Skip to main content

Advertisement

Log in

Ultra high performance concrete (UHPC): reactive powder concrete, slurry infiltrated fiber concrete and superabsorbent polymer concrete

  • State-of-the-art paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Ultra high performance concrete refers to a class of advanced and engineered cementitious composite materials that have a superior mechanical and durability properties, compared to conventional concrete. Based on ASTM C1856, ultra high performance concrete should have a compressive strength of around 120 MPa with specifically high durability and toughness properties. Its mixture is usually composed of high quantity of Portland cement and silica fume as the main binding agents, and finely distributed aggregate sizes with a relatively high content of superplasticizer and steel fiber reinforcement. As a result of its very low water-to-binder ratio (~ 0.20) and high admixture usage, ultra high performance concrete has autogenous healing property with proper workability that results in high strength-to-weight ratio, making it suitable for high-rise structures and major infrastructure sections. In this review, a basic description of reactive powder concrete, slurry infiltrated fiber concrete (also known as SIFCON) and superabsorbent polymer concrete, as three major types of ultra high performance concrete are provided. Environmental impact (e.g., life cycle assessment), fresh properties, effects of curing regime, fiber reinforcement and finally mechanical and durability properties are also reviewed and provided. In the end, future projections, undiscovered research areas as well as a comprehensive conclusion on researched properties of ultra high performance concrete is provided. As a result of this review, it is found that, on average, ultra high performance concrete has about 6 times higher compressive strength-to-density ratio, 3 times reduced porosity and 5 times reduced water permeability coefficient, with almost similar thermal resistance when compared to conventional concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. T.W.: Total weight.

  2. Self-desiccation is generally defined as the consumption of free water through hydration (or chemical reaction) that devoid the paste of sufficient water to cover solid surfaces.

  3. The minimum stress to initiate the flow of materials [98].

  4. Interfacial transitioning zone refers to the area between the paste and surface of aggregate materials.

  5. Ground granulated blast furnace slag.

References

  1. Yi NH, Kim JHJ, Han TS, Cho YG, Lee JH (2012) Blast-resistant characteristics of ultra-high strength concrete and reactive powder concrete. Constr Build Mater 28(1):694–707. https://doi.org/10.1016/j.conbuildmat.2011.09.014

    Article  Google Scholar 

  2. E. Fehling (2014) Ultra‐High Performance Concrete UHPC.

  3. Dobias D, Pernicova R, Mandlik T (2016) Water transport properties and depth of chloride penetration in ultra high performance concrete. Key Eng Mater 711:137–142

    Article  Google Scholar 

  4. Wang W, Liu J, Agostini F, Davy CA, Skoczylas F, Corvez D (2014) Durability of an ultra high performance fiber reinforced concrete (UHPFRC) under progressive aging. Cem Concr Res 55:1–13. https://doi.org/10.1016/j.cemconres.2013.09.008

    Article  Google Scholar 

  5. G. A. Benjamin (2006) Material property characterization of ultra-high performance concrete, Fhwa, no. FHWA-HRT-06-103, p. 186

  6. E. Fehling and M. Schmidt (2008) Ultra high performance concrete (UHPC) : proceedings of the Second International Symposium on Ultra High Performance Concrete, Kassel, Germany, March 05–07, 2008. Kassel University Press.

  7. Wu, C., Li, J., and Y. Su, (2018) Development of ultra-high performance concrete against blasts: from materials to structures. Woodhead Publishing Limited

  8. Liu J, Khayat KH, Shi C (2020) Effect of superabsorbent polymer characteristics on rheology of ultra-high performance concrete. Cem Concr Compos 112:103636. https://doi.org/10.1016/j.cemconcomp.2020.103636

    Article  Google Scholar 

  9. A. E. Naaman and K. Wille, (2012) The path to ultra-high performance fiber reinforced concrete (UHP-FRC): five decades of progress, pp. 3–15.

  10. Richard P, Cheyrezy M (1995) Composition of reactive powder concretes. Cem Concr Res 25(7):1501–1511. https://doi.org/10.1016/0008-8846(95)00144-2

    Article  Google Scholar 

  11. Yunsheng Z, Wei S, Sifeng L, Chujie J, Jianzhong L (2008) Preparation of C200 green reactive powder concrete and its static-dynamic behaviors. Cem Concr Compos 30(9):831–838. https://doi.org/10.1016/j.cemconcomp.2008.06.008

    Article  Google Scholar 

  12. Ipek M, Yilmaz K, Sümer M, Saribiyik M (2011) Effect of pre-setting pressure applied to mechanical behaviours of reactive powder concrete during setting phase. Constr Build Mater 25(1):61–68. https://doi.org/10.1016/j.conbuildmat.2010.06.056

    Article  Google Scholar 

  13. Mayhoub OA, Nasr ESAR, Ali Y, Kohail M (2021) Properties of slag based geopolymer reactive powder concrete. Ain Shams Eng J 12(1):99–105. https://doi.org/10.1016/j.asej.2020.08.013

    Article  Google Scholar 

  14. Lee MG, Wang YC, Te Chiu C (2007) A preliminary study of reactive powder concrete as a new repair material. Constr Build Mater 21(1):182–189. https://doi.org/10.1016/j.conbuildmat.2005.06.024

    Article  Google Scholar 

  15. Mayhoub OA, Nasr ESAR, Ali YA, Kohail M (2021) The influence of ingredients on the properties of reactive powder concrete: A review. Ain Shams Eng J 12(1):145–158. https://doi.org/10.1016/j.asej.2020.07.016

    Article  Google Scholar 

  16. Zhao S, Fan J, Sun W (2014) Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete. Constr Build Mater 50:540–548. https://doi.org/10.1016/j.conbuildmat.2013.10.019

    Article  Google Scholar 

  17. Yang SL, Millard SG, Soutsos MN, Barnett SJ, Le TT (2009) Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC). Constr Build Mater 23(6):2291–2298. https://doi.org/10.1016/j.conbuildmat.2008.11.012

