Skip to main content

Advertisement

Log in

The Energy Pillars of Society: Perverse Interactions of Human Resource Use, the Economy, and Environmental Degradation

  • Review Paper
  • Published:
BioPhysical Economics and Resource Quality Aims and scope Submit manuscript

Abstract

To meet the COP21 2 °C climate target, humanity would need to complete a transition to renewable energy within the next several decades. But for decades, fossil fuels will continue to underpin many fundamental activities that allow modern society to function. Unfortunately, net energy yield from fossil fuels is now falling, and despite substantial growth in renewable energy, total global energy demand and fossil fuel consumption are still increasing. Recent studies document promising trends in net energy yield from new renewable energy, particularly wind and solar. However, most studies do not fully consider the complexities of multiple factors including production intermittency, storage, the need to replace a massive infrastructure network, and lack of fungibility of different energy sources. Also, oft-overlooked, is that human impacts have caused widespread degradation of natural ecosystems and the provisioning of ecosystem goods and services, especially affecting vulnerable areas like coastal zones and arid regions. An accelerated renewable energy transition to meet climate targets and replace declining stocks of high net yielding fossil fuels will compete with resources needed for crucial investments to mitigate already locked in climate change and environmental degradation impacts. Integrative approaches that include all costs can help balance interdependent factors such as net energy dynamics, resource allocation, and ecosystem degradation. Energy-climate investment pathways produce economic output and quality of life tradeoffs that must be considered. Accordingly, developing future energy policy requires a systems approach with global boundaries and new levels of appreciation of the complex mix of interrelated factors involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Reproduced with permission from IEA 2013; LLNL 2016). (Color figure online)

Fig. 3

(Reproduced with permission from Fizaine and Court 2016). (Color figure online)

Fig. 4

(Reproduced with permission from Sgouridis et al. 2016)

Fig. 5

Similar content being viewed by others

References

  • Ahmed NM (2017) Failing states, collapsing systems: biophysical triggers of political violence. Springer, Cham

    Book  Google Scholar 

  • Anderson K (2015) Duality in climate science. Nat Geosci 8(12):898–900

    Article  Google Scholar 

  • Arbault D, Rugani B, Tiruta-Barna L, Benetto E (2013) Emergy evaluation of water treatment processes. Ecol Eng 60:172–182

    Article  Google Scholar 

  • Armaroli N, Balzani V (2015) Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chemistry 22(1):32–57. https://doi.org/10.1002/chem.201503580

    Article  Google Scholar 

  • Arvesen A, Hertwich EG (2015) More caution is needed when using life cycle assessment to determine energy return on investment (EROI). Energy Policy 76:1–6

    Article  Google Scholar 

  • Asdrubali F, Baldinelli G, D’Alessandro F, Scrucca F (2015) Life cycle assessment of electricity production from renewable energies: review and results harmonization. Renew Sustain Energy Rev 42:1113–1122

    Article  Google Scholar 

  • Ayres R, Voudouris V (2014) The economic growth enigma: capital, labour and useful energy? Energy Policy 64:16–28

    Article  Google Scholar 

  • Bagliani M, Dansero E, Puttilli M (2010) Territory and energy sustainability: the challenge of renewable energy sources. J Environ Plan Manag 53(4):457–472

    Article  Google Scholar 

  • Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22

    Article  Google Scholar 

  • BP (2016) BP statistical review of world energy 2016. British Petroleum, London

    Google Scholar 

  • Brandt AR (2017) How does energy resource depletion affect prosperity? Mathematics of a minimum energy return on investment (EROI). Biophys Econ Resour Qual. https://doi.org/10.1007/s41247-017-0019-y

    Google Scholar 

  • Brandt AR, Englander J, Bharadwaj S (2013) The energy efficiency of oil sands extraction: energy return ratios from 1970 to 2010. Energy 55:693–702

    Article  Google Scholar 

  • Brandt AR, Yeskoo T, Vafi K (2015) Net energy analysis of Bakken crude oil production using a well-level engineering-based model. Energy 93:2191–2198

