Skip to main content
Log in

Effect of single or dual inoculation of the arbuscular mycorrhizal fungus Glomus mosseae and root-nodulating rhizobacteria on reproduction of the burrowing nematode Radopholus similis on non-leguminous and leguminous banana intercrops

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The bio-protective effect of either single or dual mycorrhizal (AMF) and rhizobial colonisation of the roots of non-leguminous and leguminous banana intercrops differing in host response to Radopholus similis on the reproduction of this important migratory endoparasitic nematode was examined. Included in the study were sorgho-Sudan grass (good R. similis host), sweet potato and common bean (intermediate hosts), soybean and sunn hemp (poor hosts), and marigold (non-host). Significant plant growth-promoting effect of single AMF and rhizobial colonisation in the good and intermediate R. similis hosts sorgho-Sudangrass (AMF) and common bean (AMF and rhizobium), respectively, was observed whereas this plant growth-promoting effect was absent in the other intercrops with the exception of sunn hemp with significant plant growth-promoting effect of AMF colonisation on fresh root weight. An additive plant growth-promoting effect of dual AMF and rhizobial colonisation (on fresh shoot weight) was only observed in the poor R. similis host soybean. Single AMF and rhizobial colonisation also resulted in a significant bio-protective effect against R. similis in sorgho-Sudangrass (AMF), sweet potato cv. Inzovu (AMF) and common bean (AMF and rhizobium). The growth-promoting and bio-protective effects of AMF colonisation were clearly present in the good and intermediate R. similis hosts with moderate to high relative mycorrhizal dependency (RMD) values ranging from 47% (sorgho-Sudangrass) to 65% (common bean) but absent in the intermediate R. similis host sweet potato, which had a negative RMD value, and in the poor and non- R. similis hosts. Overall, no suppressive effect of R. similis infection on AMF and rhizobial colonisation was observed except in soybean and sunn hemp in which AMF colonisation was significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiyelaagbe IOO, Jolaoso M (1994) Productivity of intercropped plantain-soybean in southwestern Nigeria. Fruits 49:191–195

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008) Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Prot 27:410–417

    Google Scholar 

  • Anonymous (2007) Statistica Package 71. Statsoft Inc, Tulsa, USA

    Google Scholar 

  • Aryal UK, Xu HL, Fujita M (2003) Rhizobia and AM fungal inoculation improve growth and nutrient uptake of bean plants under organic fertilization. J Sustain. Agric 21:27–39

    Google Scholar 

  • Barea JM, Pozo MJ, Lopez-Raez JA, Aroca R, Ruiz-Lozano JM, Ferrol N, Azcon R, Azcon-Aguilar C (2013) Arbuscular mycorrhizas and their significance in promoting soil-plant system sustainability against environmental stresses. In: Gonzalez MB, Gonzalez-Lopez J (eds) Beneficial plant-microbial interactions: ecology and perspectives. CRC Press, Boca Raton, pp 353–397

    Google Scholar 

  • Bernard GC, Egnin M, Bonsi C (2017) The impact of plant-parasitic nematodes on agriculture and methods of control. In: Shah MM, Mahamood M (eds) Nematology: concepts, diagnosis and control. IntechOpen Publishers, London, pp 121–151

    Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559. https://doi.org/10.3389/fmicb.2015.01559

    Article  PubMed  PubMed Central  Google Scholar 

  • Bittinger MA, Handelsman J (2000) Identification of genes in the RosR regulon of Rhizobium etli. J Bacteriol 6:1706–1713

    Google Scholar 

  • Bücking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5:587–612

    Google Scholar 

  • Calvet C, Pinochet J, Hernandez-Dorrego A, Estaun V, Camprubi A (2001) Field microplot performance of the peach-almond hybrid GF-677 after inoculation with arbuscular mycorrhizal fungi in a replant soil infested with root-knot nematodes. Mycorrhiza 10:295–300

    Google Scholar 

  • Castillo P, Nico AI, Azcon-Aguilar C, Rincon CD, Calvet C, Jimenez-Diaz RM (2006) Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi. Plant Pathol 55:705–713

    Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi - from ecology to application. Front Plant Sci 9:1270. https://doi.org/10.3389/fpls.2018.01270

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2016) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35:276–300

