Skip to main content
Log in

Treatment of pharmaceutical wastewater by heterogeneous Fenton process: an innovative approach

  • Original Paper
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

With indiscriminate use and disposal, antibiotics enter the water bodies and thus are categorized as emerging pollutants. We report the studies on the degradation of norfloxacin, a well-known antibiotic, using hydrogen peroxide (H2O2) and zinc oxide nanoparticles (ZnO) by heterogeneous Fenton process in the presence of sunlight. We fabricated ZnO nanoparticles by hydrothermal method. The geometry of norfloxacin was optimized using Hartree–Fock density functional theory. We used UV–Vis spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques to determine various crystal properties, i.e., structure, morphology, size and shape of the ZnO nanoparticles. However, we evaluated the crystal size, particle size and their distribution employing Debye–Scherrer equation and ImageJ processing. The catalytic efficacy of ZnO nanoparticles was assessed by the abatement of norfloxacin at pH 10. The activity and stability of used ZnO catalyst for norfloxacin degradation were established. The recovered catalyst is reusable up to six times without activity loss. Liquid chromatography–mass spectrometry analysis confirmed the presence of various intermediates. A probable reaction mechanism for degradation of norfloxacin is proposed. The ZnO-catalyzed heterogeneous Fenton process proves to be the ideal approach for the degradation of antibiotics in wastewater.

Graphical abstract

Herein, we report that generation of hydroxyl radical by the action of sunlight along with ZnO nanoparticles from hydrogen peroxide effectively degrades norfloxacin. Its structure has been optimized by density functional theory using Gauss view computational software. ZnO nanoparticles have been characterized by various techniques, e.g., XRD, SEM, TEM, etc. Various intermediate products have been recognized by LCMS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. Korth A, Fiebiger C, Bornmann K, Schmidt W (2004) NOM increase in drinking water reservoirs- relevance for drinking water production. Water Sci Technol Water Supply 4:55–60. https://doi.org/10.2166/ws.2004.0061

    Article  Google Scholar 

  2. Awual MdR, Hasan MdM, Islam A, Rahman MM, Asiri AM, Khaleque MdA, Sheikh MdC (2019) Offering an innovative composited material for effective lead (II) monitoring and removal from polluted water. J Clean Prod 231:214–223. https://doi.org/10.1016/j.jclepro.2019.05.125

    Article  Google Scholar 

  3. Awual MR, Airi AM, Rahman MM, Alharthi NH (2019) Assessment of enhanced nitrite removal and monitoring using ligand modified stable conjugate materials. Chem Eng J 363:64–72. https://doi.org/10.1016/j.cej.2019.01.125

    Article  Google Scholar 

  4. Awual MdR, Hasan MdM, Asiri AM, Rahman MM (2019) Novel optical composite material for efficient vanadium (III) capturing from wastewater. J Mol Liq 283:704–712

    Article  Google Scholar 

  5. Awual MdR, Islam A, Hasan MdM, Rahman MM, Asiri AM, Khaleque MdA, Sheikh MdC (2019) Introducing an alternate conjugated material for enhance lead (II) capturing from wastewater. J Clean Prod 24:920–929. https://doi.org/10.1016/j.jclepro.2019.03.241

    Article  Google Scholar 

  6. Chakraborty R, Asthana A, Singh AK, Jain B, Susa Md ABH (2020) Adsorption of heavy metal ions by various low cost adsorbents: a review. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1722811

    Article  Google Scholar 

  7. Gogate PR, Pandit ABA (2004) Review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–555. https://doi.org/10.1016/S1093-0191(03)00032-7

    Article  Google Scholar 

  8. Jain B, Singh AK, Kim H, Lichtfouse E, Sharma VK (2018) Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environ Chem Lett 16:947–967. https://doi.org/10.1007/s10311-018-0738-3

    Article  Google Scholar 

  9. Jain B, Singh AK, Sharma V (2017) Degradation of naphthylazo anionic dye by Fenton and Fenton like processes: a comparative study with fast sulphon black-F. Desalin Water Treat 62:252–256. https://doi.org/10.5004/dwt.2017.1455