    Article  Google Scholar 

  • Brown JH, Burnside WR, Davidson AD, DeLong JP, Dunn WC, Hamilton MJ, Mercado-Silva N, Nekola JC, Okie JG, Woodruff WH, Zuo W (2011) Energetic limits to economic growth. BioScience 61(1):19–26

    Article  Google Scholar 

  • Brown JH, Burger JR, Burnside WR, Chang M, Davidson AD, Fristoe TS, Hamilton MJ, Hammond ST, Kodric-Brown A, Mercado-Silva N, Nekola JC (2014) Macroecology meets macroeconomics: resource scarcity and global sustainability. Ecol Eng 65:24–32

    Article  Google Scholar 

  • Campbell CJ, Wöstmann A (2013) Campbell’s atlas of oil and gas depletion. Springer, New York

    Book  Google Scholar 

  • Carbajales-Dale M, Krumdieck S, Bodger P (2012) Global energy modelling—a biophysical approach (GEMBA) part 2: methodology. Ecol Econ 73:158–167

    Article  Google Scholar 

  • Carbajales-Dale M, Barnhart CJ, Benson SM (2014) Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage. Energy Environ Sci 7(5):1538–1544

    Article  Google Scholar 

  • Clack C et al (2017) Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1610381114

    Google Scholar 

  • Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Change 26:152–158

    Article  Google Scholar 

  • Court V, Fizaine F (2017) Long-term estimates of the energy-return-on-investment (EROI) of coal, oil, and gas global productions. Ecol Econ 138:145–159

    Article  Google Scholar 

  • Crépin A, Folke C (2015) The economy, the biosphere and planetary boundaries: towards biosphere economics. Int Rev Environ Resour Econ 8(1):57–100

    Article  Google Scholar 

  • Daly HE (2017) A further critique of growth economics. In Green Economy Reader. Springer International Publishing, pp 55–66

  • Davidsson S, Grandell L, Wachtmeister H, Höök M (2014) Growth curves and sustained commissioning modelling of renewable energy: investigating resource constraints for wind energy. Energy Policy 73:767–776

    Article  Google Scholar 

  • Day JW, Gunn JD, Folan WJ, Yáñez-Arancibia A, Horton BP (2012) The influence of enhanced post-glacial coastal margin productivity on the emergence of complex societies. J Island Coast Archaeol 7(1):23–52

    Article  Google Scholar 

  • Day JW, Agboola J, Chen Z, D’Elia C, Forbes DL, Giosan L et al (2016) Approaches to defining deltaic sustainability in the 21st century. Estuar Coast Shelf Sci 183:275–291

    Article  Google Scholar 

  • Dearing JA, Acma B, Bub S, Chambers FM, Chen X, Cooper J et al (2015) Social-ecological systems in the Anthropocene: the need for integrating social and biophysical records at regional scales. Anthr Rev 2(3):220–246

    Article  Google Scholar 

  • Dismukes DE, Upton GB (2015) Economies of scale, learning effects and offshore wind development costs. Renew Energy 83:61–66

    Article  Google Scholar 

  • Dukes JS (2003) Burning buried sunshine: human consumption of ancient solar energy. Clim Change 61(1–2):31–44

    Article  Google Scholar 

  • Ehrlich P (1968) The population bomb. Ballantine, New York

    Google Scholar 

  • EIA (2015) Annual energy outlook 2015. U.S. Energy Information Administration, Washington

    Google Scholar 

  • EIA (2016) Annual energy outlook 2016. U.S. Energy Information Administration, Washington. https://www.eia.gov/forecasts/aeo/tables_ref.cfm

  • Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4(11):945–948

    Article  Google Scholar 

  • Ferroni F, Guekos A, Hopkirk RJ (2017) Further considerations to: energy return on energy invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation. Energy Policy 107:498–505

    Article  Google Scholar 

  • Field C, Campbell J, Lobell D (2008) Biomass energy: the scale of the potential resource. Trends Ecol Evol 23(2):65–72

    Article  Google Scholar 

  • Fizaine F, Court V (2015) Renewable electricity producing technologies and metal depletion: a sensitivity analysis using the EROI. Ecol Econ 110:106–118

    Article  Google Scholar 

  • Fizaine F, Court V (2016) Energy expenditure, economic growth, and the minimum EROI of society. Energy Policy 95:172–186