    CAS  Google Scholar 

  • Desaeger J, Odee D, Machua J, Esitubi M (2005) Interactions between Meloidogyne javanica (Treub) Chitwood and rhizobia on growth of Sesbania sesban (L.) Merr. Appl Soil Ecol 29:252–258

    Google Scholar 

  • Diedhiou PW, Hallmann J, Oerke EC, Dehne HW (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199–204

    CAS  PubMed  Google Scholar 

  • Duncan LW, Moens M (2013) Migratory endoparasitic nematodes. In: Perry RN, Moens M (eds) Plant nematology, 2nd edn. CABI International, Oxfordshire, pp 144–178

    Google Scholar 

  • Elsen A, Beetersen R, Swennen R, De Waele D (2003a) Effects of an arbuscular mycorrhizal fungus and two plant-parasitic nematodes on Musa genotypes differing in root morphology. Biol Fertil Soils 38:367–376

    Google Scholar 

  • Elsen A, Baimey H, Swennen R, De Waele D (2003b) Relative mycorrhizal dependency and mycorrhiza-nematode interaction in banana cultivars (Musa spp.) differing in nematode susceptibility. Plant Soil 25:303–313

    Google Scholar 

  • Elsen A, Declerck S, De Waele D (2003c) Use of root organ cultures to investigate the interaction between Glomus intraradices and Pratylenchus coffeae. Appl Environ Microbiol 69:4308–4311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    CAS  PubMed  Google Scholar 

  • Elsen A, Van der Veken L, De Waele D (2009) AMF-induced bioprotection against migratory plant-parasitic nematodes in banana. In: Jones D, Van den Bergh I (eds) Proceedings international symposium on recent advances in banana crop protection for sustainable production and improved livelihoods. White River, South Africa, pp 10–14

    Google Scholar 

  • Fazal M, Siddiqui ZA, Imran M (1992) Effect of pre-, post- and simultaneous inoculations of Rhizobium, Rotylenchus reniformis and Meloidogyne incognita on lentil. Nematol Mediterr 20:159–161

    Google Scholar 

  • Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    CAS  Google Scholar 

  • Gai JP, Feng G, Christie P, Li XL (2006) Screening of arbuscular mycorrhizal fungi for symbiotic efficiency with sweet potato. J Plant Nutr 29:1085–1094

    CAS  Google Scholar 

  • Gañán L, Bolaños-Benavides MM, Asakawa N (2011) Efecto de la micorrización sobre el crecimiento de plántulas de plátano en sustrato con y sin la presencia de nematodos. Acta Agron 60:297–305

    Google Scholar 

  • Germani G, Mugnier J, Dommergues Y (1984) Influence of pathogenic nematodes on nodulation and seed yield of soybeans in Senegal. Rev Nematol 7:335–340

    Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Dinoor A (2001) Combining biocontrol agents to reduce the variability of biological control. Phytopathology 91:621–627

    CAS  PubMed  Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A (2002) Improving biological control by combining agents each with several mechanisms of disease suppression. Phytopathology 92:976–985

    PubMed  Google Scholar 

  • Haegeman A, Elsen A, De Waele D, Gheysen G (2010) Emerging molecular knowledge on Radopholus similis, an important nematode pest of banana. Mol Plant Pathol 11:315–323

    PubMed  PubMed Central  Google Scholar 

  • Hol WHG, Cook R (2005) An overview of arbuscular mycorrhizal fungi-nematode interactions. Basic Appl Ecol 6:489–503

    Google Scholar 

  • Hooper DJ, Hallman J, Subbotin S (2005) Methods for extraction, processing and detection of plant and soil nematodes. In: Luc M, Sikora RA, Bridge J (eds) Plant-parasitic nematodes in subtropical and tropical agriculture, 2nd edn. CABI Publishing, Oxfordshire, pp 53–86

    Google Scholar 

  • Huang JS (1987) Interaction of nematodes with rhizobia. In: Veech JA, Dickson DW (eds) Vistas on nematology: a commemoration of the twenty-fifth anniversary of the Society of Nematologists. Society of Nematologists Inc., Hyattsville, pp 301–306

    Google Scholar 

  • Hussey RS, Barker KR (1976) Influence of nematodes and light sources on growth and nodulation of soybean. J Nematol 8:48–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaizme-Vega MC, Pinochet J (1997) Growth response of banana to three mycorrhizal fungi in Pratylenchus goodeyi infested soil. Nematropica 27:69–76