    Article  Google Scholar 

  18. Van Tuan N, Ye G, Van Breugel K, Copuroglu O (2011) Hydration and microstructure of ultra high performance concrete incorporating rice husk ash. Cem Concr Res 41(11):1104–1111. https://doi.org/10.1016/j.cemconres.2011.06.009

    Article  Google Scholar 

  19. Alharbi YR, Abadel AA, Mayhoub OA, Kohail M (2021) Effect of using available metakaoline and nano materials on the behavior of reactive powder concrete. Constr Build Mater 269:121344. https://doi.org/10.1016/j.conbuildmat.2020.121344

    Article  Google Scholar 

  20. Yazici H, Yardimci MY, Yiǧiter H, Aydin S, Türkel S (2010) Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag. Cem Concr Compos 32(8):639–648. https://doi.org/10.1016/j.cemconcomp.2010.07.005

    Article  Google Scholar 

  21. Hiremath PN, Yaragal SC (2017) Influence of mixing method, speed and duration on the fresh and hardened properties of Reactive Powder Concrete. Constr Build Mater 141:271–288. https://doi.org/10.1016/j.conbuildmat.2017.03.009

    Article  Google Scholar 

  22. Sadrekarimi A (2004) Development of a Light Weight Reactive Powder Concrete. J Adv Concr Technol 2(3):409–417. https://doi.org/10.3151/jact.2.409

    Article  Google Scholar 

  23. Canbaz M (2014) The effect of high temperature on reactive powder concrete. Constr Build Mater 70:508–513. https://doi.org/10.1016/j.conbuildmat.2014.07.097

    Article  Google Scholar 

  24. Tam CM, Tam VWY, Ng KM (2010) Optimal conditions for producing reactive powder concrete. Mag Concr Res 62(10):701–716. https://doi.org/10.1680/macr.2010.62.10.701

    Article  Google Scholar 

  25. Yazici H, Yardimci MY, Aydin S, Karabulut AŞ (2009) Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes. Constr Build Mater 23(3):1223–1231. https://doi.org/10.1016/j.conbuildmat.2008.08.003

    Article  Google Scholar 

  26. Tam CM, Tam VWY, Ng KM (2012) Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong. Constr Build Mater 26(1):79–89. https://doi.org/10.1016/j.conbuildmat.2011.05.006

    Article  Google Scholar 

  27. Liu CT, Huang JS (2009) Fire performance of highly flowable reactive powder concrete. Constr Build Mater 23(5):2072–2079. https://doi.org/10.1016/j.conbuildmat.2008.08.022

    Article  Google Scholar 

  28. Tai YS (2009) Uniaxial compression tests at various loading rates for reactive powder concrete. Theor Appl Fract Mech 52(1):14–21. https://doi.org/10.1016/j.tafmec.2009.06.001

    Article  Google Scholar 

  29. Tai YS, Pan HH, Kung YN (2011) Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800 °C. Nucl Eng Des 241(7):2416–2424. https://doi.org/10.1016/j.nucengdes.2011.04.008

    Article  Google Scholar 

  30. Abdul Rahim M, Md Ghazaly Z, Raja Mamat RN, Azizi Azizan M, Isa NF, Shahidan S (2016) Experimental study of slurry infiltrated fiber reinforced concrete. Mater Sci Forum 857:363–366

    Article  Google Scholar 

  31. Hashim AM, Kadhum MM (2020) Compressive strength and elastic modulus of slurry infiltrated fiber concrete (SIFCON) at high temperature. Civ Eng J 6(2):265–275. https://doi.org/10.28991/cej-2020-03091469

    Article  Google Scholar 

  32. Yazıcı H, Aydın S, Yiğiter H, Yardımcı MY, Alptuna G (2010) Improvement on SIFCON performance by fiber orientation and high-volume mineral admixtures. J Mater Civ Eng 22(11):1093–1101. https://doi.org/10.1061/(asce)mt.1943-5533.0000114

    Article  Google Scholar 

  33. Mohan A, Karthika S, Ajith J, Dhal L, Tholkapiyan M (2020) Investigation on ultra high strength slurry infiltrated multiscale fibre reinforced concrete. Mater Today Proc 22:904–911. https://doi.org/10.1016/j.matpr.2019.11.102

    Article  Google Scholar 

  34. Sengul O (2018) Mechanical properties of slurry infiltrated fiber concrete produced with waste steel fibers. Constr Build Mater 186:1082–1091. https://doi.org/10.1016/j.conbuildmat.2018.08.042

    Article  Google Scholar 

  35. Soares Junior PRR, Maciel PS, Barreto RR, da Neto JTS, Corrêa ECS, da Bezerra ACS (2019) Thin slabs made of high-performance steel fibre-reinforced cementitious composite: mechanical behaviour statistical analysis and microstructural investigation. Mater. (Basel) 12(20):3297. https://doi.org/10.3390/ma12203297

    Article  Google Scholar 

  36. Manolia AA, Shakir AS, Qais JF (2018) The effect of fiber and mortar type on the freezing and thawing resistance of Slurry Infiltrated Fiber Concrete (SIFCON). IOP Conf Ser Mater Sci Eng. 454(1):012142. https://doi.org/10.1088/1757-899X/454/1/012142

    Article  Google Scholar 

  37. S. Kim, S. Han, C. Park, (2020) Compressive Behavior Characteristics of SIFCON under Uniaxial Compressive Stress

  38. Abbas AS, Kadhum MM (2020) Impact of fire on mechanical properties of slurry infiltrated fiber concrete (SIFCON). Civ Eng J 6:12–23

    Article  Google Scholar 

  39. Aygörmez Y, Al-mashhadani MM, Canpolat O (2020) High-temperature effects on white cement-based slurry infiltrated fiber concrete with metakaolin and fly ash additive. Rev la Constr 19(2):324–333. https://doi.org/10.7764/RDLC.19.2.324

