Skip to main content

Advertisement

Log in

A simulation study of a windowless gas-stripping room in an E//B neutral particle analyzer

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The neutral particle analyzer (NPA) is one of the crucial diagnostic devices in a Tokamak facility. The stripping unit is one of the main parts of the NPA. A windowless gas-stripping room with two differential pipes has been constructed in a parallel electric and magnetic fields (E//B) NPA. The pressure distributions in the stripping chamber are simulated by ANSYS Fluent together with MolFlow+. Based on the pressure distributions obtained from the simulation, the stripping efficiency of the E//B NPA is studied using GEANT4. Hadron reaction physics is modified to track the charge state of each particle in a cross-section-based method in GEANT4. The transmission rates (R) and stripping efficiencies \(f_{+1}\) are examined for particle energies ranging from 20 to 200 keV with the input pressure (\(P_0\)), ranging from 20 to 400 Pa. According to the combined global efficiency, \(R \times f_{+1}\), \(P_0\) = 240 Pa is obtained as the optimum pressure for the maximum global efficiency in the incident energy range investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. ITER. https://www.iter.org/

  2. S.S. Medley, A.L. Roquemore, Construction and operation of parallel electric and magnetic field spectrometers for mass/energy resolved multi-ion charge exchange diagnostics on the Tokamak Fusion Test Reactor. Rev. Sci. Instrum. 69, 2651 (1998). https://doi.org/10.1063/1.1148994

    Article  ADS  Google Scholar 

  3. F.V. Chernyshev, V.I. Afanasyev, A.V. Dech et al., A compact neutral-particle analyzer for plasma diagnostics. Instrum. Exp. Tech. 47, 214 (2004). https://doi.org/10.1023/B:INET.0000025204.01783.1a

    Article  Google Scholar 

  4. S.Y. Petrov, V.I. Afanasyev, A.D. Melnik et al., Design features of the neutral particle diagnostic system for the ITER tokamak. Phys. At. Nucl. 80, 1268 (2017). https://doi.org/10.1134/S1063778817070109

    Article  Google Scholar 

  5. M. Isobe, M. Sasao, Charge exchange neutral particle analysis with natural diamond detectors on LHD heliotron. Rev. Sci. Instrum. 72, 611 (2001). https://doi.org/10.1063/1.1318250

    Article  ADS  Google Scholar 

  6. V.A. Krasilnikov, A.V. Krasil’nikov, D.A. Skopintsev et al., A diamond-detector-based system for spectrometry of fast atoms on the JET tokamak. Instrum. Exp. Tech. 51, 258–262 (2008). https://doi.org/10.1134/S0020441208020188

    Article  Google Scholar 

  7. G. Bracco, G. Betello, S. Mantovani et al., Design and calibration of the JET time of flight neutral particle analyzer with high noise rejection capability. Rev. Sci. Instrum. 63, 5685 (1992). https://doi.org/10.1063/1.1143350

    Article  ADS  Google Scholar 

  8. D. Liu, W.W. Heidbrink, K. Tritz et al., Compact and multi-view solid state neutral particle analyzer arrays on National Spherical Torus Experiment-Upgrade. Rev. Sci. Instrum. 87, 11D803 (2016). https://doi.org/10.1063/1.4959798

    Article  Google Scholar 

  9. V.I. Afanasyev, A. Gondhalekar, PYu. Babenko et al., Neutral particle analyzer/isotope separator for measurement of hydrogen isotope composition of JET plasmas. Rev. Sci. Instrum. 74, 2338 (2003). https://doi.org/10.1063/1.1542664

    Article  ADS  Google Scholar 

  10. V.I. Afanasyev, F.V. Chernyshev, A.I. Kislyakov et al., Neutral particle analysis on ITER: present status and prospects. Nucl. Instrum. Methods A 621, 456 (2010). https://doi.org/10.1016/j.nima.2010.06.201

    Article  ADS  Google Scholar 

  11. J.Z. Zhang, Y.B. Zhu, J.L. Zhao et al., First results from solid state neutral particle analyzer on experimental advanced superconducting tokamak. Rev. Sci. Instrum. 87, 11D834 (2016). https://doi.org/10.1063/1.4962063

    Article  Google Scholar 

  12. W. Li, Z.W. Xia, J. Lu et al., A new neutral particle analyzer diagnostic and its first commissioning on HL-2A. Rev. Sci. Instrum. 83, 10D702 (2012). https://doi.org/10.1063/1.4729494

