Skip to main content
Log in

Epoxy, polyester and vinyl ester based polymer concrete: a review

  • State-of-the-art paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Polymer concrete refers to the use of a polymer such as epoxy, polyester or vinyl ester materials for coating, supplement or cement replacement that enhances mechanical and durability properties of concrete. These three are commonly used resins; depending on the way it is applied, it can produce polymer-impregnated concrete, polymer-coated concrete, polymer-modified concrete and normal or ordinary polymer concrete with a polymer resin that is used instead of ordinary Portland cement (OPC). In general, polymer concrete has a much higher strength development rate than ordinary concrete and is used to produce high-strength concrete, which is a well-known anti-corrosion and chemical-resistant material. The mechanism that polymer concrete follows consists of using a thermosetting resin with a curing agent to initiate curing and start its cross-linking network reaction to bind with the surrounding materials. In addition, fillers and often other cementitious materials are also used to modify the resulted binder’s flowability, strength development and other properties. Due to its impermeability and other potentials, polymer concrete can be a major alternative for OPC-based concrete or act as a supplement in precast structures and repair. With this basis, this article, for the first time, provides a comparative state-of-the-art review of fresh, mechanical and durability properties, of each resin used with their respective results. Based on the reviewed content, the addition of resins can enhance physicomechanical and durability properties of concrete structures, especially if used in combination with other fillers and cementitious materials, producing a cost-effective composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of data and material

The data gathered are available as the supplementary material.

Code availability

The authors declare that no code is used for the purpose of this article.

Notes

  1. USD: United States Dollar.

  2. In this review, the terminology used as hardener, accelerator, or curing agent throughout the text, all refer to the catalyst used to initiate curing of the resins and does not refer to the adhesive materials often used in two-part epoxy systems.

  3. (\(K = {\text{A}} \times e^{{\frac{ - E}{{{\text{R}}T}}}}\) where K is the rate of reaction, A is a constant, E is activation energy, T is the temperature and R represents universal gas constant.

Abbreviations

OPC:

Ordinary Portland cement

PET:

Polyethylene terephthalate

MMA:

Methyl and methacrylate

AAMs:

Alkali-activated materials

SEM:

Scanning electron microscopy

LCA:

Lifecycle assessment

Ortho:

Orthophthalic

Iso:

Isophthalic

SCMs:

Supplementary cementitious materials

References

  1. American Society of Civil Engineers (ASCE) (2021) A comprehensive assessment of AMERICA’S infrastructure, 2021 report card,” 2021, [Online]. https://infrastructurereportcard.org/

  2. Fontana JJ, Bartholomew J (1980) The use of concrete polymer materials in the transportation industry. Am. Concr. Inst. committe 548 Symp. Puerto Rico, Sept. 21–26, 1980, 1980, [Online]. https://www.osti.gov/servlets/purl/6841414/

  3. Nodehi M, Nodehi SE (2021) Ultra high performance concrete (UHPC): reactive powder concrete, slurry infiltrated fiber concrete and superabsorbent polymer concrete. Innov Infrastruct Solut. https://doi.org/10.1007/s41062-021-00641-7

  4. Stevens RJ (2020) Polyester polymer concrete for bridge deck overlays. Brigham Young University

  5. Akovali G (2005) Polymers in construction

  6. Chandra S, Ohama Y (2020) Polymers in concrete. CRC Press

  7. Ohama Y (2011) Concrete-polymer composites—the past, present and future. Key Eng Mater 466:1–14. https://doi.org/10.4028/www.scientific.net/KEM.466.1

    Article  Google Scholar 

  8. O’Connor DN, Saiidi M (1993) Polyester concrete for bridge deck overlays. Concr Int 15(12):36–39

    Google Scholar 

  9. Fowler DW, Whitney DW (2012) Long-term performance of polymer concrete for bridge decks

  10. Gorninski JP, Dal Molin DC, Kazmierczak CS (2004) Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and portland cement concrete. Cem Concr Res 34(11):2091–2095. https://doi.org/10.1016/j.cemconres.2004.03.012

    Article  Google Scholar 

  11. Abdel-Fattah H, El-Hawary MM (1999) Flexural behavior of polymer concrete. Constr Build Mater 13(5):253–262. https://doi.org/10.1016/S0950-0618(99)00030-6

    Article  Google Scholar 

  12. Orak S (2000) Investigation of vibration damping on polymer concrete with polyester resin. Cem Concr Res 30(2):171–174. https://doi.org/10.1016/S0008-8846(99)00225-2

    Article  Google Scholar 

  13. Heidari-Rarani M, Aliha MRM, Shokrieh MM, Ayatollahi MR (2014) Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings—an experimental study. Constr Build Mater 64:308–315. https://doi.org/10.1016/j.conbuildmat.2014.04.031