    Article  Google Scholar 

  40. Morishima S, Yamaguchi M, Shibuya S, Kaneyasu S, Sueishi T (2020) Effects of fiber type on blast resistance of slurry-infiltrated fiber concrete under contact detonation. J Adv Concr Technol 18(4):157–167. https://doi.org/10.3151/jact.18.157

    Article  Google Scholar 

  41. A. P. Shelorkar and P. D. Jadhao, “Sorptivity of Slurry Infiltrated Fiber,” pp. 1–11.

  42. Tuyan M, Yazici H (2012) Pull-out behavior of single steel fiber from SIFCON matrix. Constr Build Mater 35:571–577. https://doi.org/10.1016/j.conbuildmat.2012.04.110

    Article  Google Scholar 

  43. M. Drdlová, O. Sviták, and V. Prachař, “Slurry infiltrated fibre concrete with waste steel fibres from tires - The behaviour under static and dynamic load,” Mater. Sci. Forum, vol. 908 MSF, pp. 76–82, 2017, doi: https://doi.org/10.4028/www.scientific.net/MSF.908.76.

  44. Al-Abdalay NM, Zeini HA, Kubba HZ (2020) Investigation of the behavior of slurry infiltrated fibrous concrete. J Adv Res Fluid Mech Therm Sci 65(1):109–120

    Google Scholar 

  45. Drdlová M, Prachař V (2018) The Static and Dynamic Properties of Slurry Infiltrated Fibre Concrete with Waste Steel Fibres from Tires. Int J Struct Civ Eng Res 7(1):46–50. https://doi.org/10.18178/ijscer.7.1.46-50

    Article  Google Scholar 

  46. X. Ma and G. Wen, (2020) Development history and synthesis of super-absorbent polymers: a review, J. Polym. Res., 27(6), https://doi.org/10.1007/s10965-020-02097-2

  47. Lim S, Jung GA, Muckom RJ, Glover DJ, Clark DS (2019) Engineering bioorthogonal protein-polymer hybrid hydrogel as a functional protein immobilization platform. Chem Commun 55(6):806–809. https://doi.org/10.1039/C8CC08720B

    Article  Google Scholar 

  48. Hong G, Choi S (2017) Rapid self-sealing of cracks in cementitious materials incorporating superabsorbent polymers. Constr Build Mater 143:1–9. https://doi.org/10.1016/j.conbuildmat.2017.03.133

    Article  Google Scholar 

  49. Lee HXD, Wong HS, Buenfeld NR (2010) Potential of superabsorbent polymer for self-sealing cracks in concrete. Adv Appl Ceram 109(5):296–302. https://doi.org/10.1179/174367609X459559

    Article  Google Scholar 

  50. Snoeck D, Van den Heede P, Van Mullem T, De Belie N (2018) Water penetration through cracks in self-healing cementitious materials with superabsorbent polymers studied by neutron radiography. Cem Concr Res 113(May):86–98. https://doi.org/10.1016/j.cemconres.2018.07.002

    Article  Google Scholar 

  51. Mechtcherine V, Secrieru E, Schröfl C (2015) Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars - Development of yield stress and plastic viscosity over time. Cem Concr Res 67:52–65. https://doi.org/10.1016/j.cemconres.2014.07.003

    Article  Google Scholar 

  52. Schröfl C, Mechtcherine V, Gorges M (2012) Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cem Concr Res 42(6):865–873. https://doi.org/10.1016/j.cemconres.2012.03.011

    Article  Google Scholar 

  53. Justs J, Wyrzykowski M, Winnefeld F, Bajare D, Lura P (2014) Influence of superabsorbent polymers on hydration of cement pastes with low water-to-binder ratio: A calorimetry study. J Therm Anal Calorim 115(1):425–432. https://doi.org/10.1007/s10973-013-3359-x

    Article  Google Scholar 

  54. Afanas’ev VN, Zaitsev AA, Tyunina EY, Ustinov AN (2005) The adiabatic compressibility and structural parameters of hydration of strong electrolytes. Russ J Phys Chem A 79(7):1077–1082

    Google Scholar 

  55. Jensen OM, Hansen PF (2001) Water-entrained cement-based materials - I. Principles and theoretical background. Cem Concr Res 31(4):647–654. https://doi.org/10.1016/S0008-8846(01)00463-X

    Article  Google Scholar 

  56. Justs J, Wyrzykowski M, Bajare D, Lura P (2015) Internal curing by superabsorbent polymers in ultra-high performance concrete. Cem Concr Res 76:82–90. https://doi.org/10.1016/j.cemconres.2015.05.005

    Article  Google Scholar 

  57. Reinhardt HW, Assmann A (2009) Enhanced durability of concrete by superabsorbent polymers. Institute of Fundamental Technological Research, Warsaw

    Book  Google Scholar 

  58. Laustsen S, Hasholt MT, Jensen OM (2015) Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete. Mater Struct Constr 48(1–2):357–368. https://doi.org/10.1617/s11527-013-0188-0

    Article  Google Scholar 

  59. Beushausen H, Gillmer M, Alexander M (2014) The influence of superabsorbent polymers on strength and durability properties of blended cement mortars. Cem Concr Compos 52:73–80. https://doi.org/10.1016/j.cemconcomp.2014.03.008

    Article  Google Scholar 

  60. Bentur A, Igarashi SI, Kovler K (2001) Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates. Cem Concr Res 31(11):1587–1591. https://doi.org/10.1016/S0008-8846(01)00608-1

    Article  Google Scholar 

  61. S. Igarashi, (2006) Experimental study on prevention of autogenous deformation by internal curing using super-absorbent polymer particles, In International RILEM Conference on Volume Changes of Hardening Concrete: Testing and Mitigation, vol. C, pp 77–86, https://doi.org/10.1617/2351580052.009.