    Article  Google Scholar 

  13. R. Bartiromo, G. Bracco, M. Brusati et al., Design and calibration of the JET neutral particle analyzer. Rev. Sci. Instrum. 58, 788 (1987). https://doi.org/10.1063/1.1139634

    Article  ADS  Google Scholar 

  14. W. Chen, Z.X. Wang, Energetic particles in magnetic confinement fusion plasmas. Chin. Phys. Lett. 37, 125001 (2020). https://doi.org/10.1088/0256-307X/37/12/125001

    Article  ADS  Google Scholar 

  15. L. Chen, F. Zonca, Physics of Alfvén waves and energetic particles in burning plasmas. Rev. Mod. Phys. 88, 015008 (2016). https://doi.org/10.1103/RevModPhys.88.015008

    Article  ADS  Google Scholar 

  16. P.W. Shi, W. Chen, X.R. Duan, Energetic particle physics on the HL-2A tokamak: a review. Chin. Phys. Lett. 38, 035202 (2021). https://doi.org/10.1088/0256-307X/38/3/035202

    Article  ADS  Google Scholar 

  17. Y. Chen, W.L. Zhang, J. Bao et al., Verification of energetic-particle-induced geodesic acoustic mode in gyrokinetic particle simulations. Chin. Phys. Lett. 37, 095201 (2020). https://doi.org/10.1088/0256-307X/37/9/095201

    Article  ADS  Google Scholar 

  18. B. Madsen, J. Huang, M. Salewski et al., Fast-ion velocity-space tomography using slowing-down regularization in EAST plasmas with co- and counter-current neutral beam injection. Plasma Phys. Control. Fusion 62, 115019 (2020). https://doi.org/10.1088/1361-6587/abb79b

    Article  ADS  Google Scholar 

  19. N.N. Gorelenkov, D. Pinches, K. Toi et al., Energetic particle physics in fusion research in preparation for burning plasma experiments. Nucl. Fusion 54, 125001 (2014). https://doi.org/10.1088/0029-5515/54/12/125001

    Article  ADS  Google Scholar 

  20. X.T. Ding, W. Chen, Review of the experiments for energetic particle physics on HL-2A. Plasma Sci. Technol. 20, 094008 (2018). https://doi.org/10.1088/2058-6272/aad27a

    Article  ADS  Google Scholar 

  21. S.Z. Wei, Y.H. Wang, P.W. Shi et al., Nonlinear coupling of reversed shear Alfvén eigenmode and toroidal Alfvén eigenmode during current ramp. Chin. Phys. Lett. 38, 035201 (2021). https://doi.org/10.1088/0256-307X/38/3/035201

    Article  ADS  Google Scholar 

  22. J.Q. Xu, X.D. Peng, H.P. Qu et al., Stabilization of short wavelength resistive ballooning modes by ion-to-electron temperature and gradient ratios in tokamak edge plasmas. Chin. Phys. Lett. 37, 062801 (2020). https://doi.org/10.1088/0256-307X/37/6/062801

    Article  ADS  Google Scholar 

  23. B.N. Wan and EAST team, A new path to improve high \(\beta _\text{ p }\) plasma performance on EAST for steady-state tokamak fusion reactor. Chin. Phys. Lett. 37, 045202 (2020). https://doi.org/10.1088/0256-307x/37/4/045202

    Article  ADS  Google Scholar 

  24. B.W. Zheng, C.Y. Jiang, Z.H. Liu et al., Correction and verification of HL-2A Tokamak Bonner sphere spectrometer in monoenergetic neutron fields from 100 keV to 5 MeV. Nucl. Sci. Tech. 30, 159 (2019). https://doi.org/10.1007/s41365-019-0689-9

    Article  Google Scholar 

  25. S.B. Shu, C.M. Yu, C. Liu et al., Improved plasma position detection method in EAST Tokamak using fast CCD camera. Nucl. Sci. Tech. 30, 24 (2019). https://doi.org/10.1007/s41365-019-0549-7

    Article  Google Scholar 

  26. Z.X. Cui, X. Li, S.B. Shu et al., Calculation of the heat flux in the lower divertor target plate using an infrared camera diagnostic system on the experimental advanced superconducting tokamak. Nucl. Sci. Tech. 30, 94 (2019). https://doi.org/10.1007/s41365-019-0625-z

