Skip to main content
Log in

Radiological characterization of building materials used in Malaysia and assessment of external and internal doses

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this study, the activity concentrations of 226Ra, 232Th, 222Rn, and 40K, emanation fractions (P), equilibrium equivalent concentration (EEC), and mass exhalation rates (Em) of radon released from building materials used in Malaysia were studied using gamma-ray spectrometer with HPGe detector. Radiological parameters [activity concentration index (ACI), indoor air-absorbed dose rate (Din), annual effective dose (AEDin) from external and internal (ERn), soft tissues (HST) and lung (HL), and effective dose equivalent (Heff)] were estimated to evaluate radiological hazards due to the use of these building materials: sand, cement, gravel, bricks, tiles, fly ash, white cement, and ceramic raw materials. The measured P, EEC, and Em vary from 10 to 30%, 0.9 to 22 Bq m−3, and 33 to 674 mBq h−1 kg−1, respectively, while the calculated ACI and AEDin vary from 0.1 ± 0.01 to 2.1 ± 0.1 and 0.1 ± 0.01 to 2.4 ± 0.6 mSv y−1, respectively. On the other hand, the internal annual effective dose ranges from 0.1 to 1.4 mSv y−1. The estimated radiological risk parameters were below the recommended maximum values, and radiological hazards associated with building materials under investigation are therefore negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. EC, Radiation Protection 112: Radiological Protection Principles concerning the Natural Radioactivity of Building Materials, Finland (1999), https://ec.europa.eu/energy/sites/ener/files/documents/112.pdf. Accessed 20 July 2017

  2. NEA-OECD, Exposure to Radiation from Natural Radioactivity in Building Materials (1979), pp. 1–34. https://www.oecd-nea.org/rp/reports/1979/exposure-to-radiation-1979.pdf

  3. ICRP Publication 65, Protection against radon-222 at home and at work. A report of a task group of the international commission on radiological protection (ICRP Publication 65, PERGAMON, 1993)

  4. ICRP Publication 115, Lung Cancer Risk from Radon and Progeny and Statement on Radon (2010). https://doi.org/10.1016/j.icrp.2011.08.011

  5. S. Abdullahi, A.F. Ismail, S.B. Samat et al., Assessment of natural radioactivity and associated radiological risks from tiles used in Kajang, Malaysia. Am Inst Phys 1940(020001), 1–6 (2018). https://doi.org/10.1063/1.5027916

    Article  Google Scholar 

  6. A.D. Bajoga, N. Alazemi, P.H. Regan et al., Radioactive investigation of NORM samples from Southern Kuwait soil using high-resolution gamma-ray spectroscopy. Radiat. Phys. Chem. 116, 305–311 (2015). https://doi.org/10.1016/j.radphyschem.2015.01.041

    Article  Google Scholar 

  7. A.A. Safarov, A.N. Safarov, A.N. Azimov et al., Rapid assessment methodology in NORM measurements from building materials of Uzbekistan. J. Environ. Radioact. 169, 186–191 (2017). https://doi.org/10.1016/j.jenvrad.2017.01.019

    Article  Google Scholar 

  8. K. Yuvi, Indoor air quality: radon report on a WHO Working. J. Environ. Radioact. 8, 73–91 (1988)

    Article  Google Scholar 

  9. M. Kaur, A. Kumar, R. Mehra et al., Study of radon/thoron exhalation rate, soil-gas radon concentration, and assessment of indoor radon/thoron concentration in Siwalik Himalayas of Jammu & Kashmir. Hum. Ecol. Risk Assess. Int. J. (2018). https://doi.org/10.1080/10807039.2018.1443793

    Article  Google Scholar 

  10. Ö. Karadeniz, G. Günalp, T. Özbay et al., Preliminary dose estimation from indoor radon for the medical staff of Radiation Oncology and Nuclear Medicine. Hum. Ecol. Risk Assess. Int. J. 22(7), 1574–1582 (2016). https://doi.org/10.1080/10807039.2016.1202084