    Article  Google Scholar 

  10. Jain B, Hashmi A, Sanwaria S, Singh AK, Susan Md ABH, Carabineiro SAC (2020) Catalytic properties of graphene oxide synthesized by a “Green” process for efficient abatement of Auramine-O cationic dye. Anal Chem Lett 2:21–32. https://doi.org/10.1080/22297928.2020.1747536

    Article  Google Scholar 

  11. Mansouri L, Tizaoui C, Geissen SU, Bousselmi L (2018) A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water. J Hazard Mater 363:401–411. https://doi.org/10.1016/j.jhazmat.2018.10.003

    Article  Google Scholar 

  12. Oturan MA, Oturan N, Edelahi MC, Podvorica FI, Kacemi KE (2011) Oxidative degradation of herbicide diuron in aqueous medium by Fenton’s reaction based Advanced oxidation processes. Chem Eng J 171:127–135. https://doi.org/10.1016/j.cej.2011.03.072

    Article  Google Scholar 

  13. Rahman MM, Husain MM, Arshad MN, Awual R, Asiri AM (2019) Arsenic sensor development based on modification with (E)-N-(2-nitrobenzylidine)-benzenesulfonohydrazide: a real sample analysis. New J Chem 43:9066–9075. https://doi.org/10.1039/C9NJ01567A

    Article  Google Scholar 

  14. Rahman MM, Sheikh TA, Asiri AM, Awual MdR (2019) Development of 3-methoxyaniline sensor probe based on thin Ag2O@La2O3 nanosheets for environmental. New J Chem 43:4620–4632. https://doi.org/10.1039/C9NJ00415G

    Article  Google Scholar 

  15. Zhang B, You H, Wang F (2017) Microwave-enhanced catalytic wet peroxide oxidation of quinoline: the influence of pH and H2O2 dosage and identification of reactive oxygen species. RSC Adv 7:14769–14775. https://doi.org/10.1039/C7RA01350G

    Article  Google Scholar 

  16. Jeong J, Song W, Cooper WJ, Jung J, Greaves J (2010) Degradation of tetracycline antibiotics: mechanism and kinetic studies for advanced oxidation/reduction processes. Chemosphere 78:533–540. https://doi.org/10.1016/j.chemosphere.2009.11.024

    Article  Google Scholar 

  17. Michael I, Hapeshi E, Michael C, Kassinos DF (2010) Solar Fenton and solar TiO2 catalytic treatment of ofloxacin in secondary treated effluents: evaluation of operational and kinetic parameters. Water Res 44:5450–5462. https://doi.org/10.1016/j.watres.2010.06.053

    Article  Google Scholar 

  18. Adams C, Wang Y, Loftin K, Meyer M (2002) Removal of antibiotics from surface and distilled water in conventional water treatment processes. J Environ Eng 128:253–260. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(253)

    Article  Google Scholar 

  19. Cizmas L, Sharma VK, Gray CM, Mcdonald TJ (2015) Pharmaceuticals and personal care products in water: occurrence, toxicity and risk. Environ Chem Lett 13:381–394. https://doi.org/10.1007/s10311-015-0524-4

    Article  Google Scholar 

  20. Hapeshi E, Achilleos A, Vasquez MI, Michael C, Xekoukoulotakis NP, Mantzavinos D, Kassinos D (2010) Drugs degrading photocatalytically: kinetic and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Res 44:1737–1746. https://doi.org/10.1016/j.watres.2009.11.044

    Article  Google Scholar 

  21. Oturan N, Wu J, Zhang H, Sharma VK, Oturan MA (2013) Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials. Appl Catal B 140–141:92–97. https://doi.org/10.1016/j.apcatb.2013.03.035

    Article  Google Scholar 

  22. Sharma VK, Liu F, Tolan S, Sohn M, Kim H, Oturan MA (2013) Oxidation of β-lactam antibiotics by ferrate (VI). Chem Eng J 221:446–451. https://doi.org/10.1016/j.cej.2013.02.024