    Article  Google Scholar 

  • Flynn KM, Traver RG (2013) Green infrastructure life cycle assessment: a bio-infiltration case study. Ecol Eng 55:9–22

    Article  Google Scholar 

  • Friedemann AJ (2016) When trucks stop running: energy and the future of transportation. Springer, Cham

    Book  Google Scholar 

  • García-Olivares A, Ballabrera-Poy J (2015) Energy and mineral peaks, and a future steady state economy. Technol Forecast Soc Change 90:587–598

    Article  Google Scholar 

  • Glaub M, Hall CAS (2017) Evolutionary implications of persistence hunting: an examination of energy return on investment for !Kung hunting. Hum Ecol 45(3):393–401

    Article  Google Scholar 

  • Gupta AK (2018) Materials: abundance, purification, and the energy cost associated with the manufacture of Si, Cd, Te, and CIGS PV. In: Letcher T, Fthenakis VM (eds) A comprehensive guide to solar energy systems: with special focus on photovoltaic systems. Elsevier, Oxford

    Google Scholar 

  • Gutowski TG, Allwood JM, Herrmann C, Sahni S (2013) A global assessment of manufacturing: economic development, energy use, carbon emissions, and the potential for energy efficiency and materials recycling. Annu Rev Environ Resour 38:81–106

    Article  Google Scholar 

  • Hall CAS (2004) The myth of sustainable development: personal reflections on energy, its relation to neoclassical economics, and Stanley Jevons. J Energy Res Technol 126:85–89

    Article  Google Scholar 

  • Hall CAS (2017) Energy return on investment. Springer, Cham

    Book  Google Scholar 

  • Hall CAS, Klitgaard K (2012) Energy and the wealth of nations: understanding the biophysical economy. Springer Science & Business Media, New York

    Book  Google Scholar 

  • Hall CAS, Powers R, Schoenberg W (2008) Peak oil, EROI, investments and the economy in an uncertain future. In: Pimentel D (ed) Renewable energy systems: environmental and energetic issues. Elsevier, London

    Google Scholar 

  • Hall CAS, Lambert JG, Balogh SB (2014) EROI of different fuels and the implications for society. Energy Policy 64:141–152

    Article  Google Scholar 

  • Hamilton JD (2012) Oil prices, exhaustible resources, and economic growth (No. w17759). National Bureau of Economic Research, Cambridge

    Book  Google Scholar 

  • Hansen JP, Narbel PA, Aksnes DL (2017) Limits to growth in the renewable energy sector. Renew Sustain Energy Rev 70:769–774

    Article  Google Scholar 

  • Harmsen JHM, Roes AL, Patel MK (2013) The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios. Energy 50:62–73

    Article  Google Scholar 

  • Harris S (1977) What’s so funny about science? Wm. Kaufmann, Inc., Los Altos

    Google Scholar 

  • Heinberg R, Fridley D (2016) Our renewable future. Island Press, Washington, D.C.

    Book  Google Scholar 

  • Heller MC, Keoleian GA (2000) Life cycle-based sustainability indicators for assessment of the US food system, vol 4. Center for Sustainable Systems, University of Michigan, Ann Arbor

    Google Scholar 

  • Hiloidhari M, Baruah DC, Singh A, Kataki S, Medhi K, Kumari S et al (2017) Emerging role of geographical information system (GIS), life cycle assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning. Bioresour Technol 242:218–226. https://doi.org/10.1016/j.biortech.2017.03.079

    Article  Google Scholar 

  • Höök M, Li J, Johansson K, Snowden S (2012) Growth rates of global energy systems and future outlooks. Nat Resour Res 21(1):23–41

    Article  Google Scholar 

  • Horton BP, Rahmstorf S, Engelhart SE, Kemp AC (2014) Expert assessment of sea-level rise by AD 2100 and AD 2300. Quat Sci Rev 84:1–6

    Article  Google Scholar 

  • Hopkinson CS, Day JW (1980) Net energy analysis of alcohol production from sugarcane. Science 207(4428):302–304

    Article  Google Scholar 

  • IEA (2013) World energy outlook 2013. International Energy Agency, Paris

    Google Scholar 

  • IEA (2017a) World energy outlook 2017. International Energy Agency, Paris

    Google Scholar 

  • IEA (2017b) Key world energy statistics 2017. International Energy Agency, Paris