    Article  Google Scholar 

  27. L. Zang, Y.F. Qu, W.P. Lin et al., Design of the electromagnetic field for an E//B neutral particle analyzer. Plasma Fusion Res. 15, 2402036 (2020). https://doi.org/10.1585/pfr.15.2402036

    Article  ADS  Google Scholar 

  28. ANSYS. https://www.ansys.com/

  29. B. Mohamedi, S. Hanini, A. Ararem et al., Simulation of nucleate boiling under ANSYS-FLUENT code by using RPI model coupling with artificial neural networks. Nucl. Sci. Tech. 26, 040601 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.04060110.13538/j.1001-8042/nst.26.040601

    Article  Google Scholar 

  30. M. Ady, R. Kersevan, Introduction to the latest version of the test-particle Monte Carlo code molflow+, in Proceeding of the 10th Int. Particle Accelerator Conf., Dresden, Germany, June 2014, pp. 2348-2350. https://doi.org/10.18429/JACoW-IPAC2019-TUPMP037

  31. S. Agostinelli, J. Allison, K. Amako et al., Geant4-a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  32. J. Allison, K. Amako, J. Apostolakis et al., Recent developments in Geant4. Nucl. Instrum. Methods A 835, 186 (2016). https://doi.org/10.1016/j.nima.2016.06.125

    Article  ADS  Google Scholar 

  33. D. Da, The Vacuum Design Manuals, 3rd edn. (National Defence Industry Press, Beijing, 2004), p. 7

    Google Scholar 

  34. S. Zhang, W. Lin, M.R.D. Rodrigues et al., Average neutron detection efficiency for DEMON detectors. Nucl. Instrum. Methods A 709, 68 (2013). https://doi.org/10.1016/j.nima.2013.01.039

    Article  ADS  Google Scholar 

  35. F. Fen, W.P. Lin, X.Q. Liu et al., A module test of CCDA: an array to select the centrality of collisions in heavy ion collisions. Chin. Phys. Lett. 31, 082502 (2014). https://doi.org/10.1088/0256-307X/31/8/082502

    Article  ADS  Google Scholar 

  36. P. Dondero, A. Mantero, V. Ivanchencko et al., Electron backscattering simulation in Geant4. Nucl. Instrum. Methods B 425, 18 (2018). https://doi.org/10.1016/j.nimb.2018.03.037

    Article  ADS  Google Scholar 

  37. B. Zheng, W. Zhang, T. Wu et al., Development of the real-time double-ring fusion neutron time-of-flight spectrometer system at HL-2M. Nucl. Sci. Tech. 30, 175 (2019). https://doi.org/10.1007/s41365-019-0702-3

    Article  Google Scholar 

  38. H. Dong, D. Fang, C. Li, Study on the performance of a large-size CsI detector for high energy \(\gamma \)-rays. Nucl. Sci. Tech. 29, 7 (2018). https://doi.org/10.1007/s41365-017-0345-1

    Article  Google Scholar 

  39. S. Incerti, V. Ivanchenko, M. Novak et al., Recent progress of Geant4 electromagnetic physics for calorimeter simulation. J. Inst. 13, C02054 (2018). https://doi.org/10.1088/1748-0221/13/02/C02054

    Article  Google Scholar 

  40. J.P. Wellisch, Hadronic shower models in Geant4—the frameworks. Comput. Phys. Commun. 140, 65 (2001). https://doi.org/10.1016/S0010-4655(01)00256-9

    Article  ADS  MATH  Google Scholar 

  41. R.A. Weller, M.H. Mendenhall, D.M. Fleetwood, A screened Coulomb scattering module for displacement damage computations in Geant4. IEEE Trans. Nucl. Sci. 51, 3669 (2004). https://doi.org/10.1109/TNS.2004.839643

    Article  ADS  Google Scholar 

  42. M.H. Mendenhall, R.A. Weller, An algorithm for computing screened Coulomb scattering in Geant4. Nucl. Instrum. Methods B 227, 420 (2005). https://doi.org/10.1016/j.nimb.2004.08.014

    Article  ADS  Google Scholar 

  43. R.O. Simmons, R.W. Balluffi, X-ray study of deuteron-irradiated copper near \(10^{\circ }\text{ K }\). Phys. Rev. 109, 355 (1958). https://doi.org/10.1103/PhysRev.109.355

    Article  ADS  Google Scholar 

  44. R. Curran, T.M. Donahue, Electron capture and loss by hydrogen atoms in molecular hydrogen. Phys. Rev. 118, 1233 (1960). https://doi.org/10.1103/PhysRev.118.1233