    Article  Google Scholar 

  23. Walter MV, Vennes JW (1985) Occurrence of multiple-antibiotic resistant enteric bacteria in domestic sewage and oxidative lagoons. Appl Environ Microbiol 50:930–933

    Article  Google Scholar 

  24. Zhou Y, Wu S, Zhou H, Huang H, Zhao J, Deng Y, Wang H, Wang Y, Yang J, Luo L (2018) Chiral pharmaceuticals: environment sources, potential human health impacts, remediation technologies and future perspective. Environ Int 121:523–537. https://doi.org/10.1016/j.envint.2018.09.041

    Article  Google Scholar 

  25. Bui XT, Chiemchaisri C, Fujioka T, Varjani S (2019) Water and wastewater treatment technologies. Energy, environment and sustainability. Springer, Singapore, pp 3–12 (ISBN: 978-981-13-3259-3)

    Book  Google Scholar 

  26. Gupta VK, Ali I, Saleh TA, Nayak A, Agrawal S (2012) Chemical treatment technologies for wastewater recycling-an overview. RSC Adv 3:6380–6388. https://doi.org/10.1039/C2RA20340E

    Article  Google Scholar 

  27. Schaider LA, Rodgers KM, Rudel RA (2017) review of organic wastewater compound concentrations and removal in onsite wastewater treatment systems. Environ Sci Technol 51:7304–7317. https://doi.org/10.1021/acs.est.6b04778

    Article  Google Scholar 

  28. Elmolla ES, Chaudhuri M (2009) Degradation of the antibiotics amoxicillin, ampicillin, cloxacillin in aqueous solution by the photo-Fenton process. J Hazard Mater 172:1476–1481. https://doi.org/10.1016/j.jhazmat.2009.08.015

    Article  Google Scholar 

  29. Gadipelly C, Perez-Gonzalez A, Yadav GD, Ortiz I, Ibanez R, Rathod VK, Marathe KV (2014) Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Ind Eng Chem Res 53:11571–11592. https://doi.org/10.1021/ie501210j

    Article  Google Scholar 

  30. Homem V, Santos L (2011) Degradation and removal methods of antibiotics from aqueous matrices-A review. J Environ Manag 92:2304–2347. https://doi.org/10.1016/j.jenvman.2011.05.023

    Article  Google Scholar 

  31. Kassinos F, Vasquez MI, Kummerer K (2011) Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes-degradation elucidation of byproducts and assessment of their biological potency. Chemosphere 85:693–709. https://doi.org/10.1016/j.chemosphere.2011.06.082

    Article  Google Scholar 

  32. Lima MJ, Silva CG, Silva AMT, Lopes JCB, Dias MM, Faria JL (2017) Homogeneous and heterogeneous photo-Fenton degradation of antibiotics using an innovative static mixer photoreactor. Chem Eng J 310:342–351. https://doi.org/10.1016/j.cej.2016.04.032

    Article  Google Scholar 

  33. Rahman MM, Alamry KA, Awual MdR, Mekky AEM (2020) Efficient Hg(II) ionic probe development based on one step synthesized diethyl thieno[2,3-b]thiophene-2,5-dicarboxylate (DETTDC2) onto glassy carbon electrode. Microchem J 152:104291. https://doi.org/10.1026/j.microc.2019.104291

    Article  Google Scholar 

  34. Subhan MdA, Fahim AMM, Saha PC, Rahman MM, Begum K, Azad AK (2017) Structural study, photoluminescence and photocatalytic properties of La2O3·Fe3O4·ZnO, AgO·NiO·ZnO and La2O3·AgO·ZnO nanocomposites. Nano-Struct Nano-objects 10:30–41. https://doi.org/10.1016/j.nanoso.2017.03.001

