Skip to main content
Log in

Advances of Four Machine Learning Methods for Spatial Data Handling: a Review

  • Review
  • Published:
Journal of Geovisualization and Spatial Analysis Aims and scope Submit manuscript

Abstract

Most machine learning tasks can be categorized into classification or regression problems. Regression and classification models are normally used to extract useful geographic information from observed or measured spatial data, such as land cover classification, spatial interpolation, and quantitative parameter retrieval. This paper reviews the progress of four advanced machine learning methods for spatial data handling, namely, support vector machine (SVM)-based kernel learning, semi-supervised and active learning, ensemble learning, and deep learning. These four machine learning modes are representative because they improve learning performances from different views, for example, feature space transform and decision function (SVM), optimized uses of samples (semi-supervised and active learning), and enhanced learning models and capabilities (ensemble learning and deep learning). For spatial data handling via machine learning that can be improved by the four machine learning models, three key elements are learning algorithms, training samples, and input features. To apply machine learning methods to spatial data handling successfully, a four-level strategy is suggested: experimenting and evaluating the applicability, extending the algorithms by embedding spatial properties, optimizing the parameters for better performance, and enhancing the algorithm by multiple means. Firstly, the advances of SVM are reviewed to demonstrate the merits of novel machine learning methods for spatial data, running the line from direct use and comparison with traditional classifiers, and then targeted improvements to address multiple class problems, to optimize parameters of SVM, and to use spatial and spectral features. To overcome the limits of small-size training samples, semi-supervised learning and active learning methods are then utilized to deal with insufficient labeled samples, showing the potential of learning from small-size training samples. Furthermore, considering the poor generalization capacity and instability of machine learning algorithms, ensemble learning is introduced to integrate the advantages of multiple learners and to enhance the generalization capacity. The typical research lines, including the combination of multiple classifiers, advanced ensemble classifiers, and spatial interpolation, are presented. Finally, deep learning, one of the most popular branches of machine learning, is reviewed with specific examples for scene classification and urban structural type recognition from high-resolution remote sensing images. By this review, it can be concluded that machine learning methods are very effective for spatial data handling and have wide application potential in the big data era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdi G, Samadzadegan F, Reinartz P (2017) Spectral–spatial feature learning for hyperspectral imagery classification using deep stacked sparse autoencoder. J Appl Remote Sens 11(4):042604

    Google Scholar 

  • Aguiar LM, Pereira B, David M, Díaz F, Lauret P (2015) Use of satellite data to improve solar radiation forecasting with Bayesian artificial neural networks. Sol Energy 122:1309–1324

    Article  Google Scholar 

  • Al-Jarrah OY, Yoo PD, Muhaidat S, Karagiannidis GK, Taha K (2015) Efficient machine learning for big data: a review. Big Data Research 2(3):87–93

    Article  Google Scholar 

  • Ancona N, Maglietta R, Stella E (2006) Data representations and generalization error in kernel based learning machines. Pattern Recogn 39(9):1588–1603

    Article  Google Scholar 

  • Bai J, Xiang S, Pan C (2012) A graph-based classification method for hyperspectral images. IEEE Trans Geosci Remote Sens 51(2):803–817

    Article  Google Scholar 

  • Benediktsson JA, Palmason JA, Sveinsson JR (2005) Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Remote Sens 43(3):480–491

    Article  Google Scholar 

  • Benediktsson JA, Chanussot J, Fauvel M (2007) Multiple classifier systems in remote sensing: from basics to recent developments. In International workshop on multiple classifier systems. Springer, Berlin, Heidelberg, pp 501-512

  • Bishop CM (2006) Pattern recognition and machine learning. Springer

  • Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In: Proceedings of the eleventh annual conference on Computational learning theory, ACM, pp 92–100

  • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-152). ACM

  • Camps-Valls G, Gomez-Chova L, Muñoz-Marí J, Vila-Francés J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97

    Article  Google Scholar 

  • Chen Y, Wang G, Dong S (2003) Learning with progressive transductive support vector machine. Pattern Recogn Lett 24(12):1845–1855

    Article  Google Scholar 

  • Chen Y, Nasrabadi NM, Tran TD (2011) Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans Geosci Remote Sens 49(10):3973–3985

    Article  Google Scholar 

  • Cheng G, Guo L, Zhao T, Han J, Li H, Fang J (2013) Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA. Int J Remote Sens 34(1):45–59

    Article  Google Scholar 

  • Cheriyadat AM (2013) Unsupervised feature learning for aerial scene classification. IEEE Trans Geosci Remote Sens 52(1):439–451

    Article  Google Scholar 

  • Chi M, Feng R, Bruzzone L (2008) Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Adv Space Res 41(11):1793–1799

    Article  Google Scholar 

  • Coates A, Ng A, Lee H (2011) An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp 215-223

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  • Dalla Mura M, Benediktsson JA, Waske B, Bruzzone L (2010) Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans Geosci Remote Sens 48(10):3747–3762

    Article  Google Scholar 

  • Demir B, Persello C, Bruzzone L (2011) Batch-mode active-learning methods for the interactive classification of remote sensing images. IEEE Trans Geosci Remote Sens 49(3):1014–1031

  • Didaci L, Giacinto G, Roli F, Marcialis GL (2005) A study on the performances of dynamic classifier selection based on local accuracy estimation. Pattern Recogn 38(11):2188–2191

    Article  Google Scholar 

  • