilicate inorganic polymers based on waste glass. Constr Build Mater 136:298–306. https://doi.org/10.1016/j.conbuildmat.2017.01.026

    Article  Google Scholar 

  68. Haq EU, Padmanabhan SK, Licciulli A (2015) Microwave synthesis of thermal insulating foams from coal derived bottom ash. Fuel Process Technol 130(C):263–267. https://doi.org/10.1016/j.fuproc.2014.10.017

    Article  Google Scholar 

  69. Zhao Y et al (2010) Preparation of sintered foam materials by alkali-activated coal fly ash. J Hazard Mater 174(1–3):108–112. https://doi.org/10.1016/j.jhazmat.2009.09.023

    Article  Google Scholar 

  70. Cui Y, Wang D (2019) Effects of water on pore structure and thermal conductivity of fly ash-based foam geopolymers. Adv Mater Sci Eng. https://doi.org/10.1155/2019/3202794

    Article  Google Scholar 

  71. Ranjani IS, Ramamurthy K (2010) Relative assessment of density and stability of foam produced with four synthetic surfactants. Mater Struct Constr 43(10):1317–1325. https://doi.org/10.1617/s11527-010-9582-z

    Article  Google Scholar 

  72. He J, Gao Q, Song X, Bu X, He J (2019) Effect of foaming agent on physical and mechanical properties of alkali-activated slag foamed concrete. Constr Build Mater 226:280–287. https://doi.org/10.1016/j.conbuildmat.2019.07.302

    Article  Google Scholar 

  73. Jones MR, Zheng L, Ozlutas K (2016) Stability and instability of foamed concrete. Mag Concr Res 68(11):542–549. https://doi.org/10.1680/macr.15.00097

    Article  Google Scholar 

  74. Fameau AL, Salonen A (2014) Effect of particles and aggregated structures on the foam stability and aging. Comptes Rendus Phys 15(8–9):748–760. https://doi.org/10.1016/j.crhy.2014.09.009

    Article  Google Scholar 

  75. Hou L, Li J, Lu Z, Niu Y, Jiang J, Li T (2019) Effect of nanoparticles on foaming agent and the foamed concrete. Constr Build Mater 227:116698. https://doi.org/10.1016/j.conbuildmat.2019.116698

    Article  Google Scholar 

  76. Huang Z, Zhang T, Wen Z (2015) Proportioning and characterization of Portland cement-based ultra-lightweight foam concretes. Constr Build Mater 79:390–396. https://doi.org/10.1016/j.conbuildmat.2015.01.051

    Article  Google Scholar 

  77. Hajimohammadi A, Ngo T, Provis JL, Kim T, Vongsvivut J (2019) High strength/density ratio in a syntactic foam made from one-part mix geopolymer and cenospheres. Compos Part B Eng 173(February):106908. https://doi.org/10.1016/j.compositesb.2019.106908

    Article  Google Scholar 

  78. Posi P et al (2013) Lightweight geopolymer concrete containing aggregate from recycle lightweight block. Mater Des 52:580–586. https://doi.org/10.1016/j.matdes.2013.06.001

    Article  Google Scholar 

  79. Pimraksa K, Chindaprasirt P, Rungchet A, Sagoe-Crentsil K, Sato T (2011) Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios. Mater Sci Eng A 528(21):6616–6623. https://doi.org/10.1016/j.msea.2011.04.044

    Article  Google Scholar 

  80. Huiskes DMA, Keulen A, Yu QL, Brouwers HJH (2016) Design and performance evaluation of ultra-lightweight geopolymer concrete. Mater Des 89:516–526. https://doi.org/10.1016/j.matdes.2015.09.167

    Article  Google Scholar 

  81. Posi P, Ridtirud C, Ekvong C, Chammanee D, Janthowong K, Chindaprasirt P (2015) Properties of lightweight high calcium fly ash geopolymer concretes containing recycled packaging foam. Constr Build Mater 94:408–413. https://doi.org/10.1016/j.conbuildmat.2015.07.080

    Article  Google Scholar 

  82. Wongsa A, Sata V, Nematollahi B, Sanjayan J, Chindaprasirt P (2018) Mechanical and thermal properties of lightweight geopolymer mortar incorporating crumb rubber. J Clean Prod 195:1069–1080. https://doi.org/10.1016/j.jclepro.2018.06.003