    Article  Google Scholar 

  35. Subhan MdA, Saha PC, Rahman MM, Akand MAR, Asiri AM, Al-Mamun Md (2017) Enhanced photocatalytic activity and chemical sensor development based on ternary B2O3Zn6Al2O9·ZnO nanomaterial for environmental safety. New J Chem 41:7220–7231. https://doi.org/10.1039/C7NJ01281K

    Article  Google Scholar 

  36. Anandan S, Sivasankar T, Lana-Villarreal T (2014) Synthesis of TiO2/WO3 nanoparticles via sonochemical approach for the photocatalytic degradation of methylene blue under visible light illumination. Ultrason Sonochem 21:1964–1968. https://doi.org/10.1016/j.ultsonch.2014.02.015

    Article  Google Scholar 

  37. Elmolla ES, Chaudhuri M (2010) Degradation of amoxicillin, ampicillin, cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J Hazard Mater 173:445–449. https://doi.org/10.1016/j.jhazmat.2009.08.104

    Article  Google Scholar 

  38. Elmolla ES, Chaudhuri M (2010) Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2photocatalysts. Desalination 252:46–52

    Article  Google Scholar 

  39. Wahab R, Tripathy SK, Shin HS, Mohapatra M, Musarrat J, Al-Khedhairy AA, Kaushik NK (2013) Photocatalytic oxidation of acetaldehyde with ZnO quantum dots. ChemEng J 226:154–160

    Google Scholar 

  40. Yamagata S, Loo BH (1989) Photocatalytic oxidation of alcohol by titanium tetra alkoxide- an analog of heterogeneous photocatalysis on TiO2. J Electroanal Chem Interfac Electrochem 260:447–450. https://doi.org/10.1002/anie.201001533

    Article  Google Scholar 

  41. Rahman MM, Asiri AM, Youssef TE, Marwani HM (2016) Photocatalytic degradation of remazol brilliant orange 3R using wet chemically prepared CdO-ZnO nanofibers for environmental remediation. Mater Express 6:137–148. https://doi.org/10.1166/mex.2016.1285

    Article  Google Scholar 

  42. Botia DC, Rodriguez MS, Saria VM (2012) Evaluation of UV/TiO2 and UV/ZnO photocatalytic system coupled to a biological process for the treatment of bleaching pulp mill effluent. Chemosphere 89:732–736. https://doi.org/10.1016/j.chemosphere.2012.06.046

    Article  Google Scholar 

  43. Chen X, Wu Z, Liu D, Gao Z (2017) Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res Lett 12:143–153. https://doi.org/10.1186/s11671-017-1904-4

    Article  Google Scholar 

  44. Kumar SS, Venketasvarlu P, Rao VR, Rao GN (2013) Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int Nano Lett 3:30–35. https://doi.org/10.1186/2228-5326-3-30

    Article  Google Scholar 

  45. Wang D, Liu H, Ma Y, Qu J, Guan J, Lu N, Lu Y, Yuan X (2016) Recycling of hyper accumulator: synthesis of ZnO nanoparticles and photocatalytic degradation of dichlorophenol. J Alloys Compd 680:500–505. https://doi.org/10.1016/j.jallcom.2016.04.100

    Article  Google Scholar 

  46. Akter M, Satter SS, Singh AK, Rahman MM, Mollah MYA, Susan MABH (2016) Hydrophilic ionic liquid-assisted control of the size and morphology of ZnO particles prepared by chemical precipitation method. RSC Adv 6:92040–92047. https://doi.org/10.1039/C6RA14955C

    Article  Google Scholar 

  47. Awwad AM, Albis B, Ahmad AL (2014) Green synthesis, characterization and optical properties of zinc oxide nanosheets using oleaeuropea leaf extract. Adv Mater Lett 5:520–524. https://doi.org/10.5185/amlett.2014.5575

    Article  Google Scholar 

  48. Faisal M, Khan SB, Rahman MM, Jamal A, Asiri AM, Abdullah MM (2011) Synthesis, characterizations, photocatalytic and sensing studies of ZnO nanocapsules. Appl Surf Sci 258:672–677. https://doi.org/10.1016/j.apsusc.2011.07.067