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change

  • Jacobson MZ, Delucchi MA, Bazouin G, Bauer ZA, Heavey CC, Fisher E, Morris SB, Piekutowski DJ, Vencill TA, Yeskoo TW (2015a) 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States. Energy Environ Sci 8(7):2093–2117

    Article  Google Scholar 

  • Jacobson MZ, Delucchi MA, Cameron MA, Frew BA (2015b) Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc Natl Acad Sci USA, 112(49):15060–15065

    Article  Google Scholar 

  • Jones GA, Warner KJ (2016) The 21st century population-energy-climate nexus. Energy Policy 93:206–212

    Article  Google Scholar 

  • Kerschner C, Prell C, Feng K, Hubacek K (2013) Economic vulnerability to peak oil. Glob Environ Chang 23(6):1424–1433

    Article  Google Scholar 

  • King CW, Maxwell JP, Donovan A (2015) Comparing world economic and net energy metrics, part 2: total economy expenditure perspective. Energies 8(11):12975–12996

    Article  Google Scholar 

  • Kintisch E (2015) After Paris: the rocky road ahead. Science 350(6264):1018–1019

    Article  Google Scholar 

  • Koppelaar RHEM. (2017) Solar-PV energy payback and net energy: meta-assessment of study quality, reproducibility, and results harmonization. Renew Sustain Energy Rev 72:1241–1255

    Article  Google Scholar 

  • Kubiszewski I, Cleveland CJ, Endres PK (2010) Meta-analysis of net energy return for wind power systems. Renew Energy 35(1):218–225

    Article  Google Scholar 

  • Laherrere J (2017) Personal communication. Email correspondence with C.A.S. Hall

  • Lambert JG, Hall CA, Balogh S, Gupta A, Arnold M (2014) Energy, EROI and quality of life. Energy Policy 64, 153–167

    Article  Google Scholar 

  • Lawrence Livermore National Laboratory (LLNL) (2016) Energy flow charts. http://flowcharts.llnl.gov. Accessed 25 Jan 2016

  • Lee R (1969) Kung Bushman subsistence: an input-output analysis. In: Vayda AP (ed) Environment and cultural behavior. Natural History Press, New York, pp 47–79

    Google Scholar 

  • Louwen A, Van Sark WG, Faaij AP, Schropp RE (2016) Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nat Commun 7:13728

    Article  Google Scholar 

  • MacKay DJC (2009) Without the hot air. UIT Cambridge Ltd, Cambridge

    Google Scholar 

  • Maggio G, Cacciola G (2012) When will oil, natural gas, and coal peak? Fuel 98:111–123

    Article  Google Scholar 

  • Masnadi MS, Brandt AR (2017) Energetic productivity dynamics of global super-giant oilfields. Energy Environ Sci. https://doi.org/10.1039/C7EE01031A.

    Google Scholar 

  • McGlade CE (2014) Uncertainties in the outlook for oil and gas (Doctoral dissertation, UCL (University College London))

  • McGlade C, Ekins P (2015) The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517(7533):187–190

    Article  Google Scholar 

  • McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19(1):17–37

    Article  Google Scholar 

  • Moerschbaecher M, Day Jr JW (2011) Ultra-deepwater Gulf of Mexico oil and gas: energy return on financial investment and a preliminary assessment of energy return on energy investment. Sustainability 3(10):2009–2026

    Article  Google Scholar 

  • Mohr SH, Wang J, Ellem G, Ward J, Giurco D (2015) Projection of world fossil fuels by country. Fuel 141:120–135

    Article  Google Scholar 

  • Moss AR, Lansing SA, Tilley DR, Klavon KH (2014) Assessing the sustainability of small-scale anaerobic digestion systems with the introduction of the emergy efficiency index (EEI) and adjusted yield ratio (AYR). Ecol Eng 64:391–407

    Article  Google Scholar 

  • Murphy DJ (2013) The implications of the declining energy return on investment of oil production. Philos Trans A Math Phys Eng Sci 372(2006):20130126