    Google Scholar 

  • Jaizme-Vega MC, Tenoury P, Pinochet J, Jaumont M (1997) Interactions between the root-knot nematode Meloidogyne incognita and Glomus mosseae in banana. Plant Soil 196:27–35

    CAS  Google Scholar 

  • Jaizme-Vega MC, Rodríguez-Romero AS, Barroso Núñez LA (2006) Effect of the combined inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on papaya (Carica papaya L.) infected with the root-knot nematode Meloidogyne incognita. Fruits 61:151–162

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Bio Fertil Soils 37:1–16

    Google Scholar 

  • Khan MR, Kounsar K, Hamid A (2002) Effect of certain rhizobacteria and antagonistic fungi on root-nodulation and root-knot nematode disease of green gram. Nematol Medit 30:85–89

    Google Scholar 

  • Khan MR, Mohiddin FA, Ahamad F (2018) Inoculant rhizobia suppressed root-knot disease and enhanced plant productivity and nutrient uptake of some field-frown food legumes. Acta Agric Scand Sect B - Soil & Plant Sci 68:166–174

    CAS  Google Scholar 

  • Koenning SR, Overstreet C, Noling JW, Donald PA, Becker JO, Fortnum BA (1999) Survey of crop losses in respons to phytoparasitic nematodes in the United States for 1994. J Nematol 31:587–618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koffi MC, Vos C, Draye X, Declerck S (2013) Effects of Rhizophagus irregularis MUCL 41833 on the reproduction of Radopholus similis in banana plantlets grown under in vitro culture conditions. Mycorrhiza 23:279–288

    CAS  PubMed  Google Scholar 

  • Kumar VV (2016) Plant growth-promoting microorganisms: interaction with plants and soil. In: Hakeem KR, Akhtar MS, Akmar SN (eds) Plant, soil and microbes. Springer International Publishing, Switzerland, pp 1–16

    Google Scholar 

  • Lescot T (2013) Sistemas de produccion de bananos y platanos en el mundo. In: Borges AL, Lichtemberg L (eds) Proceedings of the 20th international meeting ACORBAT: 40 years sharing science and technology. Fortaleza, Brazil, pp 9–13

  • Liu LC, Montalvo-Zapata R, Ortiz-Lopez J, Rodriguez JA, Aponte J (1999) Effect of planting dates and frequencies of intercropping on yield and income of bean and banana. J Agric Univ Puerto Rico 83:203–215

    Google Scholar 

  • Mani A, Sethi CL (1984) Plant growth of chickpea as influenced by initial inoculum levels of Meloidogyne incognita. Indian J Nematol 14:41–44

    Google Scholar 

  • Meyer SLF, Roberts DP (2002) Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi. J Nematol 34:1–8

    PubMed  PubMed Central  Google Scholar 

  • Molinari S, Leonetti P (2019) Bio-control agents activate plant immune response and prime susceptible tomato against root-knot nematodes. PLoS ONE 14:e0213230. https://doi.org/10.1371/journal.pone.0213230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthukumar A, Udhayakumar R, Naveenkumar R (2017) Role of bacterial endophytes in plant disease control. In: Maheshwari DK, Annapurna K (eds) Endophytes: crop productivity and protection, sustainable development and biodiversity. Springer, Switzerland, pp 133–161

    Google Scholar 

  • Nejad SAH, Khan MW (1997) Influence of initial inoculum levels of root-knot nematode, Meloidogyne incognita (race 1), on growth of some chickpea cultivars. Appl Entomol Phytopathol 64:12–13

    Google Scholar 

  • Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Tahna Maafi Z (2011) Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Heidelberg, pp 347–367

    Google Scholar 

  • Niranjan R, Mohan V, Rao VM (2007) Effect of indole acetic acid on the synergistic interactions of Bradyrhizobium and Glomus fasciculatum on growth, nodulation, and nitrogen fixation of Dalbergia sissoo roxb. Arid Land Res Manage 21:329–342

    CAS  Google Scholar 

  • Nwoko H, Sanginga N (1999) Dependence of promiscuous soybean and herbaceous legumes on arbuscular mycorrhizal fungi and their response to bradyrhizobial inoculation in low P soils. Appl Soil Ecol 13:251–258

    Google Scholar 

  • Okigbo BN, Greenland DJ (1976) Intercropping systems in tropical Africa. Mult Crop 27:63–101