    Article  Google Scholar 

  14. Schneck U (2014) Concrete solutions 2014.

  15. Lokuge W, Aravinthan T (2013) Effect of fly ash on the behaviour of polymer concrete with different types of resin. Mater Des 51:175–181. https://doi.org/10.1016/j.matdes.2013.03.078

    Article  Google Scholar 

  16. Nodehi M, Aguayo F (2021) Ultra high performance and high strength geopolymer concrete. J Build Pathol Rehabil 6(1):34. https://doi.org/10.1007/s41024-021-00130-5

    Article  Google Scholar 

  17. Holthausen S (2015) Sprayed polymer concrete for the rehabilitation of sewage systems, vol 1129, pp 460–467. https://doi.org/10.4028/www.scientific.net/AMR.1129.460

  18. Haddad H, Al Kobaisi M (2012) Optimization of the polymer concrete used for manufacturing bases for precision tool machines. Compos Part B Eng 43(8):3061–3068. https://doi.org/10.1016/j.compositesb.2012.05.003

  19. Tabatabaeian M, Khaloo A, Khaloo H (2019) An innovative high performance pervious concrete with polyester and epoxy resins. Constr Build Mater 228:116820. https://doi.org/10.1016/j.conbuildmat.2019.116820

    Article  Google Scholar 

  20. Bărbuţă M, Harja M, Baran I (2010) Comparison of mechanical properties for polymer concrete with different types of filler. J Mater Civ Eng 22(7):696–701. https://doi.org/10.1061/(asce)mt.1943-5533.0000069

    Article  Google Scholar 

  21. Gorninski JP, Dal Molin DC, Kazmierczak CS (2007) Strength degradation of polymer concrete in acidic environments. Cem Concr Compos 29(8):637–645. https://doi.org/10.1016/j.cemconcomp.2007.04.001

    Article  Google Scholar 

  22. Rebeiz KS, Fowler DW, Paul DR (1991) Recycling plastics in polymer concrete systems for engineering applications. Polym Plast Technol Eng 30(8):809–825. https://doi.org/10.1080/03602559108021008

    Article  Google Scholar 

  23. Safiuddin M (2017) Concrete damage in field conditions and protective sealer and coating systems. Coatings 7(7):15–19. https://doi.org/10.3390/coatings7070090

    Article  Google Scholar 

  24. Victor CV, Garas Y (2003) Review of polyester polymer concrete properties, pp 5–7

  25. Kumar R (2016) A review on epoxy and polyester based polymer concrete and exploration of polyfurfuryl alcohol as polymer concrete. J Polym 2016:1–13. https://doi.org/10.1155/2016/7249743

    Article  Google Scholar 

  26. Nodehi M (2021) A comparative review on foam-based versus lightweight aggregate-based alkali-activated materials and geopolymer. Innov Infrastruct Solut 6(4):231. https://doi.org/10.1007/s41062-021-00595-w

    Article  Google Scholar 

  27. Guo SY et al (2020) Mechanical and interface bonding properties of epoxy resin reinforced Portland cement repairing mortar. Constr Build Mater 264:120715. https://doi.org/10.1016/j.conbuildmat.2020.120715

    Article  Google Scholar 

  28. Al-Zahrani MM, Maslehuddin M, Al-Dulaijan SU, Ibrahim M (2003) Mechanical properties and durability characteristics of polymer- and cement-based repair materials. Cem Concr Compos 25(4–5):527–537. https://doi.org/10.1016/S0958-9465(02)00092-6

    Article  Google Scholar 

  29. Monteny J, De Belie N, Vincke E, Verstraete W, Taerwe L (2001) Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cem Concr Res 31(9):1359–1365. https://doi.org/10.1016/S0008-8846(01)00565-8

    Article  Google Scholar 

  30. Saribiyik M, Piskin A, Saribiyik A (2013) The effects of waste glass powder usage on polymer concrete properties. Constr Build Mater 47:840–844. https://doi.org/10.1016/j.conbuildmat.2013.05.023

    Article  Google Scholar 

  31. Dos Reis JML (2012) Effect of temperature on the mechanical properties of polymer mortars. Mater Res 15(4):645–649. https://doi.org/10.1590/S1516-14392012005000091

    Article  Google Scholar 

  32. Rebeiz KS, Asce M, Serhal SP, Craft AP (2004) Properties of polymer concrete using fly ash, vol 16, no. February, pp 15–19. https://doi.org/10.1061/(ASCE)0899-1561(2004)16

  33. Bulut HA, Şahin R (2017) A study on mechanical properties of polymer concrete containing electronic plastic waste. Compos Struct 178:50–62. https://doi.org/10.1016/j.compstruct.2017.06.058

    Article  Google Scholar 

  34. Rebeiz KS, Fowler DW (1996) Flexural strength of reinforced polymer concrete made with recycled plastic waste. ACI Struct J 93(5):524–530. https://doi.org/10.14359/9710