    Article  Google Scholar 

  49. Faisal M, Khan SB, Rahman MM, Ismail AA, Asiri AM, Al-sayari SA (2014) Development of efficient chemi-sensor and photocatalyst based on wet chemically prepared ZnO nanorods for environmental remediation. J Taiwan Inst Chem Eng 45:2733–2741. https://doi.org/10.1016/j.jtice.2014.05.008

    Article  Google Scholar 

  50. Faisal M, Khan SB, Rahman MM, Jamal A, Akhtar K, Abdullah MM (2011) Role of ZnO-CeO2 nanostructures as a photocatalyst and chemi-sensor. J Mater Sci Technol 27:594–600. https://doi.org/10.1016/S1005-0302(11)60113-8

    Article  Google Scholar 

  51. Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7:26–33. https://doi.org/10.1016/S1369-7021(04)00286-X

    Article  Google Scholar 

  52. Cheng XL, Zhao H, Huo LH, Gao S, Zhao JG (2004) ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property. Sens Actuators B Chem 102:248–252. https://doi.org/10.1016/j.snb.2004.04.080

    Article  Google Scholar 

  53. Hames Y, Alpaslan Z, Kosemen A, San SE, Yerli Y (2010) Electrochemically grown ZnO nanorods for hybrid solar cell applications. Sol Energy 84:426–443. https://doi.org/10.1016/j.solener.2009.12.013

    Article  Google Scholar 

  54. Topoglidis E, Cass AEG, O’Regan B, Durrant JR (2001) Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J Electroanal Chem 517:20–27. https://doi.org/10.1016/S0022-0728(01)00673-8

    Article  Google Scholar 

  55. Ahmad I, Bano R, Musharraf SG, Sheraz MA, Ahmed S, Tahir H, Arfeen QU, Bhatti MS, Shad Z, Hussain SF (2015) Photodegradation of norfloxacin in aqueous and organic solvents: a kinetic study. J Photochem Photobiol A 302:1–10. https://doi.org/10.1016/j.jphotochem.2015.01.005

    Article  Google Scholar 

  56. Burhenne J, Ludwig M, Spiteller M (1997) Photolytic degradation of fluoroquinolone carboxylic acid in aqueous solution-primary products and half-lives. Environ Sci Pollut Res 4:10–15. https://doi.org/10.1007/BF02986278

    Article  Google Scholar 

  57. Moellering RC Jr (1987) Norfloxacin: a fluoroquinolone carboxylic acid antimicrobial agent. Am J Med 82:1–92. https://doi.org/10.1016/0002-9343(87)90611-5

    Article  Google Scholar 

  58. Zhang J, Fu D, Wu J (2012) Photodegradation of norfloxacin in aqueous solution containing algae. J Environ Sci 24:743–749. https://doi.org/10.1016/S1001-0742(11)60814-0

    Article  Google Scholar 

  59. Shin HS, Kim JC, Chung MK (2003) Fetal and maternal tissue distribution of the new fluoroquinolone DW-116 in pregnant rats. Comp Biochem Physiol C Toxicol Pharmacol 136:95–102. https://doi.org/10.1016/j.cca.2003.08.004

    Article  Google Scholar 

  60. Albini A, Monti S (2003) Photophysical and photochemistry of fluoroquinolones. Chem Soc Rev 32:238–250. https://doi.org/10.1039/B209220B

    Article  Google Scholar 

  61. Alam MM, Asiri AM, Uddin MT, Islam MA, Awual MdR, Rahman MdM (2019) Detection of uric acid based on doped ZnO/Ag2O/Co3O4 nanoparticle loaded glassy carbon electrode. New J Chem 43:8651–8659. https://doi.org/10.1039/C9NJ01287G

    Article  Google Scholar 

  62. Alam MM, Asiri AM, Uddin MT, Islam MM, Awual MdR, Rahman MM (2019) One step wet chemical synthesis of ternary ZnO/CuO/Co3O4 nanoparticles for sensitive and selective melamine sensor development. New J Chem 43:4849–4858. https://doi.org/10.1039/C8NJ06361C