    Google Scholar 

  • OrtonWilliams KJ, Siddiqi MR (1973) Radopholus similis CIH descriptions of plant-parasitic nematodes. CAB International, Wallingford

    Google Scholar 

  • Pinochet JF, Fernandez C, Jaizme MC, Tenoury P (1997) Micropropagated banana infected with Meloidogyne javanica responds to Glomus intraradices and phosphorus. HortScience 32:101–103

    Google Scholar 

  • Plenchette C, Morel C (1996) External phosphorus requirement of mycorrhizal and non-mycorrhizal barley and soybean plants. Biol Fertil Soils 21:303–308

    Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth response of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209

    CAS  Google Scholar 

  • Poveda K, Gomez MI, Martinez E (2008) Diversification practices: their effect on pest regulation and production. Rev Colomb Entomol 34:131–144

    Google Scholar 

  • Pozo MJ, Jung C, Martinez-Medina A, Lopez-Raez JA, Azcon-Aguilar C, Barea JM (2013) Root allies: Arbuscular mycorrhizal fungi helps plants to cope with biotic stresses. In: Aroca R (ed) Symbiotic endophytes. Springer, Heidelberg, pp 289–307

    Google Scholar 

  • Reddy PR (2014) Plant growth promoting rhizobacteria for horticultural crop protection. Springer, Heidelberg, p 310

    Google Scholar 

  • Reimann S, Hauschild R, Hildebrandt U, Sikora RA (2008) Interrelationships between Rhizobium etli G12 and Glomus intraradices and multitrophic effects in the biological control of the root-knot nematode Meloidogyne incognita on tomato. J Plant Dis Prot 115:108–113

    Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos C (2015) Arbuscular mycorrhizal fungi for the biociontrol of plant-parasitic nematodes: a review of mechanisms involved. Front Microbiol 6:1280. https://doi.org/10.3389/fmicb.2015.01280

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaik SS, Sayyed RZ, Reddy MS (2016) Plant growth-promoting rhizobacteria: an eco-friendly approach for sustainable agroecosystem. In: Hakeem KR, Akhtar MS, Akmar SN (eds) Plant, soil and microbes. Springer, Switzerland, pp 181–201

    Google Scholar 

  • Sharma RK, Tiagi B (1990) Effect of Meloidogyne incognita on nodulation and symbiotic nitrogen fixation in pea. Nematol Mediterr 18:15–17

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1995) Role of plant symbionts in nematode management: a review. Bioresour Technol 54:217–226

    CAS  Google Scholar 

  • Sikora RA, Coyne D, Quénéhervé P (2018) Nematode parasites of bananas and plantains. In: Sikora RA, Coyne D, Hallmann J, Timper P (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 3rd edn. CABI Publishing, Oxfordshire, pp 617–657

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith A (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    CAS  Google Scholar 

  • Speijer PR, De Waele D (1997) Screening of Musa germplasm for resistance and tolerance to nematodes. INIBAP Technical Guidelines 1. IPGRI, Rome, p 47

    Google Scholar 

  • Taha AHY, Raski DJ (1969) Interrelationships between root-nodule bacteria, plant-parasitic nematodes and their leguminous host. J Nematol 1:201–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talwana HAL, Speijer PR, Gold CS, Swennen RL, De Waele D (2003) A comparison of the effects of the nematodes Radopholus similis and Pratylenchus goodeyi on growth, root health and yield of East African highland cooking banana (Musa AAA-group). Int J Pest Manage 49:199–204

    Google Scholar 

  • Tian L, Lin X, Tian J, Ji L, Chen Y, Tran LSP, Tian C (2020) Research advances of beneficial microbiota associated with crop plants. Int J Mol Sci 21:1792. https://doi.org/10.3390/ijms21051792

    Article  CAS  PubMed Central  Google Scholar 

  • Umesh KC, Krishnappa K, Bagyaraj DJ (1988) Interaction of burrowing nematode, Radopholus similis (Cobb 1893) Thorne 1949, and VA Mycorrhiza, Glomus fasciculatum (Thaxt.) Gerd. and Trappe in banana (Musa acuminata Colla.). Indian J Nematol 18:6–11

    Google Scholar 

  • Upadhyay K, Dwivedi BK (1987) Effect of interaction between Meloidogyne javanica and Fusarium oxysporum f. sp. ciceris on chickpea. Indian J Nematol 17:145–146