    Article  Google Scholar 

  • Murphy DJ, Hall CA (2011) Energy return on investment, peak oil, and the end of economic growth. Ann N Y Acad Sci 1219(1):52–72

    Article  Google Scholar 

  • Murphy DJ, Hall CAS, Powers B (2011) New perspectives on the energy return on (energy) investment (EROI) of corn ethanol. Environ Dev Sustain 13(1):179–202

    Article  Google Scholar 

  • Murphy DJ, Carbajales-Dale M, Moeller D (2016) Comparing apples to apples: why the net energy analysis community needs to adopt the life-cycle analysis framework. Energies 9(11):917

    Article  Google Scholar 

  • Neumeyer C, Goldston R (2016) Dynamic EROI assessment of the IPCC 21st century electricity production scenario. Sustainability 8(5):421

    Article  Google Scholar 

  • Nicholls RJ, Marinova N, Lowe JA, Brown S, Vellinga P, De Gusmao D, Hinkel J, Tol RS (2011) Sea-level rise and its possible impacts given a ‘beyond 4 C world’ in the twenty-first century. Philos Trans A Math Phys Eng Sci 369(1934):161–181

    Article  Google Scholar 

  • Noori M, Tatari O (2016) Development of an agent-based model for regional market penetration projections of electric vehicles in the United States. Energy 96:215–230

    Article  Google Scholar 

  • Palmer G (2014) Energy in Australia: peak oil, solar power, and Asia’s economic growth. Springer, New York

    Book  Google Scholar 

  • Palmer G (2017) A framework for incorporating EROI into electrical storage. Biophys Econ Resour Qual 2(2):6

    Article  Google Scholar 

  • Pimentel D, Marklein A, Toth MA, Karpoff MN, Paul GS, McCormack R, Kyriazis J, Krueger T (2009) Food versus biofuels: environmental and economic costs. Hum Ecol 37(1):1–12

    Article  Google Scholar 

  • Raugei M (2013) Comments on “Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants”—making clear of quite some confusion. Energy 59(15):781–782

    Article  Google Scholar 

  • Raugei M, Fullana-i-Palmer P, Fthenakis V (2012) The energy return on energy investment (EROI) of photovoltaics: methodology and comparisons with fossil fuel life cycles. Energy Policy 45:576–582

    Article  Google Scholar 

  • Raugei M, Sgouridis S, Murphy D, Fthenakis V, Frischknecht R, Breyer C, Bardi U, Barnhart C, Buckley A, Carbajales-Dale M, Csala D (2017) Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: a comprehensive response. Energy Policy 102:377–384

    Article  Google Scholar 

  • Rees WE, Wackernagel M (2013) The shoe fits, but the footprint is larger than earth. PLoS Biol 11(11):e1001701

    Article  Google Scholar 

  • REN21 (2017) Renewables 2017 global status report. REN21 Secretariat, Paris

    Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B et al (2009) A safe operating space for humanity. Nature 461(7263):472–475

    Article  Google Scholar 

  • Sathre R, Scown CD, Morrow WR, Stevens JC, Sharp ID, Ager JW, Walczak K, Houle FA, Greenblatt JB et al (2014) Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ Sci 7(10):3264–3278

    Article  Google Scholar 

  • Schramski JR, Gattie DK, Brown JH (2015) Human domination of the biosphere: rapid discharge of the earth-space battery foretells the future of humankind. Proc Natl Acad Sci 112(31):9511–9517

    Article  Google Scholar 

  • Sgouridis S, Bardi U, Csala D (2016) The sower’s way. Quantifying the narrowing net-energy pathways to a global energy transition. Environ Res Lett. https://doi.org/10.1088/1748-9326/11/9/094009

    Google Scholar 

  • Smil V (2016) Examining energy transitions: a dozen insights based on performance. Energy Res Social Sci 22:194–197

    Article  Google Scholar 

  • Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C (2015) The trajectory of the Anthropocene: the great acceleration. Anthropog Rev 2(1):81–98

    Article  Google Scholar 

  • Stirling A (2014) Transforming power: social science and the politics of energy choices. Energy Res Soc Sci 1:83–95