    Article  Google Scholar 

  35. Wang J, Dai Q, Guo S, Si R (2019) Mechanical and durability performance evaluation of crumb rubber-modified epoxy polymer concrete overlays. Constr Build Mater 203:469–480. https://doi.org/10.1016/j.conbuildmat.2019.01.085

    Article  Google Scholar 

  36. Hassani Niaki M, Fereidoon A, Ghorbanzadeh Ahangari M (2018) Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete. Compos Struct vol 191, no February, pp 231–238. https://doi.org/10.1016/j.compstruct.2018.02.063

  37. Mccleese WF (2000) REMR program overview and guide, no. June

  38. Kosednar J, Mailvaganam NP (2005) Selection and use of polymer-based materials in the repair of concrete structures. J Perform Constr Facil 19(3):229–233. https://doi.org/10.1061/(asce)0887-3828(2005)19:3(229)

    Article  Google Scholar 

  39. Czarnecki L, Ozkul H, Wang R (2013) Driving forces concrete-polymer composites. Adv Mater Res 687:68–74. https://doi.org/10.4028/www.scientific.net/AMR.687.68

    Article  Google Scholar 

  40. Hing E (2007) Application of polymer in concrete construction, vol 16, no November 2007

  41. Beeldens A, Van Gemert D, Schorn H, Ohama Y, Czarnecki L (2005) From microstructure to macrostructure: an integrated model of structure formation in polymer-modified concrete. Mater Struct Constr 38(280):601–607. https://doi.org/10.1617/14215

    Article  Google Scholar 

  42. Ramesh Kumar GB, Rishab Narayanan V (2020) A review on polymer impregnated concrete using steel wire mesh. Mater Today Proc 33:338–344. https://doi.org/10.1016/j.matpr.2020.04.118

  43. Aswini G, Kalpana (2020) Conventional concrete over polymer impregnated concrete using silica fumes. IOP Conf Ser Mater Sci Eng 923(1). https://doi.org/10.1088/1757-899X/923/1/012046

  44. Fowler DW (1999) Polymers in concrete: a vision for the 21st century. Cem Concr Compos 21(5–6):449–452. https://doi.org/10.1016/S0958-9465(99)00032-3

    Article  Google Scholar 

  45. Fardis MN, Khalili HH (1983) FRP-encased concrete as a structural material. Mag Concr Res 35(125):242–243. https://doi.org/10.1680/macr.1983.35.125.242

    Article  Google Scholar 

  46. Rahman M, Mansur MA, Lee LK, Lum JK (2001) Development of a polymer impregnated concrete damping carriage for linear guideways for machine tools. Int J Mach Tools Manuf 41(3):431–441. https://doi.org/10.1016/S0890-6955(00)00072-9

    Article  Google Scholar 

  47. Liu J, Vipulanandan C (2001) Evaluating a polymer concrete coating for protecting non-metallic underground facilities from sulfuric acid attack. Tunn Undergr Sp Technol 16(4):311–321. https://doi.org/10.1016/S0886-7798(01)00053-0

    Article  Google Scholar 

  48. Almusallam AA, Khan FM, Dulaijan SU, Al-Amoudi OSB (2003) Effectiveness of surface coatings in improving concrete durability. Cem Concr Compos 25(4–5 SPEC):473–481. https://doi.org/10.1016/S0958-9465(02)00087-2

  49. Chi J, Zhang G, Xie Q, Ma C, Zhang G (2019) Progress in Organic Coatings High performance epoxy coating with cross-linkable solvent via Diels-Alder reaction for anti-corrosion of concrete. Prog Org Coatings vol 139, no September 2019, p 105473, 2020. https://doi.org/10.1016/j.porgcoat.2019.105473

  50. Agavriloaie L, Oprea S, Barbuta M, Luca F (2012) Characterisation of polymer concrete with epoxy polyurethane acryl matrix. Constr Build Mater 37:190–196. https://doi.org/10.1016/j.conbuildmat.2012.07.037

    Article  Google Scholar 

  51. Diogo AC (2015) Polymers in building and construction

  52. Loos M (2015) Composites. In: Carbon nanotube reinforced composites. Elsevier, pp 37–72

  53. Loos MR, Abetz V, Schulte K (2011) Fast and highly efficient one-pot synthesis of polyoxadiazole/carbon nanotube nanocomposites in mild acid. Polym Int 60(3):517–528. https://doi.org/10.1002/pi.2983

    Article  Google Scholar 

  54. Jamshidi M, Ghasemi MJ, Hashemi A (2013) Effect of cyclic exposure of chemicals on compressive strength of polyester resin based polymer concrete. Adv Mater Res 687:185–190. https://doi.org/10.4028/www.scientific.net/AMR.687.185

    Article  Google Scholar 

  55. Mohan P (2013) A critical review: the modification, properties, and applications of epoxy resins. Polym - Plast Technol Eng 52(2):107–125. https://doi.org/10.1080/03602559.2012.727057

