Skip to main content
Log in

A molecular dynamics study on efficient nanocomposite formation of styrene–butadiene rubber by incorporation of graphene

  • Original Article
  • Published:
Graphene Technology Aims and scope Submit manuscript

Abstract

A molecular level study has been made on enhanced mechanical and tribological properties of graphene-reinforced styrene butadiene rubber (SBR) composites using molecular dynamics simulation technique. Constant strain method is applied to calculate the mechanical properties of developed structures. Two molecular level layer model one with SBR and another with graphene-reinforced SBR composites were developed, and shear loading was applied on the top and bottom Fe layers to study tribological properties, i.e., abrasion rate, and friction coefficient. The Young’s and shear modulus of composites with different graphene oxide volume fractions have been developed and studied. The 5 vol% addition of graphene into SBR matrix shows a significant increase in Young’s and shear modulus and hardness. By incorporation of the GO, 48 and 56% decrease in friction coefficient and abrasion rates of SBR polymer was observed, respectively. About 15% reduction in the RDF values of GO/SBR composites was obtained. The interaction energy between graphene oxide sheet and SBR matrix during the shear process has been obtained and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rosen SL, Brazel CS (2012) Fundamental principles of polymeric materials. Wiley, Hoboken, p 126

    Google Scholar 

  2. Ward IM, Sweeney J (2004) An introduction to the mechanical properties of solid polymers. Wiley, Chichester, p 302

    Google Scholar 

  3. Zhang MQ, Rong MZ, Yu SL, Wetzel B, Friedrich K (2002) Improvement of tribological performance of epoxy by the addition of irradiation grafted nano-inorganic particles. Macromol Mater Eng 287(2):111–115

    Article  CAS  Google Scholar 

  4. Pan B, Zhang S, Li W, Zhao J, Liu J, Zhang Y, Zhang Y (2012) Tribological and mechanical investigation of MC nylon reinforced by modified graphene oxide. Wear 294:395–401

    Article  CAS  Google Scholar 

  5. Wang J, Gu M, Songhao B, Ge S (2003) Investigation of the influence of MoS 2 filler on the tribological properties of carbon fiber reinforced nylon 1010 composites. Wear 255(1):774–779

    Article  CAS  Google Scholar 

  6. Xue Y, Wu W, Jacobs O, Schädel B (2006) Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes. Polym Test 25(2):221–229

    Article  CAS  Google Scholar 

  7. Wu J, Cheng XH (2006) The tribological properties of Kevlar pulp reinforced epoxy composites under dry sliding and water lubricated condition. Wear 261(11):1293–1297

    Article  CAS  Google Scholar 

  8. El-Tayeb NSM (2008) A study on the potential of sugarcane fibers/polyester composite for tribological applications. Wear 265(1):223–235

    Article  CAS  Google Scholar 

  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  10. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127

    Article  CAS  Google Scholar 

  11. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25

    Article  CAS  Google Scholar 

  12. Papageorgiou DG, Kinloch IA, Young RJ (2015) Graphene/elastomer nanocomposites. Carbon 95:460–484

    Article  CAS  Google Scholar 

  13. Shokrieh MM, Hosseinkhani MR, Naimi-Jamal MR, Tourani H (2013) Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polym Test 32(1):45–51

    Article  CAS  Google Scholar 

  14. Belmonte M, Ramírez C, González-Julián J, Schneider J, Miranzo P, Osendi MI (2013) The beneficial effect of graphene nanofillers on the tribological performance of ceramics. Carbon 61:431–435

    Article  CAS  Google Scholar 

  15. Penkov O, Kim HJ, Kim HJ, Kim DE (2014) Tribology of graphene: a review. Int J Precis Eng Manuf 15(3):577–585

    Article  Google Scholar 

  16. Lightcap IV, Kamat PV (2012) Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. Acc Chem Res 46(10):2235–2243

    Article  CAS  Google Scholar 

  17. Vashist SK, Luong JH (2015) Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites. Carbon 84:519–550

    Article  CAS  Google Scholar 

  18. Zhang N, Zhang Y, Xu YJ (2012) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4(19):5792–5813

    Article  CAS  Google Scholar 

  19. Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z (2013) Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 34(20):4786–4793

