Skip to main content
Log in

A Critical Review on Flow and Heat Transfer Characteristics of Synthetic Jet

  • Review Article
  • Published:
Transactions of the Indian National Academy of Engineering Aims and scope Submit manuscript

Abstract

Extensive research has been carried out to meet the cooling demand of high heat flux electrical and electronic devices. Among the emerging cooling technologies, synthetic jet (SJ) cooling has proved to be an efficient and compact candidate. This paper presents a comprehensive review on the effect of numerous geometrical and actuation parameters on the flow dynamics and heat transfer behaviour of synthetic jet cooling. The parameters studied include orifice to surface spacing, stroke length, frequency of excitation, orifice shape, orifice plate thickness, cavity shape, jet vectoring, and the acoustic aspect. The present studies also extended the discussion on a novel dual synthetic jet (DSJ) and SJ embedded heat sink. Furthermore, the flow and heat transfer characteristics of the SJ are compared with the baseline case of the continuous jet. Among the studied parameters, it is found that orifice geometry, excitation frequency, amplitude, etc. play a vital role in SJ's thermal performance. Also, careful selection of the multi-orifice jet parameters can be employed for mitigating the recirculation effects of a single orifice SJ. New research areas have been identified to enable the effective implementation of SJ for high heat flux electronics cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Abbreviations

a :

Radius of the diaphragm (mm)

\({A}_{\mathrm{o}}\) :

Orifice area, mm2

b :

Slot width (mm)

d :

Orifice hydraulic diameter (mm)

E :

Elastic modulus of the diaphragm

f :

Actuation frequency (Hz)

\({f}_{\mathrm{d}}\) :

Diaphragm resonance frequency (Hz)

\({f}_{\mathrm{h}}\) :

Helmholtz resonance frequency (Hz)

\({h}_{\mathrm{avg}}\) :

Average heat transfer coefficient (W/m2 K)

\({h}_{\mathrm{max}}\) :

Maximum heat transfer coefficient (W/m2 K)

H :

Cavity depth (mm)

k :

Thermal conductivity (W/m K)

\({k}_{\mathrm{f}}\) :

Thermal conductivity of fluid (W/m K)

K :

Jet formation constant

\({L}_{0}\) :

Stroke length (mm)

L :

Dimensionless stroke length (L0/d)

\({L}_{\mathrm{op}}\) :

Length of orifice plate (mm)

\({\mathrm{Nu}}_{0}\) :

Stagnation Nusselt number (h d/kf)

\({\mathrm{Nu}}_{\mathrm{avg}}\) :

Average Nusselt number (h d/kf)

Pr:

Prandtl number

\({P}_{\mathrm{rms}}\) :

Root-mean-square electrical power (W)

r :

Radial distance away from stagnation point (mm)

R :

Half-length of test surface (mm)

Re:

Reynolds number

R c :

Curvature radius of orifice (mm)

s :

Spacing between two adjacent jets (mm)

S:

Stokes number

Sr:

Strouhal number

t :

Thickness of orifice plate (mm)

T :

Time period of the actuation cycle (s)

\({T}_{\mathrm{a}}\) :

Ambient temperature (°C)

\({T}_{\mathrm{w}}\) :

Surface temperature (°C)

u(t):

Instantaneous time-averaged centerline velocity (m/s)

U m :

Spatial time-averaged exit velocity (m/s)

U 0 :

Time-averaged centerline velocity (m/s)

V :

Volume of the cavity (mm3)

\({V}_{\mathrm{pp}}\) :

Peak to peak amplitude (V)

\({V}_{\mathrm{rms}}\) :

Root-mean-square amplitude (V)

z :

Orifice to surface spacing (mm)

z/d :

Dimensionless orifice to surface spacing

\(\uptheta\) :

Jet inclination angle (°)

\(\upphi\) :

Phase difference between the two jet actuators

\(\omega\) :

Radian frequency of oscillation (= 2πf)

\({\Omega }_{\mathrm{v}}\) :

Strength of shed vortex

ƞ:

Synthetic jet actuator efficiency

\(\upmu\) :

Dynamic viscosity of jet fluid (kg/m s)

\(\rho\) :

Density of fluid (kg/m3)

ν:

Kinematic viscosity of jet fluid (m2/s)

A h :

Area of heater surface (mm2)

AR:

Aspect ratio

avg:

Average

BL:

Boundary layer

CJ:

Continuous jet

COP:

Coefficient of performance

DSJ:

Dual synthetic jet

EF:

Enhancement factor

HWA:

Hot Wire Anemometry

PCR:

Pitch circle radius (mm)

SJ:

Synthetic jet

SPL:

Sound pressure level (dB)

TL:

Transmission loss (dB)

TBL:

Thermal boundary layer

TM:

Thermal management

ZNMF:

Zero-net-mass-flux

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harekrishna Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Singh, P.K., Sahu, S.K. et al. A Critical Review on Flow and Heat Transfer Characteristics of Synthetic Jet. Trans Indian Natl. Acad. Eng. 7, 61–92 (2022). https://doi.org/10.1007/s41403-021-00264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41403-021-00264-5

Keywords

Navigation