    Article  Google Scholar 

  56. Paluvai NR, Mohanty S, Nayak SK (2014) Synthesis and modifications of epoxy resins and their composites: a review. Polym - Plast Technol Eng 53(16):1723–1758. https://doi.org/10.1080/03602559.2014.919658

    Article  Google Scholar 

  57. Khalil HPSA, Amico SC, Ashori A, Behranvand V, Al E (2017) Hybrid polymer composite materials properties and characterisation

  58. Jin FL, Li X, Park SJ (2015) Synthesis and application of epoxy resins: A review. J Ind Eng Chem 29:1–11. https://doi.org/10.1016/j.jiec.2015.03.026

    Article  Google Scholar 

  59. Lithner D, Larsson A, Dave G (2011) Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409(18):3309–3324. https://doi.org/10.1016/j.scitotenv.2011.04.038

    Article  Google Scholar 

  60. Ouarhim W, Zari N, Bouhfid R, Qaiss AEK (2018) Mechanical performance of natural fibers-based thermosetting composites. Mech Phys Test Biocompos Fibre-Reinforced Compos Hybrid Compos pp 43–60. https://doi.org/10.1016/B978-0-08-102292-4.00003-5

  61. Kandelbauer A, Tondi G, Zaske OC, Goodman SH (2014) Unsaturated polyesters and vinyl esters, 3rd ed. Elsevier Inc

  62. Shokrieh MM, Heidari-Rarani M, Shakouri M, Kashizadeh E (2011) Effects of thermal cycles on mechanical properties of an optimized polymer concrete. Constr Build Mater 25(8):3540–3549. https://doi.org/10.1016/j.conbuildmat.2011.03.047

    Article  Google Scholar 

  63. Ellenbecker TS, Roetert EP (1993) Characterization of polyester polymer and polymer concrete By C. Vipulanandan, Associate Member, ASCE, and E. Paul 2, vol 5, no 1, pp 62–82

  64. Mullins MJ, Liu D, Sue H-J (2012) Mechanical properties of thermosets. Thermosets 28–61. https://doi.org/10.1533/9780857097637.1.28

  65. Ohama Y Polymer-modified concrete and mortars properties and process technology

  66. Andrew W (2016) Modification of polymer properties

  67. Hong S, Kim H, Park SK (2016) Optimal mix and freeze-thaw durability of polysulfide polymer concrete. Constr Build Mater 127:539–545. https://doi.org/10.1016/j.conbuildmat.2016.10.056

    Article  Google Scholar 

  68. Ferdous W et al (2020) Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects. Constr Build Mater 232:117229. https://doi.org/10.1016/j.conbuildmat.2019.117229

    Article  Google Scholar 

  69. Yeon J (2020) Deformability of bisphenol A-type epoxy resin-based polymer concrete with different hardeners and fillers. Appl Sci 10(4):8–10. https://doi.org/10.3390/app10041336

    Article  Google Scholar 

  70. Xiang Q, Xiao F (2020) Applications of epoxy materials in pavement engineering. Constr Build Mater 235:117529. https://doi.org/10.1016/j.conbuildmat.2019.117529

    Article  Google Scholar 

  71. Unnikrishnan KP, Thachil ET (2006) Toughening of epoxy resins. Des Monomers Polym 9(2):129–152. https://doi.org/10.1163/156855506776382664

    Article  Google Scholar 

  72. Khalid NHA et al (2015) Evaluation of effectiveness of methyl methacrylate as retarder additive in polymer concrete. Constr Build Mater 93:449–456. https://doi.org/10.1016/j.conbuildmat.2015.06.022

    Article  Google Scholar 

  73. Jo BW, Park SK, Park JC (2008) Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates. Constr Build Mater 22(12):2281–2291. https://doi.org/10.1016/j.conbuildmat.2007.10.009

    Article  Google Scholar 

  74. Jin NJ, Yeon J, Min SH, Yeon KS (2018) Strength developments and deformation characteristics of MMA-modified vinyl ester polymer concrete. Int J Concr Struct Mater 12(1). https://doi.org/10.1186/s40069-018-0232-0

  75. Jin NJ, Seung I, Choi YS, Yeon J (2017) Prediction of early-age compressive strength of epoxy resin concrete using the maturity method. Constr Build Mater 152:990–998. https://doi.org/10.1016/j.conbuildmat.2017.07.066

    Article  Google Scholar 

  76. Gorninski JP, Dal Molin DC, Kazmierczak CS (2007) Comparative assessment of isophtalic and orthophtalic polyester polymer concrete: different costs, similar mechanical properties and durability. Constr Build Mater 21(3):546–555. https://doi.org/10.1016/j.conbuildmat.2005.09.003