    Article  ADS  Google Scholar 

  45. M.W. Gealy, B. Van Zyl, Cross sections for electron capture and loss. I. \({\rm H}^{+}\) and \({\rm H}^{-}\) impact on H and \({\rm H}_{2}\). Phys. Rev. A 36, 3091 (1987). https://doi.org/10.1103/physreva.36.3091

    Article  ADS  Google Scholar 

  46. M.W. Gealy, B. Van Zyl, Cross sections for electron capture and loss. II. H impact on H and \({\rm H}_{2}\). Phys. Rev. A 36, 3100 (1987). https://doi.org/10.1103/physreva.36.3100

    Article  ADS  Google Scholar 

  47. G.W. McClure, Ionization and dissociation of fast \(\text{ H}_2\) molecules incident on \(\text{ H}_2\) gas. Phys. Rev. 134, A1126 (1964). https://doi.org/10.1103/PhysRev.134.A1226

    Article  Google Scholar 

  48. J.M. Sanders, S.L. Varghese, C.H. Fleming et al., Electron capture by protons and electron loss from hydrogen atoms in collisions with hydrocarbon and hydrogen molecules in the 60–120 keV energy range. J. Phys. B At. Mol. Opt. Phys. 36, 3835 (2003). https://doi.org/10.1088/0953-4075/36/18/311

    Article  ADS  Google Scholar 

  49. G.M. Sigaud, Free-collision model calculations for projectile electron loss by the \(\text{ H}_2\) molecule. J. Phys. B At. Mol. Opt. Phys. 44, 225201 (2011). https://doi.org/10.1088/0953-4075/44/22/225201

    Article  ADS  Google Scholar 

  50. K.A. Smith, M.D. Duncan, M.W. Geis et al., Measurement of electron loss cross sections for 0.25- to 5-keV hydrogen atoms in atmospheric gases. J. Geophys. Res. 81, 2231 (1976). https://doi.org/10.1029/JA081i013p02231

    Article  ADS  Google Scholar 

  51. P.M. Stier, C.F. Barnett, Charge exchange cross sections of hydrogen ions in gases. Phys. Rev. 103, 896 (1956). https://doi.org/10.1103/PhysRev.103.896

    Article  ADS  Google Scholar 

  52. B. Van Zyl, T.Q. Le, R.C. Amme, Charged particle production in low energy H+\(\text{ H}_2\) and H+He collisions. J. Chem. Phys. 74, 314 (1981). https://doi.org/10.1063/1.440836

    Article  ADS  Google Scholar 

  53. H.T. Hunter, M.I. Kirkpatrick, I. Alvarez et al., Atomic data for fusion, ORNL-6086/V1. United States (1990). https://doi.org/10.2172/6570226

  54. D.R. Schultz, H. Gharibnejad, T.E. Cravens et al., Data for secondary-electron production from ion precipitation at Jupiter III: target and projectile processes in \(\text{ H}^+\), H, and \(\text{ H}^-\) + \(\text{ H}_2\) collisions. At. Data Nucl. Data 132, 101307 (2020). https://doi.org/10.1016/j.adt.2019.101307

    Article  Google Scholar 

  55. F.W. Meyer, L.W. Anderson, Charge exchange cross sections for hydrogen and deuterium ions incident on a Cs vapor target. Phys. Lett. A 54, 333 (1975). https://doi.org/10.1016/0375-9601(75)90282-0

    Article  ADS  Google Scholar 

  56. A.S. Schlachter, P.J. Bjorkholm, D.H. Loyd et al., Charge-exchange collisions between hydrogen ions and cesium vapor in the energy range 0.5–20 keV. Phys. Rev. 177, 184 (1969). https://doi.org/10.1103/PhysRev.177.184

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Yuan Luo and Wei-Ping Lin. The first draft of the manuscript was written by Yuan Luo and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei-Ping Lin.

Additional information

This work was supported by the National MCF Energy R&D Program of China (No. MOST 2018YFE0310200), the National Natural Science Foundation of China (Nos. 11805138 and 11705242), and the Fundamental Research Funds For the Central Universities (Nos. YJ201820 and YJ201954)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Lin, WP., Ren, PP. et al. A simulation study of a windowless gas-stripping room in an E//B neutral particle analyzer. NUCL SCI TECH 32, 69 (2021). https://doi.org/10.1007/s41365-021-00909-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00909-8

Keywords

Navigation