  62. Farzanian K, Ghahremaninezhad A (2018) On the effect of chemical composition on the desorption of superabsorbent hydrogels in contact with a porous cementitious material. Gels 4(3):70. https://doi.org/10.3390/gels4030070

    Article  Google Scholar 

  63. K. Farzanian and A. Ghahremaninezhad, (2018) Desorption of superabsorbent hydrogels with varied chemical compositions in cementitious materials, Mater Struct Constr, 51(1), https://doi.org/10.1617/s11527-017-1128-1.

  64. P. Lura, (2006) Autogenous strain of cement pastes with superabsorbent polymers, In International RILEM Conference on Volume Changes of Hardening Concrete: Testing and Mitigation, vol. C, pp 57–65, https://doi.org/10.1617/2351580052.007.

  65. Zhong P, Wyrzykowski M, Toropovs N, Li L, Liu J, Lura P (2019) Internal curing with superabsorbent polymers of different chemical structures. Cem Concr Res 123:105789. https://doi.org/10.1016/j.cemconres.2019.105789

    Article  Google Scholar 

  66. Shen D, Jiang J, Zhang M, Yao P, Jiang G (2018) Tensile creep and cracking potential of high performance concrete internally cured with super absorbent polymers at early age. Constr Build Mater 165:451–461. https://doi.org/10.1016/j.conbuildmat.2017.12.136

    Article  Google Scholar 

  67. Liu J, Farzadnia N, Shi C (2020) Effects of superabsorbent polymer on interfacial transition zone and mechanical properties of ultra-high performance concrete. Constr Build Mater 231:117142. https://doi.org/10.1016/j.conbuildmat.2019.117142

    Article  Google Scholar 

  68. Kang SH, Hong SG, Moon J (2018) The effect of superabsorbent polymer on various scale of pore structure in ultra-high performance concrete. Constr Build Mater 172:29–40. https://doi.org/10.1016/j.conbuildmat.2018.03.193

    Article  Google Scholar 

  69. Shen D, Wang T, Chen Y, Wang M, Jiang G (2015) Effect of internal curing with super absorbent polymers on the relative humidity of early-age concrete. Constr Build Mater 99:246–253. https://doi.org/10.1016/j.conbuildmat.2015.08.042

    Article  Google Scholar 

  70. Wille K, Naaman AE, El-Tawil S, Parra-Montesinos GJ (2012) Ultra-high performance concrete and fiber reinforced concrete: Achieving strength and ductility without heat curing. Mater Struct Constr 45(3):309–324. https://doi.org/10.1617/s11527-011-9767-0

    Article  Google Scholar 

  71. Han J, Fang H, Wang K (2014) Design and control shrinkage behavior of high-strength self-consolidating concrete using shrinkage-reducing admixture and super-absorbent polymer. J Sustain Cem Mater 3(3–4):182–190. https://doi.org/10.1080/21650373.2014.897268

    Article  Google Scholar 

  72. Xie F, Cai D, Ji L, Zhang C, Ruan J (2021) Experimental study on the mechanical properties of internally cured concrete with super absorbent polymer under monotonic and cyclic loads. Constr Build Mater 270:121495. https://doi.org/10.1016/j.conbuildmat.2020.121495

    Article  Google Scholar 

  73. J. L. Schlitter, T. Barrett, and W. J. Weiss, (2010) Restrained Shrinkage Behavior Due To Combined Autogenous and Thermal Effects in Mortars Containing Super Absorbent Polymer (Sap), International RILEM Conference.

  74. Li L et al (2017) A case of water absorption and water/fertilizer retention performance of super absorbent polymer modified sulphoaluminate cementitious materials. Constr Build Mater 150:538–546. https://doi.org/10.1016/j.conbuildmat.2017.05.219

    Article  Google Scholar 

  75. Faxiang X, Dingpeng C, Lin J, Chuanlong Z, Jing R, Xiao L (2021) Combined compression-shear performance and failure criteria of internally cured concrete with super absorbent polymer. Constr Build Mater 266:120888. https://doi.org/10.1016/j.conbuildmat.2020.120888

    Article  Google Scholar 

  76. Bonapasta AA, Buda F, Colombet P (2000) Cross-linking of poly(vinyl alcohol) chains by Al ions in macro-defect-free cements: A theoretical study. Chem Mater 12(3):738–743. https://doi.org/10.1021/cm990475t

    Article  Google Scholar 

  77. Ekincioglu O, Ozkul MH, Struble LJ, Patachia S (2012) Optimization of material characteristics of macro-defect free cement. Cem Concr Compos 34(4):556–565. https://doi.org/10.1016/j.cemconcomp.2011.11.003

    Article  Google Scholar 

  78. Donatello S, Tyrer M, Cheeseman CR (2009) Recent developments in macro-defect-free (MDF) cements. Constr Build Mater 23(5):1761–1767. https://doi.org/10.1016/j.conbuildmat.2008.09.001

    Article  Google Scholar 

  79. Bonapasta AA, Buda F, Colombet P, Guerrini G (2002) Cross-linking of poly(vinyl alcohol) chains by Ca ions in macro-defect-free cements. Chem Mater 14(3):1016–1022. https://doi.org/10.1021/cm010573q

    Article  Google Scholar 

  80. Mojumdar SC (2001) Processing-moisture resistance and thermal analysis of macro-defect-free materials. J Therm Anal Calorim 64(3):1133–1139. https://doi.org/10.1023/A:1011580626499

    Article  Google Scholar 

  81. Popoola O, Kriven WM, Young JF (1991) High-resolution electron microscopy and microchemical characterization of a polyvinyl alcohol acetate/calcium aluminate composite (macro-defect-free cement). Ultramicroscopy 37(1–4):318–325. https://doi.org/10.1016/0304-3991(91)90029-6

    Article  Google Scholar 

  82. Desai PG, Lewis JA, Beintz DP (1994) Unreacted cement content in macro-defect-free composites: impact on processing-structure-property relations. J Mater Sci 29(24):6445–6452. https://doi.org/10.1007/BF00354002

    Article  Google Scholar 

  83. Amore Bonapasta A, Buda F, Colombet P (2001) Interaction between Ca ions and poly(acrylic acid) chains in macro-defect-free cements: a theoretical study. Chem Mater 13(1):64–70. https://doi.org/10.1021/cm000505o

