Skip to main content
Log in

Advanced topics on RF amplitude and phase detection for low-level RF systems

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Low-level radio frequency (LLRF) systems stabilize the electromagnetic field in the RF cavities used for beam acceleration in particle accelerators. Reliable, accurate, and precise detection of RF amplitude and phase is particularly important to achieve high field stability for pulsed accelerators of free-electron lasers (FEL). The digital LLRF systems employ analog-to-digital converters to sample the frequency down-converted RF signal and use digital demodulation algorithms to calculate the RF amplitude and phase. Different sampling strategies and demodulation algorithms have been developed for these purposes and are introduced in this paper. This article focuses on advanced topics concerning RF detection, including accurate RF transient measurement, wideband RF detection, and RF detection with an asynchronous trigger, local oscillator, or clock. The analysis is based on the SwissFEL measurements, but the algorithms introduced are general for RF signal detection in particle accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Hauff, SwissFEL C-Band LLRF Prototype System, in Proceedings of LINAC2014, Geneva, Switzerland (2014), pp. 683–685

  2. Z. Geng, Architecture Design for the SwissFEL LLRF System, in Proceedings of LINAC2014, Geneva, Switzerland (2014), pp. 1114–1116

  3. J. Branlard, G. Ayvazyan, V. Ayvazyan et al., The European XFEL LLRF System, in Proceedings of IPAC2012, New Orleans, Louisiana, USA (2012), pp. 55–57

  4. C. Serrano, K. Campbell, L. Doolittle et al., Design and Implementation of the LLRF System for LCLS-II, in Proceedings of ICALEPCS2017, Barcelona, Spain (2017), pp. 1969–1974

  5. T. Matsumoto, S. Michizono, Z. Geng et al., Low-Level RF System for STF, in Proceedings of LINAC2006, Knoxville, Tennessee, USA (2006), pp. 586–588

  6. Z. Mu, J. Li, X.A. Xu et al., Overview of the CSNS Linac LLRF and Operational Experiences during Beam Commissioning, in Proceedings of HB2016, Malmoe, Sweden (2016), pp. 409–412

  7. S. Michizono, S. Anami, Z. Fang et al., Performance of a Digital LLRF Field Control System for the J-PARC Linac, in Proceedings of LINAC2006, Knoxville, Tennessee, USA (2006), pp. 574–576

  8. Z. Zhang, Y. Zhao, K. Xu et al., Digital LLRF controller for SSRF booster RF system upgrade. Nucl. Sci. Tech. 26, 030106 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.030106

    Article  Google Scholar 

  9. B. Keil, R. Baldinger, R. Ditter et al., Design of the SwissFEL BPM System, in Proceedings of IBIC2013, Oxford, UK (2013), pp. 427–430

  10. A. Young, R. Claus, J.M. D’Ewart et al., Design of LCLS-II ATCA BPM System, in Proceedings of IPAC2017, Copenhagen, Denmark (2017), pp. 477–479

  11. H. Maesaka, H. Ego, T. Ohshima et al., Performance of the RF Cavity BPM at XFEL/Spring-8 SACLA, in Proceedings of FEL2011, Shanghai, China (2011), pp. 539–542

  12. S. Hunziker, V. Arsov, F. Buechi et al., Reference Distribution and Synchronization System for SwissFEL: Concept and First Results, in Proceedings of IBIC2014, Monterey, CA, USA (2014), pp. 29–33

  13. E. Janas, K. Czuba, M. Felber et al., MTCA.4 Phase Detector for Femtosecond-Precision Laser Synchronization, in Proceedings of FEL2015, Daejeon, Korea (2015), pp. 474–477

  14. J.M. Byrd, L. Doolittle, G. Huang et al., Femtosecond Synchronization of Laser Systems for the LCLS, SLAC-PUB-15226 (2010)

  15. R.C. Dorf, R.H. Bishop, Modern Control Systems (Pearson Education Inc., London, 2016)

    MATH  Google Scholar 

  16. S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design (Wiley, New York, 2007)

    MATH  Google Scholar 

  17. R. Liu, Z. Wang, W. Pan et al., FPGA-based amplitude and phase detection in DLLRF. Chin. Phys. C 33(7), 594–598 (2009). https://doi.org/10.1088/1674-1137/33/7/017