    Article  Google Scholar 

  77. Natarajan S, Pillai NN, Murugan S (2019) Experimental investigations on the properties of epoxy-resin-bonded cement concrete containing sea sand for use in unreinforced concrete applications. Materials (Basel) 12(4). https://doi.org/10.3390/ma12040645

  78. Heidarnezhad F, Jafari K, Ozbakkaloglu T (2020) Effect of polymer content and temperature on mechanical properties of lightweight polymer concrete. Constr Build Mater 260:119853. https://doi.org/10.1016/j.conbuildmat.2020.119853

    Article  Google Scholar 

  79. Asdollah-Tabar M, Heidari-Rarani M, Aliha MRM (2021) The effect of recycled PET bottles on the fracture toughness of polymer concrete. Compos Commun 25:100684. https://doi.org/10.1016/j.coco.2021.100684

  80. Dunaj P, Berczynski S, Chodzko M, Niesterowicz B (2020) Finite element modeling of the dynamic properties of composite steel-polymer concrete beams. Materials (Basel) 13(7). https://doi.org/10.3390/ma13071630

  81. Dunaj P, Powałka B, Berczyński S, Chodźko M, Okulik T (2020) Increasing lathe machining stability by using a composite steel–polymer concrete frame. CIRP J Manuf Sci Technol 31:1–13. https://doi.org/10.1016/j.cirpj.2020.09.009

    Article  Google Scholar 

  82. Shen Y, Huang J, Ma X, Hao F, Lv J (2020) Experimental study on the free shrinkage of lightweight polymer concrete incorporating waste rubber powder and ceramsite. Compos Struct 242:112152. https://doi.org/10.1016/j.compstruct.2020.112152

  83. Ma D et al (2021) Mesoscale modeling of epoxy polymer concrete under tension or bending. Compos Struct 256:113079. https://doi.org/10.1016/j.compstruct.2020.113079

  84. Sokolowska JJ (2020) Long-term compressive strength of polymer concrete-like composites with various fillers. Materials (Basel) 13(5):9–11. https://doi.org/10.3390/ma13051207

    Article  Google Scholar 

  85. Ma W, Zhao Z, Guo S, Zhao Y, Wu Z, Yang C (2020) Performance evaluation of the polyurethane-based composites prepared with recycled polymer concrete aggregate. Materials (Basel) 13(3):616. https://doi.org/10.3390/ma13030616

    Article  Google Scholar 

  86. Lee SL, Mannan MA, Wan Ibrahim WH (2020) Polishing resistance of polymer concrete pavement using limestone aggregate. Int J Pavement Eng 21(4):474–482. https://doi.org/10.1080/10298436.2018.1489135

  87. Ardalan RB, Emamzadeh ZN, Rasekh H, Joshaghani A, Samali B (2020) Physical and mechanical properties of polymer modified self-compacting concrete (SCC) using natural and recycled aggregates. J Sustain Cem Mater 9(1):1–16. https://doi.org/10.1080/21650373.2019.1666060

    Article  Google Scholar 

  88. Mallick PK (2010) Thermoplastics and thermoplastic-matrix composites for lightweight automotive structures. Mater Des Manuf Light Veh 174–207. https://doi.org/10.1533/9781845697822.1.174

  89. Bhatnagar N, Asija N (2016) Durability of high-performance ballistic composites. In: Lightweight ballistic composites. Elsevier, pp 231–283

  90. Jefferson AJ, Arumugam V Repair of polymer composites: methodology, techniques, and challenges. Woodhead Publishing Limited

  91. Gordin SD, Eslami AM, Price HL (2004) Gel time and temperature for two thermosetting resins

  92. Sarathchandran C (2020) Interfacial characterization of immiscible polymer blends using rheology. In: Rheology of polymer blends and nanocomposites. Elsevier, pp 31–48

  93. Jo BW, Park SK, Kim CH (2006) Mechanical properties of polyester polymer concrete using recycled polyethylene terephthalate. ACI Struct J 103(2):219–225. https://doi.org/10.14359/15179

    Article  Google Scholar 

  94. Knippers J, Cremers J, Gabler M, Lienhard J (2011) Construction manual for polymers + membranes

  95. Bedi R, Chandra R, Singh SP (2013) Mechanical properties of polymer concrete, no. April 2015. https://doi.org/10.1155/2013/948745

  96. Choi KB, Min SH, Yeon KS (2016) Setting shrinkage characteristics of methyl methacrylate-modified vinyl ester polymer concrete. Am J Appl Sci 13(5):586–593. https://doi.org/10.3844/ajassp.2016.586.592

    Article  Google Scholar 

  97. Wongpa J, Kiattikomol K, Jaturapitakkul C, Chindaprasirt P (2010) Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Mater Des 31(10):4748–4754. https://doi.org/10.1016/j.matdes.2010.05.012