    Article  Google Scholar 

  84. Gursel AP, Ostertag C (2019) Life-cycle assessment of high-strength concrete mixtures with copper slag as sand replacement. Adv Civ Eng. https://doi.org/10.1155/2019/6815348

    Article  Google Scholar 

  85. Meng W, Valipour M, Khayat KH (2017) Optimization and performance of cost-effective ultra-high performance concrete. Mater Struct Constr 50(1):1–16. https://doi.org/10.1617/s11527-016-0896-3

    Article  Google Scholar 

  86. Chen T, Gao X, Ren M (2018) Effects of autoclave curing and fly ash on mechanical properties of ultra-high performance concrete. Constr Build Mater 158:864–872. https://doi.org/10.1016/j.conbuildmat.2017.10.074

    Article  Google Scholar 

  87. Ranjbar N, Mehrali M, Maheri MR, Mehrali M (2017) Hot-pressed geopolymer. Cem Concr Res 100(May):14–22. https://doi.org/10.1016/j.cemconres.2017.05.010

    Article  Google Scholar 

  88. International Organization for Standardization (ISO), (2006) ISO 14040-Environmental management-life cycle assessment-principles and framework, Int Organ Stand, [Online]. Available: https://www.iso.org/standard/37456.html.

  89. J. B. Guinée and R. Heijungs, (2005) Life Cycle Assessment, In Kirk-Othmer Encyclopedia of Chemical Technology, no. Lci, Hoboken, NJ, USA: Wiley, pp 1–29

  90. T. Stengel and P. Schießl, (2013) Life cycle assessment (LCA) of ultra high performance concrete (UHPC) structures. Woodhead Publishing Limited

  91. Shi C, Wu Z, Xiao J, Wang D, Huang Z, Fang Z (2015) A review on ultra high performance concrete: Part I. Raw materials and mixture design. Constr Build Mater 101:741–751. https://doi.org/10.1016/j.conbuildmat.2015.10.088

    Article  Google Scholar 

  92. T. Hirschi and F. Wombacher, (2008) Influence of different superplasticizers on UHPC, Kassel University Press, 77–84.

  93. Schröfl C, Gruber M, Plank J (2012) Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC). Cem Concr Res 42(11):1401–1408. https://doi.org/10.1016/j.cemconres.2012.08.013

    Article  Google Scholar 

  94. Van Tuan N, Ye G, Van Breugel K, Fraaij ALA, Bui DD (2011) The study of using rice husk ash to produce ultra high performance concrete. Constr Build Mater 25(4):2030–2035. https://doi.org/10.1016/j.conbuildmat.2010.11.046

    Article  Google Scholar 

  95. Wu Z, Khayat KH, Shi C (2019) Changes in rheology and mechanical properties of ultra-high performance concrete with silica fume content. Cem Concr Res 123:105786. https://doi.org/10.1016/j.cemconres.2019.105786

    Article  Google Scholar 

  96. N. De Belie, M. Soutsos, and E. Gruyaert, (2018) Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4.

  97. Kuder KG, Ozyurt N, Mu EB, Shah SP (2007) Rheology of fiber-reinforced cementitious materials. Cem Concr Res 37(2):191–199. https://doi.org/10.1016/j.cemconres.2006.10.015

    Article  Google Scholar 

  98. Khayat KH, Meng W, Vallurupalli K, Teng L (2019) Rheological properties of ultra-high-performance concrete—An overview. Cem Concr Res 124:105828. https://doi.org/10.1016/j.cemconres.2019.105828

    Article  Google Scholar 

  99. Khayat KH (1998) Viscosity-enhancing admixtures for cement-based materials-An overview. Cem Concr Compos 20(2–3):171–188. https://doi.org/10.1016/s0958-9465(98)80006-1

    Article  Google Scholar 

  100. Lachemi M, Hossain KMA, Lambros V, Nkinamubanzi PC, Bouzoubaâ N (2004) Performance of new viscosity modifying admixtures in enhancing the rheological properties of cement paste. Cem Concr Res 34(2):185–193. https://doi.org/10.1016/S0008-8846(03)00233-3

    Article  Google Scholar 

  101. Mirgozar Langaroudi MA, Mohammadi Y (2018) Effect of nano-clay on workability, mechanical, and durability properties of self-consolidating concrete containing mineral admixtures. Constr Build Mater 191:619–634. https://doi.org/10.1016/j.conbuildmat.2018.10.044

    Article  Google Scholar 

  102. Shi C, Hu S (2003) Cementitious properties of ladle slag fines under autoclave curing conditions. Cem Concr Res 33(11):1851–1856. https://doi.org/10.1016/S0008-8846(03)00211-4

    Article  Google Scholar 

  103. Aldeaa C, Youngb F, Wanga K, Shaha SP (2000) Effects of curing conditions on properties of concrete using slag replacement. Cem Concr Res 30:465–472

    Article  Google Scholar 

  104. Soliman AM, Nehdi ML (2013) Effect of partially hydrated cementitious materials and superabsorbent polymer on early-age shrinkage of UHPC. Constr Build Mater 41:270–275. https://doi.org/10.1016/j.conbuildmat.2012.12.008

    Article  Google Scholar 

  105. Meng W, Khayat K (2017) Effects of saturated lightweight sand content on key characteristics of ultra-high-performance concrete. Cem Concr Res 101(February):46–54. https://doi.org/10.1016/j.cemconres.2017.08.018

    Article  Google Scholar 

  106. Shaheen E, Shrive NG, Allena S, Newtson CM (2007) Optimization of mechanical properties and durability of reactive powder concrete. ACI Mater J 104(5):547

    Google Scholar 

  107. Shen P, Lu L, He Y, Wang F, Hu S (2019) The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultra-high performance concrete. Cem Concr Res 118(January):1–13. https://doi.org/10.1016/j.cemconres.2019.01.004