    Article  Google Scholar 

  18. Y. Xu, G. Huang, L. Doolittle et al., High-precision phase detection in femtosecond timing and synchronization system for TXGLS. Meas. Sci. Technol. 29, 065011 (2018). https://doi.org/10.1088/1361-6501/aab6f7

    Article  Google Scholar 

  19. D. Zhao, G. Wang, W. Pan et al., High accuracy amplitude and phase measurements based on a double heterodyne architecture. Chin. Phys. C 39(1), 017002-1 (2015). https://doi.org/10.1088/1674-1137/39/1/017002

    Article  Google Scholar 

  20. C. Ziomek, P. Corredoura, Digital I/Q Demodulator, SLAC-PUB-95-6857 (1996)

  21. L. Doolittle, H. Ma, M. Stuard, Digital Low-Level RF Control using Non-IQ Sampling, in Proceedings of LINAC2006, Knoxville, Tennessee, USA (2006), pp. 568–570

  22. T. Schilcher, Digital Signal Processing in RF Applications, CERN Accelerator School (2007)

  23. Z. Geng, S.N. Simrock, Evaluation of Fast ADCs for Direct Sampling RF Field Detection for the European XFEL and ILC, in Proceedings of LINAC08, Victoria, BC, Canada (2008), pp. 1030–1032

  24. F. Ludwig, Tutorial on RF Receiver Fundamentals, LLRF2011 Workshop, Hamburg, Germany (2011)

  25. M. Hoffmann, Ph.D. Thesis, Hamburg University of Technology (2008)

  26. U. Mavric, B. Chase, J. Branlard et al., A 96 Channel Receiver for the ILCTA LLRF System at FermiLab, FERMILAB-CONF-07-299-AD (2007)

  27. U. Mavric, M. Vidmar, B. Chase, Design and Evaluation of a Low-Level RF Control System Analog/Digital Receiver for the ILC Main Linacs, FERMILAB-PUB-08-157-AD (2008)

  28. L. Doolittle, Tutorial on Analog Signal Processing and Design for Low Noise LLRF Front Ends, LLRF2017 Workshop, Barcelona, Spain (2017)

  29. P. Pawlik, M. Grecki, S. Simrock, Single Bunch Transient Detection for the Beam Phase Measurement in Superconducting Accelerators, in Proceedings of DIPAC2005, Lyon, France (2005), pp. 108–110

  30. P. Pawlik, Ph.D. Thesis, Technical University of Lodz (2007)

  31. G. Penco, M. Svandrlik, Experimental studies on transient beam loading effects in the presence of a superconducting third harmonic cavity. Phys. Rev. Spec. Top. Accel. Beams 9(4), 044401 (2006). https://doi.org/10.1103/physrevstab.9.044401

    Article  Google Scholar 

  32. R. Zeng, O. Troeng, Transient Beam Loading based Calibration for Cavity Phase and Amplitude Setting, in Proceedings of HB2016, Malmoe, Sweden (2016), pp. 250–253

  33. K.H. Park, Y.G. Jung, D.E. Kim et al., The Development of LLRF System at PAL, in Proceedings of IPAC2013, Shanghai, China (2013), pp. 3004–3006

  34. B.T. Du, H. X. Lin, W. Liu et al., DSP Frame and Algorithm of LLRF of IR-FEL, in Proceedings of IPAC2017, Copenhagen, Denmark (2017), pp. 4017–4019

  35. X. Wang, Master Thesis, University of Saskatchewan (2006)

  36. Z. Geng, B. Hong, Design and calibration of an RF actuator for low-level RF Systems. IEEE Trans. Nucl. Sci. 63, 281–287 (2016). https://doi.org/10.1109/TNS.2015.2507204

    Article  Google Scholar 

  37. A. Engelbert, C. Hallqvist, Master Thesis, Chalmers University of Technology (2008)

  38. S.M. Alessio, Digital Signal Processing and Spectral Analysis for Scientists: Concepts and Applications (Springer, New York, 2016)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe-Qiao Geng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, ZQ., Kalt, R. Advanced topics on RF amplitude and phase detection for low-level RF systems. NUCL SCI TECH 30, 146 (2019). https://doi.org/10.1007/s41365-019-0670-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0670-7

Keywords

Navigation