    Article  Google Scholar 

  83. Wongsa A, Sata V, Nuaklong P, Chindaprasirt P (2018) Use of crushed clay brick and pumice aggregates in lightweight geopolymer concrete. Constr Build Mater 188:1025–1034. https://doi.org/10.1016/j.conbuildmat.2018.08.176

    Article  Google Scholar 

  84. Mohseni E, Kazemi MJ, Koushkbaghi M, Zehtab B, Behforouz B (2019) Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nano-alumina. Constr Build Mater 209:532–540. https://doi.org/10.1016/j.conbuildmat.2019.03.067

    Article  Google Scholar 

  85. Ismail N, El-Hassan H (2018) Development and characterization of fly ash-slag blended geopolymer mortar and lightweight concrete. J Mater Civ Eng 30(4):04018029. https://doi.org/10.1061/(asce)mt.1943-5533.0002209

    Article  Google Scholar 

  86. Mermerdaş K, Algın Z, Ekmen Ş (2020) Experimental assessment and optimization of mix parameters of fly ash-based lightweight geopolymer mortar with respect to shrinkage and strength. J Build Eng. https://doi.org/10.1016/j.jobe.2020.101351

    Article  Google Scholar 

  87. Rożek P, Król M, Mozgawa W (2020) Lightweight geopolymer-expanded glass composites for removal of methylene blue from aqueous solutions. Ceram Int 46(12):19785–19791. https://doi.org/10.1016/j.ceramint.2020.05.011

    Article  Google Scholar 

  88. Peyne J, Gautron J, Doudeau J, Rossignol S (2018) Development of low temperature lightweight geopolymer aggregate, from industrial Waste, in comparison with high temperature processed aggregates. J Clean Prod 189:47–58. https://doi.org/10.1016/j.jclepro.2018.04.038

    Article  Google Scholar 

  89. Alghamdi H, Neithalath N (2018) Novel synthesis of lightweight geopolymer matrices from fly ash through carbonate-based activation. Mater Today Commun 17(September):266–277. https://doi.org/10.1016/j.mtcomm.2018.09.014

    Article  Google Scholar 

  90. Top S, Vapur H (2018) Effect of basaltic pumice aggregate addition on the material properties of fly ash based lightweight geopolymer concrete. J Mol Struct 1163:10–17. https://doi.org/10.1016/j.molstruc.2018.02.114

    Article  Google Scholar 

  91. Riyap HI et al (2019) Microstructure and mechanical, physical and structural properties of sustainable lightweight metakaolin-based geopolymer cements and mortars employing rice husk. J Asian Ceram Soc 7(2):199–212. https://doi.org/10.1080/21870764.2019.1606140

    Article  Google Scholar 

  92. Sanjayan JG, Nazari A, Chen L, Nguyen GH (2015) Physical and mechanical properties of lightweight aerated geopolymer. Constr Build Mater 79:236–244. https://doi.org/10.1016/j.conbuildmat.2015.01.043

    Article  Google Scholar 

  93. Top S, Vapur H, Altiner M, Kaya D, Ekicibil A (2020) Properties of fly ash-based lightweight geopolymer concrete prepared using pumice and expanded perlite as aggregates. J Mol Struct 1202:127236. https://doi.org/10.1016/j.molstruc.2019.127236

    Article  Google Scholar 

  94. Wang Y, Zheng T, Zheng X, Liu Y, Darkwa J, Zhou G (2020) Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers. Constr Build Mater 251:118960. https://doi.org/10.1016/j.conbuildmat.2020.118960

    Article  Google Scholar 

  95. Abdulkareem OA, Mustafa Al Bakri AM, Kamarudin H, Khairul Nizar I, Saif AA (2014) Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Constr Build Mater 50:377–387. https://doi.org/10.1016/j.conbuildmat.2013.09.047

    Article  Google Scholar 

  96. Liu MYJ, Alengaram UJ, Jumaat MZ, Mo KH (2014) Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy Build 72:238–245. https://doi.org/10.1016/j.enbuild.2013.12.029