    Article  Google Scholar 

  11. WHO, WHO Handbook on Indoor Radon: A Public Health Perspective, World Health Organization (2009). http://www.nrsb.org/pdf/WHORadonHandbook.pdf. Accessed 29 Sept 2017

  12. US NTP, 14th Report on Carcinogens (Ionizing Radiation) (2016). https://ntp.niehs.nih.gov/ntp/roc/content/profiles/ionizingradiation.pdf. Accessed 24 May 2018

  13. IAEA, Protection of the public against exposure indoors due to radon and other natural sources of radiation, Vienna (2015). https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1651Web-62473672.pdf. Accessed 24 May 2018

  14. IARC, Evaluation of the Carcinogenic Risks to Humans, Lyon (1988). http://monographs.iarc.fr/ENG/Monographs/vol43/mono43.pdf. Accessed 24 May 2018

  15. E. Abuelhia, Evaluation of annual effective dose from indoor radon concentration in Eastern Province, Dammam, Saudi Arabia. Radiat. Phys. Chem. 140, 137–140 (2017). https://doi.org/10.1016/j.radphyschem.2017.03.004

    Article  Google Scholar 

  16. S. Sun, J.H. Schiller, A.F. Gazdar, Lung cancer in never smokers—a different disease. Nat. Rev. Cancer 7, 778–790 (2007). https://doi.org/10.1038/nrc2190

    Article  Google Scholar 

  17. M. Torres-Durán, J.M. Barros-Dios, A. Fernández-Villar et al., Residential radon and lung cancer in never smokers. A systematic review. Cancer Lett. 345, 21–26 (2014). https://doi.org/10.1016/j.canlet.2013.12.010

    Article  Google Scholar 

  18. MNCR, Malaysian National Cancer Registry Report 2007–2011, Putrajaya (2016). http://nci.moh.gov.my

  19. M. Pérez-Ríos, J.M. Barros-Dios, A. Montes-Martínez et al., Attributable mortality to radon exposure in Galicia, Spain. Is it necessary to act in the face of this health problem? BMC Public Health. 10, 256–262 (2010). http://www.biomedcentral.com/1471-2458/10/256. Accessed 26 May 2018

  20. IAEA, Measurement of Radionuclides in Food and the Environment, IAEA, Vienna (1989). http://www-pub.iaea.org/MTCD/Publications/PDF/trs295_web.pdf. Accessed 10 Oct 2017

  21. ADVANCETECH, High-purity Germanium (HPGe) Detectors, Adv. Technol. Gr. https://www.advancetech.in/hpge-detector. Accessed 18 May 2018

  22. M.S. Yasir, A.A. Majid, R. Yahaya, Study of natural radionuclides and its radiation hazard index in Malaysian building materials. J. Radioanal. Nucl. Chem. 273(3), 539–541 (2007). https://doi.org/10.1007/s10967-007-0905-7

    Article  Google Scholar 

  23. CANBERRA. Spectrum Analysis (Mirion Technologies, 2010), http://www.canberra.com/literature/fundamental-principles/pdf/Spectrum-Analysis.pdf. Accessed 7 Apr 2018

  24. K.F. Jamil, S. Ali, H.A. Khan, Determination of equilibrium factor between radon and its progeny using surface barrier detector for various shapes of passive radon dosimeters. Nucl. Instrum. Methods A 388, 267–272 (1997)

    Article  Google Scholar 

  25. IAEA, Measurement and Calculation of Radon Releases from NORM Residues, Vienna (2013)

  26. A. Sakoda, Y. Nishiyama, K. Hanamoto et al., Differences of natural radioactivity and radon emanation fraction among constituent minerals of rock or soil. Appl. Radiat. Isot. 68, 1180–1184 (2010). https://doi.org/10.1016/j.apradiso.2009.12.036