    Article  CAS  Google Scholar 

  20. Mishra AK, Ramaprabhu S (2011) Functionalized graphene-based nanocomposites for supercapacitor application. J Phys Chem C 115(29):14006–14013

    Article  CAS  Google Scholar 

  21. Chang H, Wu H (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6(12):3483–3507

    Article  CAS  Google Scholar 

  22. Mahmood N, Zhang C, Yin H, Hou Y (2014) Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J Mater Chem A 2(1):15–32

    Article  CAS  Google Scholar 

  23. Das B, Prasad KE, Ramamurty U, Rao CNR (2009) Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 20(12):125705

    Article  CAS  Google Scholar 

  24. Lv S, Ma Y, Qiu C, Sun T, Liu J, Zhou Q (2013) Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr Build Mater 49:121–127

    Article  Google Scholar 

  25. Siochi EJ (2014) Graphene in the sky and beyond. Nat Nanotechnol 9(10):745–747

    Article  CAS  Google Scholar 

  26. Tai Z, Chen Y, An Y, Yan X, Xue Q (2012) Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets. Tribol Lett 46(1):55–63

    Article  CAS  Google Scholar 

  27. Mo M, Zhao W, Chen Z, Yu Q, Zeng Z, Wu X, Xue Q (2015) Excellent tribological and anti-corrosion performance of polyurethane composite coatings reinforced with functionalized graphene and graphene oxide nanosheets. RSC Adv 5(70):56486–56497

    Article  CAS  Google Scholar 

  28. Shen XJ, Pei XQ, Fu SY, Friedrich K (2013) Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content. Polymer 54(3):1234–1242

    Article  CAS  Google Scholar 

  29. Mao Y, Wen S, Chen Y, Zhang F, Panine P, Chan TW, Zhang L, Lian Y, Liu L (2013) High performance graphene oxide based rubber composites. Scientific reports, 3

  30. Liu J, Shen J, Zheng Z, Wu Y, Zhang L (2015) Revealing the toughening mechanism of graphene–polymer nanocomposite through molecular dynamics simulation. Nanotechnology 26(29):291003

    Article  CAS  Google Scholar 

  31. Lin F, Xiang Y, Shen HS (2017) Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites—A molecular dynamics simulation. Compos B Eng 111:261–269

    Article  CAS  Google Scholar 

  32. Li Y, Wang S, Wang Q (2017) A molecular dynamics simulation study on enhancement of mechanical and tribological properties of polymer composites by introduction of graphene. Carbon 111:538–545

    Article  CAS  Google Scholar 

  33. Li Y, Wang S, Wang Q (2017) Enhancement of tribological properties of polymer composites reinforced by functionalized graphene. Compos B Eng 120:83–91

    Article  CAS  Google Scholar 

  34. Rigby D, Sun H, Eichinger BE (1997) Computer simulations of poly (ethylene oxide): force field, pvt diagram and cyclization behaviour. Polym Int 44(3):311–330

    Article  CAS  Google Scholar 

  35. Sharma S, Chandra R, Kumar P, Kumar N (2015) Molecular dynamics simulation of polymer/carbon nanotube composites. Acta Mech Solida Sin 28:409–419

    Article  Google Scholar 

  36. Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39(2):315–323

    Article  CAS  Google Scholar 

  37. Chawla R, Sharma S (2017) Molecular dynamics simulation of carbon nanotube pull-out from polyethylene matrix. Compos Sci Technol 144:169–177

    Article  CAS  Google Scholar 

  38. Sharma S, Chandra R, Kumar P, Kumar N (2015) Thermo-mechanical characterization of multi-walled carbon nanotube reinforced polycarbonate composites: a molecular dynamics approach. CR Mec 343(5):371–396