    Article  Google Scholar 

  • Sverdrup HU, Koca D, Ragnarsdóttir KV (2013) Peak metals, minerals, energy, wealth, food and population: urgent policy considerations for a sustainable society. J Environ Sci Eng B 2(4B):189

    Google Scholar 

  • Sverdrup HU, Ragnarsdottir KV, Koca D (2015) An assessment of metal supply sustainability as an input to policy: security of supply extraction rates, stocks-in-use, recycling, and risk of scarcity. J Clean Prod 140:359–372

    Article  Google Scholar 

  • Tainter JA (1988) The collapse of complex societies. Cambridge University Press, Cambridge

    Google Scholar 

  • Trainer T (2012a) A critique of Jacobson and Delucchi’s proposals for a world renewable energy supply. Energy Policy 44:476–481

    Article  Google Scholar 

  • Trainer T (2012b) Can Australia run on renewable energy? The negative case. Energy Policy 50:306–314

    Article  Google Scholar 

  • Trainer T (2013) Can Europe run on renewable energy? A negative case. Energy Policy 63:845–850

    Article  Google Scholar 

  • Tainter JA and Patzek TW (2012) Our energy and complexity dilemma: prospects for the future. In: Drilling Down. Springer, New York

  • Tripathi VS, Brandt AR (2017) Estimating decades-long trends in petroleum field energy return on investment (EROI) with an engineering-based model. PLoS ONE 12(2):e0171083

    Article  Google Scholar 

  • UNESA (2015) World Population Prospects, 2015 Revisions, Data Booklet. United Nations Economic & Social Affairs (UNESA)

  • United Nations Framework Convention on Climate Change (UNFCCC) (2015) Decision 1/CP.17. Durban Platform for Enhanced Action (decision 1/CP.17) Adoption of a protocol, another legal instrument, or an agreed outcome with legal force under the Convention applicable to all Parties. https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf. Accessed 20 April 2016

  • van den Bergh J (2017) A third option for climate policy within potential limits to growth. Nat Clim Chang 7(2):107–112

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277(5325):494–499

    Article  Google Scholar 

  • Waggoner EG (2013) Sweet spots, EROI, and the limits to Bakken production. Thesis (MS) State University of New York College of Environmental Science and Forestry

  • Wagner L, Ross I, Foster J, Hankamer B (2016) Trading off global fuel supply, CO2 emissions and sustainable development. PLoS ONE 11(3):e0149406

    Article  Google Scholar 

  • Warr BS, Ayres RU (2010) Evidence of causality between the quantity and quality of energy consumption and economic growth. Energy 35(4):1688–1693

    Article  Google Scholar 

  • Weißbach D, Ruprecht G, Huke A, Czerski K, Gottlieb S, Hussein A (2013) Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy 52:210–221

    Article  Google Scholar 

  • Wiegman AR, Day JW, D’Elia CF, Rutherford JS, Morris JT, Roy ED, Lane RR, Dismukes DE, Snyder BF (2017) Modeling impacts of sea-level rise, oil price, and management strategy on the costs of sustaining Mississippi delta marshes with hydraulic dredging. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2017.09.314

    Google Scholar 

  • Zhao B (2017) Why will dominant alternative transportation fuels be liquid fuels, not electricity or hydrogen? Energy Policy 108:712–714

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Gulf Research Program of the National Academies of Sciences, Engineering, and Medicine [Award Number 2000005991]; the Coastal Sustainability Studio [Award Number 1512], and the Department of Oceanography and Coastal Sciences, both at Louisiana State University. Additional support was received by a National Science Foundation funded workshop: Implications of Net Energy for the Food-Energy-Water Nexus, hosted at Linfield College (Co-PI’s Thomas Love and David Murphy) [Award Number 1541988]. We also acknowledge the comments of two reviewers that greatly improved the paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception, writing, and development of this work.

Corresponding author

Correspondence to Adrian R. H. Wiegman.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1693 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Day, J.W., D’Elia, C.F., Wiegman, A.R.H. et al. The Energy Pillars of Society: Perverse Interactions of Human Resource Use, the Economy, and Environmental Degradation. Biophys Econ Resour Qual 3, 2 (2018). https://doi.org/10.1007/s41247-018-0035-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41247-018-0035-6

Keywords

Navigation