    Article  Google Scholar 

  27. B.K. Sahoo, D. Nathwani, K.P. Eappen et al., Estimation of radon emanation factor in Indian building materials. Radiat. Meas. 42, 1422–1425 (2007). https://doi.org/10.1016/j.radmeas.2007.04.002

    Article  Google Scholar 

  28. UNSCEAR, Sources, Effects and Risks of Ionising Radiation (Exposures from Natural Sources of Radiation), New York, 1988

  29. S.D.E. Martino, C. Sabbarese, G. Monetti, Radon emanation and exhalation rates from soils measured with an electrostatic collector. Appl. Radiat. Isot. 49, 407–413 (1998)

    Article  Google Scholar 

  30. P. Bossew, The radon emanation power of building materials, soils and rocks. Appl. Radiat. Isot. 59, 389–392 (2003). https://doi.org/10.1016/j.apradiso.2003.07.001

    Article  Google Scholar 

  31. M. Markkanen, Radiation Dose Assessments for Materials with Elevated Natural Radioactivity (1995). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/28/021/28021209.pdf

  32. A.F. Saad, R.M. Abdallah, N.A. Hussein, Radon exhalation from Libyan soil samples measured with the SSNTD technique. Appl. Radiat. Isot. 72, 163–168 (2013)

    Article  Google Scholar 

  33. Argonne National Laboratory, Potassium-40 (2005). http://phi.nmsu.edu/~pvs/teaching/phys593/potassium.pdf. Accessed 13 May 2018

  34. UNSCEAR, Sources and Effects of Ionizing Radiation (Natural Sources of Radiation), New York (1977). http://www.unscear.org/docs/publications/1977/UNSCEAR_1977_Annex-B.pdf. Accessed 21 Jan 2018

  35. UNSCEAR, Sources and effects of ionizing radiation (Exposures from Natural Radiation Sources), New York, 2000

  36. M. Jang, K.H. Chung, Y.Y. Ji et al., Indoor external and internal exposure due to building materials containing NORM in Korea. J. Radioanal. Nucl. Chem. 307, 1661–1666 (2016). https://doi.org/10.1007/s10967-015-4375-z

    Article  Google Scholar 

  37. J. Ge, J. Zhang, Natural radioactivity and radiation hazards of building materials in Anhui Province, China. J. Radioanal. Nucl. Chem. 304, 609–613 (2015). https://doi.org/10.1007/s10967-014-3891-6

    Article  Google Scholar 

  38. P. Sola, W. Srinuttrakul, S. Laoharojanaphand et al., Estimation of indoor radon and the annual effective dose from building materials by ionization chamber measurement. J. Radioanal. Nucl. Chem. 302, 1531–1535 (2014). https://doi.org/10.1007/s10967-014-3716-7

    Article  Google Scholar 

  39. P. Sola, W. Srinuttrakul, P. Kewsuwan, Estimation of the indoor radon and the annual effective dose from granite samples. J. Phys. Conf. Ser. 611, 012013 (2015). https://doi.org/10.1088/1742-6596/611/1/012013

    Article  Google Scholar 

  40. H. Tsuruoka, K. Inoue, S. Hosokawa et al., Measurement of radon and thoron concentrations in the Tokyo Metropolitan University Arakawa Campus building. J. Jpn. Acad. Heal. Sci. 19, 40–48 (2016)

    Google Scholar 

  41. K. Ivanova, Z. Stojanovska, M. Tsenova et al., Building-specific factors affecting indoor radon concentration variations in different regions in Bulgaria. Air Qual. Atmos. Heal. 10(9), 1151–1161 (2017). https://doi.org/10.1007/s11869-017-0501-0

    Article  Google Scholar 

  42. I. Sarrou, I. Pashalidis, Radon exhalation from granite countertops and expected indoor radon levels. J. Radioanal. Nucl. Chem. 311, 913–916 (2017). https://doi.org/10.1007/s10967-016-5108-7