    Article  Google Scholar 

  97. Vickers L, van Riessen A, Rickard W (2015) Fire-resistant geopolymers: role of fibres and fillers to enhance thermal properties. Springer, Singapore

    Book  Google Scholar 

  98. Ahmad MR, Chen B, Shah SFA (2020) Influence of different admixtures on the mechanical and durability properties of one-part alkali-activated mortars. Constr Build Mater 265:120320. https://doi.org/10.1016/j.conbuildmat.2020.120320

    Article  Google Scholar 

  99. Temuujin J, Williams RP, van Riessen A (2009) Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. J Mater Process Technol 209(12–13):5276–5280. https://doi.org/10.1016/j.jmatprotec.2009.03.016

    Article  Google Scholar 

  100. Chindaprasirt P, Rattanasak U, Taebuanhuad S (2013) Role of microwave radiation in curing the fly ash geopolymer. Adv Powder Technol 24(3):703–707. https://doi.org/10.1016/j.apt.2012.12.005

    Article  Google Scholar 

  101. Chindaprasirt P, Rattanasak U, Taebuanhuad S (2013) Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer. Mater Struct Constr 46(3):375–381. https://doi.org/10.1617/s11527-012-9907-1

    Article  Google Scholar 

  102. Yost JR, Radlińska A, Ernst S, Salera M (2013) Structural behavior of alkali activated fly ash concrete. Part. Mixture design, material properties and sample fabrication. Mater Struct Constr 46(3):435–447. https://doi.org/10.1617/s11527-012-9919-x

    Article  Google Scholar 

  103. Provis JL (2018) Alkali-activated materials. Cem Concr Res 114:40–48. https://doi.org/10.1016/j.cemconres.2017.02.009

    Article  Google Scholar 

  104. Rehman MU, Rashid K, Zafar I, Alqahtani FK, Khan MI (2020) Formulation and characterization of geopolymer and conventional lightweight green concrete by incorporating synthetic lightweight aggregate. J Build Eng 31(August 2019):101363. https://doi.org/10.1016/j.jobe.2020.101363

    Article  Google Scholar 

  105. Wang S, Li H, Zou S, Zhang G (2020) Experimental research on a feasible rice husk/geopolymer foam building insulation material. Energy Build 226:110358. https://doi.org/10.1016/j.enbuild.2020.110358

    Article  Google Scholar 

  106. Zhang Z, Provis JL, Reid A, Wang H (2015) Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem Concr Compos 62:97–105. https://doi.org/10.1016/j.cemconcomp.2015.03.013

    Article  Google Scholar 

  107. Łach M, Korniejenko K, Mikuła J (2016) Thermal insulation and thermally resistant materials made of geopolymer foams. Procedia Eng 151:410–416. https://doi.org/10.1016/j.proeng.2016.07.350

    Article  Google Scholar 

  108. Phavongkham V, Wattanasiriwech S, Cheng TW, Wattanasiriwech D (2020) Effects of surfactant on thermo-mechanical behavior of geopolymer foam paste made with sodium perborate foaming agent. Constr Build Mater 243:118282. https://doi.org/10.1016/j.conbuildmat.2020.118282

    Article  Google Scholar 

  109. Łach M, Mierzwiński D, Korniejenko K, Mikuła J (2018) Geopolymer foam as a passive fire protection. In: MATEC Web Conf., vol 247, p 00031. https://doi.org/10.1051/matecconf/201824700031

  110. Cui Y, Wang D, Zhao J, Li D, Ng S, Rui Y (2018) Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material. J Build Eng 20(March):21–29. https://doi.org/10.1016/j.jobe.2018.06.002

    Article  Google Scholar 

  111. Nadeem M, Haq EU, Ahmed F, Rafiq MA, Awan GH, Zain-ul-Abdein M (2020) Effect of microwave curing on the construction properties of natural soil based geopolymer foam. Constr Build Mater 230:117074. https://doi.org/10.1016/j.conbuildmat.2019.117074

    Article  Google Scholar 

  112. Gu G, Xu F, Ruan S, Huang X, Zhu J, Peng C (2020) Influence of precast foam on the pore structure and properties of fly ash-based geopolymer foams. Constr Build Mater 256:119410. https://doi.org/10.1016/j.conbuildmat.2020.119410