    Article  Google Scholar 

  98. Lokuge WP, Aravinthan T (2013) Mechanical properties of polymer concrete with different types of resin. From Mater. to Struct. Adv. Through Innov.—Proc. 22nd Australas. Conf. Mech. Struct. Mater. ACMSM 2012, pp 1147–1152. https://doi.org/10.1201/b15320-204

  99. Józefiak K, Michalczyk R (2020) Prediction of structural performance of vinyl ester polymer concrete using FEM elasto-plastic model. Materials (Basel) 13(18):4034. https://doi.org/10.3390/ma13184034

    Article  Google Scholar 

  100. Jafari K, Toufigh V (2017) Experimental and analytical evaluation of rubberized polymer concrete. Constr Build Mater 155:495–510. https://doi.org/10.1016/j.conbuildmat.2017.08.097

    Article  Google Scholar 

  101. Elalaoui O, Ghorbel E, Mignot V, Ben Ouezdou M (2012) Mechanical and physical properties of epoxy polymer concrete after exposure to temperatures up to 250 °C. Constr Build Mater 27(1):415–424. https://doi.org/10.1016/j.conbuildmat.2011.07.027

  102. dos Reis JML (2009) Effect of textile waste on the mechanical properties of polymer concrete. Mater Res 12(1):63–67. https://doi.org/10.1590/s1516-14392009000100007

    Article  Google Scholar 

  103. Hashemi MJ, Jamshidi M, Aghdam JH (2018) Investigating fracture mechanics and flexural properties of unsaturated polyester polymer concrete (UP-PC). Constr Build Mater 163:767–775. https://doi.org/10.1016/j.conbuildmat.2017.12.115

    Article  Google Scholar 

  104. Jafari K, Tabatabaeian M, Joshaghani A, Ozbakkaloglu T (2018) Optimizing the mixture design of polymer concrete: an experimental investigation. Constr Build Mater 167:185–196. https://doi.org/10.1016/j.conbuildmat.2018.01.191

    Article  Google Scholar 

  105. Elalaoui O, Ghorbel E, Ben Ouezdou M (2018) Influence of flame retardant addition on the durability of epoxy based polymer concrete after exposition to elevated temperature. Constr Build Mater 192:233–239. https://doi.org/10.1016/j.conbuildmat.2018.10.132

  106. Hameed AM, Hamza MT (2019) Characteristics of polymer concrete produced from wasted construction materials. Energy Procedia 157(2018):43–50. https://doi.org/10.1016/j.egypro.2018.11.162

    Article  Google Scholar 

  107. Jin NJ, Yeon J, Seung I, Yeon KS (2017) Effects of curing temperature and hardener type on the mechanical properties of bisphenol F-type epoxy resin concrete. Constr Build Mater 156:933–943. https://doi.org/10.1016/j.conbuildmat.2017.09.053

    Article  Google Scholar 

  108. Ghassemi P, Toufigh V (2020) Durability of epoxy polymer and ordinary cement concrete in aggressive environments. Constr Build Mater 234:117887. https://doi.org/10.1016/j.conbuildmat.2019.117887

    Article  Google Scholar 

  109. Ahmed HU, Faraj RH, Hilal N, Mohammed AA, Sherwani AFH (2021) Use of recycled fibers in concrete composites: a systematic comprehensive review. Compos Part B Eng 215:108769. https://doi.org/10.1016/j.compositesb.2021.108769

  110. Guendouz M, Boukhelkhal DJ (2018) Physical, mechanical and thermal properties of Crushed Sand Concrete containing Rubber Waste. MATEC web of conferences, 149, 01076. https://doi.org/10.1051/matecconf/201814901039

  111. Guendouz M, Boukhelkhal DJ (2018) Recycling of rubber waste in sand concrete. J Build Mater Struct (2017) 4:42–49

  112. Guendouz M, Debieb F, Boukendakdji O, Kadri EH, Bentchikou M, Soualhi H (2016) Use of plastic waste in sand concrete. J Mater Environ Sci 7(2):382–389

    Google Scholar 

  113. Ceran ÖB, Şimşek B, Uygunoğlu T, Şara ON (2019) PVC concrete composites: comparative study with other polymer concrete in terms of mechanical, thermal and electrical properties. J Mater Cycles Waste Manag 21(4):818–828. https://doi.org/10.1007/s10163-019-00846-0

    Article  Google Scholar 

  114. B. Zegardlo, M. Szelag, P. Ogrodnik, and A. Bombik, “Physico-mechanical properties and microstructure of polymer concrete with recycled glass aggregate,” Materials (Basel)., vol. 11, no. 7, 2018, doi: https://doi.org/10.3390/ma11071213.