    Article  Google Scholar 

  108. Chan YW, Chu SH (2004) Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cem Concr Res 34(7):1167–1172. https://doi.org/10.1016/j.cemconres.2003.12.023

    Article  Google Scholar 

  109. Ghafari E, Costa H, Júlio E, Portugal A, Durães L (2014) The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Mater Des 59:1–9. https://doi.org/10.1016/j.matdes.2014.02.051

    Article  Google Scholar 

  110. Norhasri MSM, Hamidah MS, Fadzil AM (2019) Inclusion of nano metaclayed as additive in ultra high performance concrete (UHPC). Constr Build Mater 201:590–598. https://doi.org/10.1016/j.conbuildmat.2019.01.006

    Article  Google Scholar 

  111. Elalaoui O, Ghorbel E, Mignot V, Ben Ouezdou M (2012) Mechanical and physical properties of epoxy polymer concrete after exposure to temperatures up to 250 °c. Constr Build Mater 27(1):415–424. https://doi.org/10.1016/j.conbuildmat.2011.07.027

    Article  Google Scholar 

  112. Mohammed H, Ortoneda-Pedrola M, Nakouti I, Bras A (2020) Experimental characterisation of non-encapsulated bio-based concrete with self-healing capacity. Constr Build Mater 256:119411. https://doi.org/10.1016/j.conbuildmat.2020.119411

    Article  Google Scholar 

  113. Hameed AM, Hamza MT (2019) Characteristics of polymer concrete produced from wasted construction materials. Energy Procedia 157(2018):43–50. https://doi.org/10.1016/j.egypro.2018.11.162

    Article  Google Scholar 

  114. Tziviloglou E, Wiktor V, Jonkers HM, Schlangen E (2016) Bacteria-based self-healing concrete to increase liquid tightness of cracks. Constr Build Mater 122:118–125. https://doi.org/10.1016/j.conbuildmat.2016.06.080

    Article  Google Scholar 

  115. S. Natarajan, N. N. Pillai, and S. Murugan, (2019) Experimental investigations on the properties of epoxy-resin-bonded cement concrete containing sea sand for use in unreinforced concrete applications, Materials (Basel), 12(4), https://doi.org/10.3390/ma12040645.

  116. Wu CR, Zhu YG, Zhang XT, Kou SC (2018) Improving the properties of recycled concrete aggregate with bio-deposition approach. Cem Concr Compos 94(September):248–254. https://doi.org/10.1016/j.cemconcomp.2018.09.012

    Article  Google Scholar 

  117. Yoo DY, Kim MJ (2019) High energy absorbent ultra-high-performance concrete with hybrid steel and polyethylene fibers. Constr Build Mater 209:354–363. https://doi.org/10.1016/j.conbuildmat.2019.03.096

    Article  Google Scholar 

  118. Zhou Y, Huang J, Yang X, Dong Y, Feng T, Liu J (2021) Enhancing the PVA fiber-matrix interface properties in ultra high performance concrete: An experimental and molecular dynamics study. Constr Build Mater 285:122862. https://doi.org/10.1016/j.conbuildmat.2021.122862

    Article  Google Scholar 

  119. Wu Z, Shi C, He W, Wu L (2016) Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Constr Build Mater 103:8–14. https://doi.org/10.1016/j.conbuildmat.2015.11.028

    Article  Google Scholar 

  120. Wu Z, Shi C, Khayat KH (2019) Investigation of mechanical properties and shrinkage of ultra-high performance concrete: Influence of steel fiber content and shape. Compos Part B Eng 174(June):107021. https://doi.org/10.1016/j.compositesb.2019.107021

    Article  Google Scholar 

  121. Kang ST, Lee BY, Kim JK, Kim YY (2011) The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete. Constr Build Mater 25(5):2450–2457. https://doi.org/10.1016/j.conbuildmat.2010.11.057

    Article  Google Scholar 

  122. Aprianti E, Shafigh P, Bahri S, Farahani JN (2015) Supplementary cementitious materials origin from agricultural wastes–A review. Constr Build Mater 74:176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.010

    Article  Google Scholar 

  123. Liu Y, Shi C, Zhang Z, Li N, Shi D (2020) Mechanical and fracture properties of ultra-high performance geopolymer concrete: effects of steel fiber and silica fume. Cem Concr Compos 112(May):103665. https://doi.org/10.1016/j.cemconcomp.2020.103665

    Article  Google Scholar 

  124. Park S, Wu S, Liu Z, Pyo S (2021) The role of supplementary cementitious materials (Scms) in ultra high performance concrete (uhpc): A review. Materials (Basel) 14(6):1–24. https://doi.org/10.3390/ma14061472

    Article  Google Scholar 

  125. Zhang J, Zhao Y (2017) The mechanical properties and microstructure of ultra-high-performance concrete containing various supplementary cementitious materials. J Sustain Cem Mater 6(4):254–266. https://doi.org/10.1080/21650373.2016.1262798

    Article  Google Scholar 

  126. Camiletti J, Soliman AM, Nehdi ML (2013) Effects of nano- and micro-limestone addition on early-age properties of ultra-high-performance concrete. Mater Struct Constr 46(6):881–898. https://doi.org/10.1617/s11527-012-9940-0

    Article  Google Scholar 

  127. H. Kuhl, (1908) Slag cement and process of making the same. US Patent 900,939, [Online]. Available: https://patentimages.storage.googleapis.com/01/6d/9c/e419a866806506/US900939.pdf.