    Article  Google Scholar 

  63. Khan SB, Faisal M, Rahman MM, Jamal A (2011) Low temperature growth of ZnO nanoparticles: photocatalyst and acetone sensor. Talanta 85:943–949. https://doi.org/10.1016/j.talanta.2011.05.003

    Article  Google Scholar 

  64. Patel J, Jain B, Singh AK, Susan MABH, Lellouch JP (2020) Mn doped ZnS quantum dots-An effective nanoscale sensor. Microchem J 155:104755. https://doi.org/10.1016/j.microc.2020.104755

    Article  Google Scholar 

  65. Torabi A, Staroverov VN (2015) Band gap reduction in ZnO and ZnS by creating layered ZnO/ZnS heterostructures. J Phys Chem Lett 6:2075–2080

    Article  Google Scholar 

  66. Subhan MA, Saha PC, Sumon SA, Ahmed J, Asiri AM, Rahman MM, Mamun M (2018) Enhanced photocatalytic activity and ultra sensitivity benzaldehyde sensing performance of a SnO2·ZnO·TiO2 nanomaterial. RSC Adv 8:33048

    Article  Google Scholar 

  67. Hashmi A, Jain B, Singh AK, Singh AK, Carabineiro SAC (2020) Chloramine T/N-bromosuccinimide/FeCl3/KIO3 decorated graphene oxide nanosheets and their antibacterial activity. Nanomaterials 10:105. https://doi.org/10.3390/nano10010105

    Article  Google Scholar 

  68. Yadav S, Asthana A, Chakraborty R, Jain B, Singh AK, Carabineiro SAC, Susan Md ABH (2020) Cationic dye removal using novel magnetic/activated charcoal/b-cyclodextrin/alginate polymer nanocomposites. Nanomaterials 10:170

    Article  Google Scholar 

  69. Rishi K, Rana N (2015) Particle size and shape analysis using imageJ with customized tool for segmentation of particles. Int J Comput Sci Commun Netw 4:23–28. https://doi.org/10.17577/IJERTV4IS110211

    Article  Google Scholar 

  70. Ji S, Ye C (2008) Synthesis, growth and mechanism of zinc oxide nanomaterials. J Mater Sci Technol 24:1–17

    Article  Google Scholar 

  71. Sahoo S, Chakraborti C, Behera P, Mishra S (2012) FTIR and Raman spectroscopic investigations of norfloxacin/carbopo1934 polymeric suspension. J Young Pharmacists 4:138–145. https://doi.org/10.4103/0975-1483.100017

    Article  Google Scholar 

  72. Musa KAK, Eriksson LA (2009) Theoretical assessment of norfloxacin redox and photochemistry. J Phys Chem A 113:10803–10810. https://doi.org/10.1021/jp904671s

    Article  Google Scholar 

  73. Smith BA, Teel AL, Watts RJ (2004) Identification of reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton’s system. Environ Sci Technol 38:5465–5469. https://doi.org/10.1021/es0352754

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Bhawana Jain (Post-Doctoral Fellow, No. F.15-1/2013-14/PDFWM-2013-14-GE-CHH-18784(SA-II)) is thankful to UGC, Delhi, India, for research project grants. This work was also supported by DST-FIST sponsored instruments available in Govt. V.Y.T. PG. Auto. College, Durg (C.G.). Authors would also like to thank the Sophisticated Test and Instrumentation Centre, Kochi University, and Central Drug Research Institute, CDRI, Lucknow, India, for XRD, SEM, TEM and LCMS analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ajaya K. Singh or Md. Abu Bin Hasan Susan.

Ethics declarations

Conflict of interest

All authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 344 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, B., Singh, A.K., Banchhor, S. et al. Treatment of pharmaceutical wastewater by heterogeneous Fenton process: an innovative approach. Nanotechnol. Environ. Eng. 5, 13 (2020). https://doi.org/10.1007/s41204-020-00075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-020-00075-z

Keywords

Navigation