  115. B. Adhikari and S. Maiti, “Reclamation and recycling of waste rubber,” vol. 25, no. March, pp. 909–948, 2000.

  116. Rashid K, Wang Y, Ueda T (2019) Influence of continuous and cyclic temperature durations on the performance of polymer cement mortar and its composite with concrete. Compos Struct 215:214–225. https://doi.org/10.1016/j.compstruct.2019.02.057

    Article  Google Scholar 

  117. Guerrieri M, Sanjayan J, Collins F (2010) Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures. Mater Struct Constr 43(6):765–773. https://doi.org/10.1617/s11527-009-9546-3

    Article  Google Scholar 

  118. Nodehi M, Taghvaee VM (2021) Alkali-activated materials and geopolymer: a review of common precursors and activators addressing circular economy. Circ Econ Sustain. https://doi.org/10.1007/s43615-021-00029-w

    Article  Google Scholar 

  119. Rakngan W, Williamson T, Ferron RD, Sant G, Juenger MCG (2018) Controlling workability in alkali-activated Class C fly ash. Constr Build Mater 183:226–233. https://doi.org/10.1016/j.conbuildmat.2018.06.174

    Article  Google Scholar 

  120. Ren J, Zhang L, San Nicolas R (2020) Degradation process of alkali-activated slag/fly ash and Portland cement-based pastes exposed to phosphoric acid. Constr Build Mater 232:117209. https://doi.org/10.1016/j.conbuildmat.2019.117209

  121. Bakharev T, Sanjayan JG, Cheng YB (2003) Resistance of alkali-activated slag concrete to acid attack. Cem Concr Res 33(10):1607–1611. https://doi.org/10.1016/S0008-8846(03)00125-X

    Article  Google Scholar 

  122. Nodehi M, Mohamad Taghvaee V (2021) Sustainable concrete for circular economy: a review on use of waste glass. Glas Struct Eng. https://doi.org/10.1007/s40940-021-00155-9

  123. Ahmed HU, Mohammed AS, Mohammed AA, Faraj RH (2021) Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. PLoS ONE 16(6):1–26. https://doi.org/10.1371/journal.pone.0253006

  124. Ribeiro MCS, Tavares CML, Ferreira AJM Chemical resistance of epoxy and polyester polymer concrete to acids and salts

  125. Gao Y, Romero P, Zhang H, Huang M, Lai F (2019) Unsaturated polyester resin concrete: a review. Constr Build Mater 228:116709. https://doi.org/10.1016/j.conbuildmat.2019.116709

  126. Reis JML (2010) Fracture assessment of polymer concrete in chemical degradation solutions. Constr Build Mater 24(9):1708–1712. https://doi.org/10.1016/j.conbuildmat.2010.02.020

    Article  Google Scholar 

  127. Jamshidi M, Alizadeh M, Salar M, Hashemi A (2013) Durability of polyester resin concrete in different chemical solutions. Adv Mater Res 687:150–154. https://doi.org/10.4028/www.scientific.net/AMR.687.150

    Article  Google Scholar 

  128. Melo Neto AA, Cincotto MA, Repette W (2008) Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem Concr Res 38(4):565–574. https://doi.org/10.1016/j.cemconres.2007.11.002

  129. Ismail I et al (2013) Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Constr Build Mater 48:1187–1201. https://doi.org/10.1016/j.conbuildmat.2013.07.106

    Article  Google Scholar 

  130. Man X, Aminul Haque M, Chen B (2019) Engineering properties and microstructure analysis of magnesium phosphate cement mortar containing bentonite clay. Constr Build Mater 227:116656. https://doi.org/10.1016/j.conbuildmat.2019.08.037

  131. Emamian SA, Eskandari-Naddaf H (2019) Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by ANN and GEP. Constr Build Mater 218:8–27. https://doi.org/10.1016/j.conbuildmat.2019.05.092

    Article  Google Scholar 

  132. Çakir Ö, Aköz F (2008) Effect of curing conditions on the mortars with and without GGBFS. Constr Build Mater 22(3):308–314. https://doi.org/10.1016/j.conbuildmat.2006.08.013

    Article  Google Scholar 

  133. Abdollahnejad Z et al (2020) Microstructural analysis and strength development of one-part alkali-activated slag/ceramic binders under different curing regimes. Waste Biomass Valoriz 11(6):3081–3096. https://doi.org/10.1007/s12649-019-00626-9

    Article  Google Scholar 

  134. Chen W, Peng R, Straub C, Yuan B (2020) Promoting the performance of one-part alkali-activated slag using fine lead-zinc mine tailings. Constr Build Mater 236:117745. https://doi.org/10.1016/j.conbuildmat.2019.117745

    Article  Google Scholar 

  135. Abdollahnejad Z, Mastali M, Woof B, Illikainen M (2020) High strength fiber reinforced one-part alkali activated slag/fly ash binders with ceramic aggregates: microscopic analysis, mechanical properties, drying shrinkage, and freeze-thaw resistance. Constr Build Mater 241:118129. https://doi.org/10.1016/j.conbuildmat.2020.118129