    Article  Google Scholar 

  43. L. Pilkyte, D. Butkus, Influence of gamma radiation of indoor radon decay products on absorbed dose rate. J. Environ. Eng. Landsc. Manag. 13, 65–72 (2005)

    Article  Google Scholar 

  44. C. Cosma, K. Szacsvai, A. Dinu et al., Preliminary integrated indoor radon measurements in Transylvania (Romania). Isot. Environ. Health Stud. 45, 259–268 (2009)

    Article  Google Scholar 

  45. J. Al-Hubail, D. Al-Azmi, Radiological assessment of indoor radon concentrations and gamma dose rates in secondary school buildings in Kuwait. Constr. Build. Mater. 183, 1–6 (2018). https://doi.org/10.1016/j.conbuildmat.2018.06.152

    Article  Google Scholar 

  46. S.M. Farid, Indoor radon in dwellings of Jeddah city, Saudi Arabia and its correlations with the radium and radon exhalation rates from soil. Indoor Built Environ. 25, 269–278 (2016). https://doi.org/10.1177/1420326X14536749

    Article  Google Scholar 

  47. Z. Yarar, C. Taşköprü, M. Içhedef et al., Indoor radon levels of spas and dwellings located around BayIndIr geothermal region. J. Radioanal. Nucl. Chem. 299, 343–349 (2014). https://doi.org/10.1007/s10967-013-2726-1

    Article  Google Scholar 

  48. M. Al Mugahed, F. Bentayeb, Radon exhalation from building materials used in Yemen. Radiat. Prot. Dosim. (2018). https://doi.org/10.1093/rpd/ncy081

    Article  Google Scholar 

  49. L. Sahin, H. Cetinkaya, S. Gelgun, Assessment of annual effective dose due to the indoor radon exposure in a second-degree earthquake zone of Kutahya (Turkey). Rom. J. Phys. 61, 687–696 (2016)

    Google Scholar 

  50. M. Abd-Elzaher, Measurement of indoor radon concentration and assessment of doses in different districts of Alexandria city, Egypt. Environ. Geochem. Health 35, 299–309 (2013). https://doi.org/10.1007/s10653-012-9494-7

    Article  Google Scholar 

  51. C.Y. Ansre, M.K. Miyittah, A.B. Andam et al., Risk assessment of radon in the South Dayi District of the Volta Region, Ghana. J. Radiat. Res. Appl. Sci. 11, 10–17 (2018). https://doi.org/10.1016/J.JRRAS.2017.10.002

    Article  Google Scholar 

  52. O.S. Ajayi, O.E. Olubi, Investigation of indoor radon levels in some dwellings of southwestern Nigeria. Environ. Forensics 17, 275–281 (2016). https://doi.org/10.1080/15275922.2016.1230909

    Article  Google Scholar 

  53. A.E.A. Elzain, Radon exhalation rates from some building materials used in Sudan. Indoor Built Environ. 24, 852–860 (2015). https://doi.org/10.1177/1420326X14537285

    Article  Google Scholar 

  54. M. Kumar, A. Agrawal, R. Kumar, Radiation dose due to radon, thoron and their decay products in indoor environment of Khurja City, U.P., India. J. Radioanal. Nucl. Chem. 300, 39–44 (2014). https://doi.org/10.1007/s10967-014-2946-z

    Article  Google Scholar 

  55. T.H. Park, D.R. Kang, S.H. Park et al., Indoor radon concentration in Korea residential environments. Environ. Sci. Pollut. Res. 1, 5 (2018). https://doi.org/10.1007/s11356-018-1531-3

    Article  Google Scholar 

  56. W. Schroeyers, Z. Sas, G. Bator et al., Use of NORM-containing products in construction: the NORM4Building database, a tool for radiological assessment when using by-products in building materials. Constr. Build. Mater. 159, 755–767 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.037