    Article  Google Scholar 

  39. Polyak BT (1969) The conjugate gradient method in extremal problems. USSR Comput Math Math Phys 9(4):94–112

    Article  Google Scholar 

  40. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72(4):2384–2393

    Article  CAS  Google Scholar 

  41. Berendsen HJ, Postma JV, van Gunsteren WF, DiNola ARHJ, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  42. Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys 369(3):253–287

    Article  Google Scholar 

  43. Yin B, Wang J, Jia H, He J, Zhang X, Xu Z (2016) Enhanced mechanical properties and thermal conductivity of styrene–butadiene rubber reinforced with polyvinylpyrrolidone-modified graphene oxide. J Mater Sci 51(12):5724–5737

    Article  CAS  Google Scholar 

  44. Qiu J, Wang S (2011) Enhancing polymer performance through graphene sheets. J Appl Polym Sci 119(6):3670–3674

    Article  CAS  Google Scholar 

  45. Lv C, Xue Q, Xia D, Ma M, Xie J, Chen H (2010) Effect of chemisorption on the interfacial bonding characteristics of graphene–polymer composites. J Phys Chem C 114(14):6588–6594

    Article  CAS  Google Scholar 

  46. Sadhu S, Bhowmick AK (2004) Preparation and properties of nanocomposites based on acrylonitrile–butadiene rubber, styrene–butadiene rubber, and polybutadiene rubber. J Polym Sci B 42(9):1573–1585

    Article  CAS  Google Scholar 

  47. Voight W (1928) Lehrbuch der Kristallphysik. Teubner, Leipzig, p 128

    Google Scholar 

  48. Reuss A (1929) Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM-J Appl Math Mech 9(1):49–58

    Article  CAS  Google Scholar 

  49. Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Lond Sect A 65(5):349

    Article  Google Scholar 

  50. Lin Q, Qu L, Lü Q, Fang C (2013) Preparation and properties of graphene oxide nanosheets/cyanate ester resin composites. Polym Test 32(2):330–337

    Article  CAS  Google Scholar 

  51. Cho M (2008) The Flexural and Tribological behavior of multi-walled carbon nanotube–reinforced polyphenylene sulfide composites. Mater Trans 49(12):2801–2807

    Article  CAS  Google Scholar 

  52. Lau KT, Shi SQ, Zhou LM, Cheng HM (2003) Micro-hardness and flexural properties of randomly-oriented carbon nanotube composites. J Compos Mater 37(4):365–376

    Article  CAS  Google Scholar 

  53. Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MS, Simões JA (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67(15):3071–3077

    Article  CAS  Google Scholar 

  54. Stachowiak G, Batchelor AW (2013) Engineering tribology. Butterworth-Heinemann, Oxford

    Google Scholar 

  55. Koch N, Kahn A, Ghijsen J, Pireaux JJ, Schwartz J, Johnson RL, Elschner A (2003) Conjugated organic molecules on metal versus polymer electrodes: demonstration of a key energy level alignment mechanism. Appl Phys Lett 82(1):70–72

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Raj Chawla thanks Mr. Yunlong Li, Department of Architectural and Civil Engineering, City University of Hong Kong, China, for helpful discussion during the calculation of tribological properties. Computation facility for running MD simulations was provided by Department of Mechanical Engineering, Lovely Professional University. Computation facility for revision of the manuscript was provided by NIT Jalandhar.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions

Raj Chawla conducted the molecular simulation and theoretical analysis and prepared the manuscript. Dr. Sumit Sharma supervised the whole work and contributed to the manuscript.

Corresponding author

Correspondence to Raj Chawla.

Ethics declarations

Conflict of interest

All the authors have read and approved the manuscript being submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chawla, R., Sharma, S. A molecular dynamics study on efficient nanocomposite formation of styrene–butadiene rubber by incorporation of graphene. Graphene Technol 3, 25–33 (2018). https://doi.org/10.1007/s41127-018-0018-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41127-018-0018-9

Keywords

Navigation