  128. Wang C, Yang C, Liu F, Wan C, Pu X (2012) Preparation of Ultra-High Performance Concrete with common technology and materials. Cem Concr Compos 34(4):538–544. https://doi.org/10.1016/j.cemconcomp.2011.11.005

    Article  Google Scholar 

  129. Wu Z, Shi C, He W (2017) Comparative study on flexural properties of ultra-high performance concrete with supplementary cementitious materials under different curing regimes. Constr Build Mater 136:307–313. https://doi.org/10.1016/j.conbuildmat.2017.01.052

    Article  Google Scholar 

  130. Huang W, Kazemi-Kamyab H, Sun W, Scrivener K (2017) Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC). Cem Concr Compos 77:86–101. https://doi.org/10.1016/j.cemconcomp.2016.12.009

    Article  Google Scholar 

  131. Kang SH, Jeong Y, Tan KH, Moon J (2018) The use of limestone to replace physical filler of quartz powder in UHPFRC. Cem Concr Compos 94(September):238–247. https://doi.org/10.1016/j.cemconcomp.2018.09.013

    Article  Google Scholar 

  132. Li PP, Brouwers HJH, Chen W, Yu Q (2020) Optimization and characterization of high-volume limestone powder in sustainable ultra-high performance concrete. Constr Build Mater 242:118112. https://doi.org/10.1016/j.conbuildmat.2020.118112

    Article  Google Scholar 

  133. Alharbi YR, Abadel AA, Salah AA, Mayhoub OA, Kohail M (2021) Engineering properties of alkali activated materials reactive powder concrete. Constr Build Mater 271:121550. https://doi.org/10.1016/j.conbuildmat.2020.121550

    Article  Google Scholar 

  134. Kang SH, Hong SG, Moon J (2019) The use of rice husk ash as reactive filler in ultra-high performance concrete. Cem Concr Res 115:389–400. https://doi.org/10.1016/j.cemconres.2018.09.004

    Article  Google Scholar 

  135. M. W. Barsoum, (2002) Fundamentals of ceramics, Fundam Ceram, pp 1–612, https://doi.org/10.1887/0750309024.

  136. Carter CB, Norton MG (2013) Ceramic Materials, Science and Engineering. Springer, New York, NY

    Google Scholar 

  137. Rebeiz KS, Asce M, Serhal SP, Craft AP (2004) Properties of polymer concrete using fly ash. J Mater Civil Eng 16:15–19. https://doi.org/10.1061/(ASCE)0899-1561(2004)16

    Article  Google Scholar 

  138. Wang Y, Zheng T, Zheng X, Liu Y, Darkwa J, Zhou G (2020) Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers. Constr Build Mater 251:118960. https://doi.org/10.1016/j.conbuildmat.2020.118960

    Article  Google Scholar 

  139. Lizcano M, Gonzalez A, Basu S, Lozano K, Radovic M (2012) Effects of water content and chemical composition on structural properties of alkaline activated metakaolin-based geopolymers. J Am Ceram Soc 95(7):2169–2177. https://doi.org/10.1111/j.1551-2916.2012.05184.x

    Article  Google Scholar 

  140. Steins P, Poulesquen A, Diat O, Frizon F (2012) Structural evolution during geopolymerization from an early age to consolidated material. Langmuir 28(22):8502–8510. https://doi.org/10.1021/la300868v

    Article  Google Scholar 

  141. M. Scheffler, R. Bordia, N. Travitzky, and P. Greil, (2005) Edited by Narottam P. Bansal, J. P. Singh and Hartmut Schneider Copyright © 2005. The American Ceramic Society, 005, pp 101–107

  142. Criado M, Palomo A, Fernández-Jiménez A (2005) Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel 84(16):2048–2054. https://doi.org/10.1016/j.fuel.2005.03.030

    Article  Google Scholar 

  143. Mechtcherine V (2012) Application of super absorbent polymers (SAP) in concrete construction. Springer, Netherlands Dordrecht

    Book  Google Scholar 

  144. Granger S, Loukili A, Pijaudier-Cabot G, Chanvillard G (2007) Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: Mechanical tests and acoustic emission analysis. Cem Concr Res 37(4):519–527. https://doi.org/10.1016/j.cemconres.2006.12.005

    Article  Google Scholar 

  145. Yang Y, Lepech MD, Yang EH, Li VC (2009) Autogenous healing of engineered cementitious composites under wet-dry cycles. Cem Concr Res 39(5):382–390. https://doi.org/10.1016/j.cemconres.2009.01.013

    Article  Google Scholar 

  146. Palin D, Wiktor V, Jonkers HM (2015) Autogenous healing of marine exposed concrete: Characterization and quantification through visual crack closure. Cem Concr Res 73:17–24. https://doi.org/10.1016/j.cemconres.2015.02.021

    Article  Google Scholar 

  147. Yang Y, Yang EH, Li VC (2011) Autogenous healing of engineered cementitious composites at early age. Cem Concr Res 41(2):176–183. https://doi.org/10.1016/j.cemconres.2010.11.002

    Article  Google Scholar 

  148. Nodehi M (2021) A comparative review on foam-based versus lightweight aggregate-based alkali-activated materials and geopolymer. Innov Infrastruct Solut 6(4):231. https://doi.org/10.1007/s41062-021-00595-w

    Article  Google Scholar 

  149. Li M, Zhu X, Mukherjee A, Huang M, Achal V (2017) Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content. J Hazard Mater 329:178–184. https://doi.org/10.1016/j.jhazmat.2017.01.035

    Article  Google Scholar 

  150. Achal V, Mukerjee A, Sudhakara Reddy M (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 48:1–5. https://doi.org/10.1016/j.conbuildmat.2013.06.061

    Article  Google Scholar 

  151. Abdollahnejad Z, Mastali M, Woof B, Illikainen M (2020) High strength fiber reinforced one-part alkali activated slag/fly ash binders with ceramic aggregates: Microscopic analysis, mechanical properties, drying shrinkage, and freeze-thaw resistance. Constr Build Mater 241:118129. https://doi.org/10.1016/j.conbuildmat.2020.118129

    Article  Google Scholar 

  152. Abdollahnejad Z et al (2020) Microstructural analysis and strength development of one-part alkali-activated slag/ceramic binders under different curing regimes. Waste Biomass Valorization 11(6):3081–3096. https://doi.org/10.1007/s12649-019-00626-9