    Article  Google Scholar 

  136. Ramli M, Tabassi AA, Hoe KW (2013) Porosity, pore structure and water absorption of polymer-modified mortars: an experimental study under different curing conditions. Compos Part B Eng 55:221–233. https://doi.org/10.1016/j.compositesb.2013.06.022

    Article  Google Scholar 

  137. Mendivil-Escalante JM, Gómez-Soberón JM, Almaral-Sánchez JL, Cabrera-Covarrubias FG (2017) Metamorphosis in the porosity of recycled concretes through the use of a recycled polyethylene terephthalate (PET) additive. Correlations between the porous network and concrete properties. Materials (Basel) 10(2). https://doi.org/10.3390/ma10020176

  138. Abdel-Gawwad HA, Rashad AM, Heikal M (2019) Sustainable utilization of pretreated concrete waste in the production of one-part alkali-activated cement. J Clean Prod 232:318–328. https://doi.org/10.1016/j.jclepro.2019.05.356

    Article  Google Scholar 

  139. Kooshkaki A, Eskandari-Naddaf H (2019) Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by multi-objective ANN modeling. Constr Build Mater 212:176–191. https://doi.org/10.1016/j.conbuildmat.2019.03.243

    Article  Google Scholar 

  140. Yin J, Zhang J, Wang W (2019) Effective resin content and its effect on the overall performance of polymer concrete for precision machine tools. Constr Build Mater 222:203–212. https://doi.org/10.1016/j.conbuildmat.2019.06.144

    Article  Google Scholar 

  141. Ahmad MR, Chen B, Shah SFA (2020) Influence of different admixtures on the mechanical and durability properties of one-part alkali-activated mortars. Constr Build Mater 265:120320. https://doi.org/10.1016/j.conbuildmat.2020.120320

    Article  Google Scholar 

  142. Borinaga-Treviño R, Orbe A, Canales J, Norambuena-Contreras J (2020) Experimental evaluation of cement mortars with recycled brass fibres from the electrical discharge machining process. Constr Build Mater 246. https://doi.org/10.1016/j.conbuildmat.2020.118522

  143. Aguirre-Guerrero AM, Mejía de Gutiérrez R (2020) Alkali-activated protective coatings for reinforced concrete exposed to chlorides. Constr Build Mater no. xxxx. https://doi.org/10.1016/j.conbuildmat.2020.121098

  144. Knapen E, Van Gemert D (2009) Cement hydration and microstructure formation in the presence of water-soluble polymers. Cem Concr Res 39(1):6–13. https://doi.org/10.1016/j.cemconres.2008.10.003

    Article  Google Scholar 

  145. Zheng W et al (2019) Progress in Organic Coatings Enhancing chloride ion penetration resistance into concrete by using graphene oxide reinforced waterborne epoxy coating 138. https://doi.org/10.1016/j.porgcoat.2019.105389

  146. Mahdi F, Abbas H, Khan AA (2013) Flexural, shear and bond strength of polymer concrete utilizing recycled resin obtained from post consumer PET bottles. Constr Build Mater 44:798–811. https://doi.org/10.1016/j.conbuildmat.2013.03.081

    Article  Google Scholar 

  147. Liu M, Han S, Pan J, Ren W (2018) Study on cohesion performance of waterborne epoxy resin emulsified asphalt as interlayer materials. Constr Build Mater 177:72–82. https://doi.org/10.1016/j.conbuildmat.2018.05.043

    Article  Google Scholar 

  148. Weng Y, Li M, Wong TN, Tan MJ (2021) Synchronized concrete and bonding agent deposition system for interlayer bond strength enhancement in 3D concrete printing. Autom Constr 123:103546. https://doi.org/10.1016/j.autcon.2020.103546

  149. Wang L, Tian Z, Ma G, Zhang M (2020) Interlayer bonding improvement of 3D printed concrete with polymer modified mortar: experiments and molecular dynamics studies. Cem Concr Compos 110:103571. https://doi.org/10.1016/j.cemconcomp.2020.103571

  150. Bruzzone L, Baggetta M, Nodehi SE, Bilancia P, Fanghella P (2021) Functional design of a hybrid leg-wheel-track ground mobile robot. Machines 9(1):1–11. https://doi.org/10.3390/machines9010010

    Article  Google Scholar 

Download references

Acknowledgements

This article is dedicated to my great mentor Dr. Togay Ozbakkaloglu, for if it hadn't been for his help, this work would not have been conducted.

Funding

This research did not receive any specific grant or funding from agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrab Nodehi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for publication

The corresponding author declares consent for publication in the journal of Innovative infrastructure solutions.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 414 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nodehi, M. Epoxy, polyester and vinyl ester based polymer concrete: a review. Innov. Infrastruct. Solut. 7, 64 (2022). https://doi.org/10.1007/s41062-021-00661-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-021-00661-3

Keywords

Navigation