    Google Scholar 

  • Van der Veken L, Win PP, Elsen A, Swennen R, De Waele D (2008) Susceptibility of banana intercrops for rhizobacteria, arbuscular mycorrhizal fungi and the burrowing nematode Radopholus similis. Appl Soil Ecol 40:283–290

    Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21:573. https://doi.org/10.3390/molecules21050573

    Article  CAS  PubMed Central  Google Scholar 

  • Verma PP, Shelake RM, Das S, Sharma P, Kim JY (2019) Plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF): potential biological control agents of diseases and pests. In: Singh DP, Gupta VK, Prabh R (eds) Microbial interventions in agriculture and development research trends, priorities and prospects, vol 1. Springer, Switzerland, pp 281–311

    Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vos C, Claerhout S, Mkandawire R, Panis B, Elsen A, De Waele D (2012a) Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation pattern of their host. Plant Soil 354:335–345

    CAS  Google Scholar 

  • Vos C, Geerinckx K, Mkandawire R, Panis B, De Waele D, Elsen A (2012b) Arbuscular mycorrhizal fungi affect both penetration and further life stage development of root-knot nematodes in tomato. Mycorrhiza 22:157–163

    PubMed  Google Scholar 

  • Vos C, Tesfahun AN, Panis B, Elsen A, De Waele D (2012c) Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl Soil Ecol 61:1–6

    Google Scholar 

  • Vos C, Van den Broucke D, Lombi FM, Pedroche N, Swennen R, De Waele D, Elsen A (2012d) Mycorrhiza-induced resistance in banana acts on nematode host location and pentration. Soil Biol Biochem 47:60–66

    CAS  Google Scholar 

  • Vos C, Schouteden N, van Tuinen D, Chatagnier O, Elsen A, De Waele D, Panis B, Gianinazzi-Pearson V (2013) Mycorrhiza-induced resistance against the root-knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol Biochem 60:45–54

    CAS  Google Scholar 

  • Vovlas N, Castillo P, Troccoli A (1998) Histology of nodular tissue of three leguminous hosts infected by three root-knot nematode species. Int J Nematol 8:105–110

    Google Scholar 

  • Wang ET (2019) Symbiosis between rhizobia and legumes. In: Wang ET, Tian CF, Chen WF, Young JPW, Chen WX (eds) Ecology and evolution of rhizobia Principles and applications. Springer, Singapore, pp 3–19

    Google Scholar 

  • Windham GL, Williams WP (1987) Host suitability of commercial corn hybrids to Meloidogyne arenaria and Meloidogyne incognita. J Nematol 19:13–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wood CW, Pilkington BL, Vaidya P, Biel C, Stinchcombe JR (2018) Genetic conflict with a parasitic nematode disrupts the legume-rhizobia mutualism. Evol Lett 2–3:233–245

    Google Scholar 

  • Xu XM, Jeffries P, Pautasso M, Jeger MJ (2011) A numerical study of combined use of two biocontrol agents with different biocontrol mechanisms in controlling foliar pathogens. Phytopathology 101:1032–1044

    PubMed  Google Scholar 

  • Zarei M, Saleh-Rastin N, Alikhani HA, Aliasgharzadeh N (2006) Responses of lentil to co-inoculation with phosphate-solubilising rhizobial strains and arbuscular mycorrhizal fungi. J Plant Nutr 29:1509–1522

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Myat Lin for his assistance and Maarten Fauvart (CMPG, University of Leuven) for providing the rhizobial inoculum. The research reported here was supported by the University of Leuven and a Research Foundation-Flanders (FWO-Vlaanderen) post-doctoral fellowship to Annemie Elsen.

Funding

University of Leuven (KU Leuven), Research Foundation-Flanders (FWO-Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma.Teodora N. Cabasan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Authors have seen and approved the manuscript and have taken a valid role through either study design, data generation, or manuscript preparation.

Availability of data and material

All data and materials comply with the standards set by the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van der Veken, L., Cabasan, M.N., Elsen, A. et al. Effect of single or dual inoculation of the arbuscular mycorrhizal fungus Glomus mosseae and root-nodulating rhizobacteria on reproduction of the burrowing nematode Radopholus similis on non-leguminous and leguminous banana intercrops. J Plant Dis Prot 128, 961–971 (2021). https://doi.org/10.1007/s41348-021-00429-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-021-00429-y

Keywords

Navigation