    Article  Google Scholar 

  113. Ibrahim WMW, Hussin K, Abdullah MMAB, Kadir AA, Deraman LM, Sandu AV (2017) Influence of foaming agent/water ratio and foam/geopolymer paste ratio to the properties of fly ash-based lightweight geopolymer for brick application. Rev Chim 68(9):1978–1982. https://doi.org/10.37358/rc.17.9.5805

    Article  Google Scholar 

  114. Nambiar EKK, Ramamurthy K (2007) Air-void characterisation of foam concrete. Cem Concr Res 37(2):221–230. https://doi.org/10.1016/j.cemconres.2006.10.009

    Article  Google Scholar 

  115. Ma C, Zhao B, Guo S, Long G, Xie Y (2019) Properties and characterization of green one-part geopolymer activated by composite activators. J Clean Prod 220:188–199. https://doi.org/10.1016/j.jclepro.2019.02.159

    Article  Google Scholar 

  116. Mo KH, Alengaram UJ, Jumaat MZ (2016) Bond properties of lightweight concrete—a review. Constr Build Mater 112:478–496. https://doi.org/10.1016/j.conbuildmat.2016.02.125

    Article  Google Scholar 

  117. Hassanpour M, Shafigh P, Mahmud HB (2012) Lightweight aggregate concrete fiber reinforcement—a review. Constr Build Mater 37:452–461. https://doi.org/10.1016/j.conbuildmat.2012.07.071

    Article  Google Scholar 

  118. Sturm P, Gluth GJG, Brouwers HJH, Kühne HC (2016) Synthesizing one-part geopolymers from rice husk ash. Constr Build Mater 124:961–966. https://doi.org/10.1016/j.conbuildmat.2016.08.017

    Article  Google Scholar 

  119. Chaipanich A, Chindaprasirt P (2015) The properties and durability of autoclaved aerated concrete masonry blocks. In: Eco-efficient masonry bricks and blocks. Elsevier, pp 215–230

  120. Nath P, Sarker PK (2017) Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr Build Mater 130:22–31. https://doi.org/10.1016/j.conbuildmat.2016.11.034

    Article  Google Scholar 

  121. Islam A, Alengaram UJ, Jumaat MZ, Ghazali NB, Yusoff S, Bashar II (2017) Influence of steel fibers on the mechanical properties and impact resistance of lightweight geopolymer concrete. Constr Build Mater 152:964–977. https://doi.org/10.1016/j.conbuildmat.2017.06.092

    Article  Google Scholar 

  122. Lizcano M, Gonzalez A, Basu S, Lozano K, Radovic M (2012) Effects of water content and chemical composition on structural properties of alkaline activated metakaolin-based geopolymers. J Am Ceram Soc 95(7):2169–2177. https://doi.org/10.1111/j.1551-2916.2012.05184.x

    Article  Google Scholar 

  123. Steins P, Poulesquen A, Diat O, Frizon F (2012) Structural evolution during geopolymerization from an early age to consolidated material. Langmuir 28(22):8502–8510. https://doi.org/10.1021/la300868v

    Article  Google Scholar 

  124. Nodehi M (2021) A review of Epoxy, Polyester and Vinyl ester-based polymer concrete: fresh, mechanical and durability properties. Innov Infrastruct Solut

  125. Criado M, Palomo A, Fernández-Jiménez A (2005) Alkali activation of fly ashes. Part 1: effect of curing conditions on the carbonation of the reaction products. Fuel 84(16):2048–2054. https://doi.org/10.1016/j.fuel.2005.03.030

    Article  Google Scholar 

Download references

Acknowledgements

The graphics in this article are sketched through a licensed Adobe Photoshop express and Bio render.

Funding

This research did not receive any specific grant or funding from agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrab Nodehi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to publish

The authors declare their consent to publish this article in the journal of Innovative Infrastructure Solutions (IIS).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 13 kb)

Supplementary file2 (PNG 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nodehi, M. A comparative review on foam-based versus lightweight aggregate-based alkali-activated materials and geopolymer. Innov. Infrastruct. Solut. 6, 231 (2021). https://doi.org/10.1007/s41062-021-00595-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-021-00595-w

Keywords

Navigation