    Article  Google Scholar 

  57. A.L. Da Costa Leal, D. Do Carmo Lauria, Assessment of doses to members of the public arising from the use of ornamental rocks in residences. J. Radiol. Prot. 36, 680–694 (2016)

    Article  Google Scholar 

  58. R. Ravisankar, K. Vanasundari, A. Chandrasekaran et al., Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry. Appl. Radiat. Isot. 70, 699–704 (2012)

    Article  Google Scholar 

  59. R. Ravisankar, K. Vanasundari, M. Suganya et al., Multivariate statistical analysis of radiological data of building materials used in Tiruvannamalai, Tamilnadu, India. Appl. Radiat. Isot. 85, 114–127 (2014)

    Article  Google Scholar 

  60. ICRP Publication 32, Limits for Inhalation of Radon Daughters by Workers, New York (1981). http://journals.sagepub.com/doi/pdf/10.1177/ANIB_6_1. Accessed 14 May 2018

  61. UNSCEAR, Ionizing Radiation:Sources and Biological Effects (Exposures to Radon and Thoron and Their Decay Products), New York, 1982. http://www.unscear.org/docs/publications/1982/UNSCEAR_1982_Annex-D.pdf. Accessed 12 Oct 2017

  62. M.Y.M. Ali, M.M. Hanafiah, M.F. Khan, Potential factors that impact the radon level and the prediction of ambient dose equivalent rates of indoor microenvironments. Sci. Total Environ. 626, 1–10 (2018). https://doi.org/10.1016/j.scitotenv.2018.01.080

    Article  Google Scholar 

  63. UNSCEAR, Sources and Effects of Ionizing Radiation (Exposure from Natural Sources of Radiation), New York, 1993. http://www.unscear.org/docs/publications/1993/UNSCEAR_1993_Annex-A.pdf. Accessed 29 Sept 2017

  64. R.I. Obed, H.T. Lateef, A.K. Ademola, Indoor radon survey in a university campus of Nigeria. J. Med. Phys. 35, 242–246 (2010). https://doi.org/10.4103/0971-6203.71760

    Article  Google Scholar 

  65. L. Zhang, C. Liu, Q. Guo, Measurements of thoron and radon progeny concentrations in Beijing, China. J. Radiol. Prot. 28, 603–607 (2008). https://doi.org/10.1088/0952-4746/28/4/N02

    Article  Google Scholar 

  66. S. Oikawa, N. Kanno, T. Sanada et al., A survey of indoor workplace radon concentration in Japan. J. Environ. Radioact. 87, 239–245 (2006). https://doi.org/10.1016/j.jenvrad.2005.12.001

    Article  Google Scholar 

  67. P. Ujić, I. Čeliković, A. Kandić et al., Internal exposure from building materials exhaling 222Rn and 220Rn as compared to external exposure due to their natural radioactivity content. Appl. Radiat. Isot. 68, 201–206 (2010). https://doi.org/10.1016/j.apradiso.2009.10.003

    Article  Google Scholar 

  68. M. Kıldır, İ. Gökmen, A. Gökmen, Indoor radon concentrations and radon doses at three districts of Ankara, Turkey and raising public awareness on the issue. J. Radioanal. Nucl. Chem. 307, 777–786 (2016). https://doi.org/10.1007/s10967-015-4489-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge all laboratory technicians of the Nuclear Science Program, UKM, for their technical support throughout the works. Shittu Abdullahi also wishes to appreciate and acknowledge Gombe State University, Gombe, Nigeria, for providing the Ph.D fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aznan Fazli Ismail.

Additional information

A part of this research was supported by Universiti Kebangsaan Malaysia and Lynas Advanced Material Plant under Grant Numbers GGPM-2017-084 and ST-2017-012, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullahi, S., Ismail, A.F. & Samat, S. Radiological characterization of building materials used in Malaysia and assessment of external and internal doses. NUCL SCI TECH 30, 46 (2019). https://doi.org/10.1007/s41365-019-0569-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0569-3

Keywords

Navigation