    Article  Google Scholar 

  153. Wu L, Farzadnia N, Shi C, Zhang Z, Wang H (2017) Autogenous shrinkage of high performance concrete: a review. Constr Build Mater 149:62–75. https://doi.org/10.1016/j.conbuildmat.2017.05.064

    Article  Google Scholar 

  154. Nodehi M, Taghvaee VM (2021) Alkali-activated materials and geopolymer: a review of common precursors and activators addressing circular economy. Circ Econ Sustain. https://doi.org/10.1007/s43615-021-00029-w

    Article  Google Scholar 

  155. Xie T, Fang C, Mohamad Ali MS, Visintin P (2018) Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): An experimental study. Cem Concr Compos 91:156–173. https://doi.org/10.1016/j.cemconcomp.2018.05.009

    Article  Google Scholar 

  156. Wang F, Zhou Y, Peng B, Liu Z, Hu S (2009) Autogenous shrinkage of concrete with super-absorbent polymer. ACI Mater J 106(2):123–127. https://doi.org/10.14359/56458

    Article  Google Scholar 

  157. Ji T, Chen CY, Zhuang YZ (2012) Evaluation method for cracking resistant behavior of reactive powder concrete. Constr Build Mater 28(1):45–49. https://doi.org/10.1016/j.conbuildmat.2011.08.060

    Article  Google Scholar 

  158. Mohseni E, Khotbehsara MM, Naseri F, Monazami M, Sarker P (2016) Polypropylene fiber reinforced cement mortars containing rice husk ash and nano-alumina. Constr Build Mater 111:429–439. https://doi.org/10.1016/j.conbuildmat.2016.02.124

    Article  Google Scholar 

  159. Li J, Wu Z, Shi C, Yuan Q, Zhang Z (2020) Durability of ultra-high performance concrete–A review. Constr Build Mater 255:119296. https://doi.org/10.1016/j.conbuildmat.2020.119296

    Article  Google Scholar 

  160. Lu Z, Gang Feng Z, Yao D, Li X, Ji H (2021) Freeze-thaw resistance of Ultra-High performance concrete: Dependence on concrete composition. Constr Build Mater 293:123523. https://doi.org/10.1016/j.conbuildmat.2021.123523

    Article  Google Scholar 

  161. Dils J, Boel V, De Schutter G (2013) Influence of cement type and mixing pressure on air content, rheology and mechanical properties of UHPC. Constr Build Mater 41:455–463. https://doi.org/10.1016/j.conbuildmat.2012.12.050

    Article  Google Scholar 

  162. Peng Y, Zhang J, Liu J, Ke J, Wang F (2015) Properties and microstructure of reactive powder concrete having a high content of phosphorous slag powder and silica fume. Constr Build Mater 101:482–487. https://doi.org/10.1016/j.conbuildmat.2015.10.046

    Article  Google Scholar 

  163. Alkaysi M, El-Tawil S, Liu Z, Hansen W (2016) Effects of silica powder and cement type on durability of ultra high performance concrete (UHPC). Cem Concr Compos 66:47–56. https://doi.org/10.1016/j.cemconcomp.2015.11.005

    Article  Google Scholar 

  164. Liu J, Song S, Wang L (2009) Durability and micro-structure of reactive powder concrete. J Wuhan Univ Technol Mater Sci Ed 24(3):506–509. https://doi.org/10.1007/s11595-009-3506-1

    Article  Google Scholar 

  165. B. Graybeal and J. l. Hartmann, (2003) Strength and durability of ultra-high performance concrete materials and structures, 2003 Concrete Bridge Conference, pp 1–20

  166. V. Mechtcherine et al., (2017) Effect of superabsorbent polymers (SAP) on the freeze–thaw resistance of concrete: results of a RILEM interlaboratory study, Mater Struct Constr, 50(1): https://doi.org/10.1617/s11527-016-0868-7.

  167. Nodehi M, Mohamad Taghvaee V (2021) Sustainable concrete for circular economy: a review on use of waste glass. Glas Struct Eng. https://doi.org/10.1007/s40940-021-00155-9

    Article  Google Scholar 

  168. Masse S, Vetter G, Boch P, Haehnel C (2002) Elastic modulus changes in cementitious materials submitted to thermal treatments up to 1000°C. Adv Cem Res 14(4):169–177. https://doi.org/10.1680/adcr.2002.14.4.169

    Article  Google Scholar 

  169. Chan SYN, Luo X, Sun W (2000) Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete. Constr Build Mater 14(5):261–266. https://doi.org/10.1016/S0950-0618(00)00031-3

    Article  Google Scholar 

  170. Ma Q, Guo R, Zhao Z, Lin Z, He K (2015) Mechanical properties of concrete at high temperature-A review. Constr Build Mater 93:371–383. https://doi.org/10.1016/j.conbuildmat.2015.05.131

    Article  Google Scholar 

  171. Kore Sudarshan D, Vyas AK (2019) Impact of fire on mechanical properties of concrete containing marble waste. J King Saud Univ-Eng Sci 31(1):42–51. https://doi.org/10.1016/j.jksues.2017.03.007

    Article  Google Scholar 

  172. Hager I (2014) Colour change in heated concrete. Fire Technol 50(4):945–958. https://doi.org/10.1007/s10694-012-0320-7

    Article  Google Scholar 

Download references

Acknowledgements

The graphics in this article are sketched through a licensed Adobe Photoshop express, Bio render, Microsoft PowerPoint and Microsoft paint.

Funding

This research did not receive any specific grant or funding from agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrab Nodehi.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Availability of data and material

The data gathered are available as the supplementary material.

Code availability

The authors declare that no code is used for the purpose of this article.

Consent for publication

The corresponding author declares consent for publication in the journal of Innovative infrastructure solutions.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nodehi, M., Nodehi, S.E. Ultra high performance concrete (UHPC): reactive powder concrete, slurry infiltrated fiber concrete and superabsorbent polymer concrete. Innov. Infrastruct. Solut. 7, 39 (2022). https://doi.org/10.1007/s41062-021-00641-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-021-00641-7

Keywords

Navigation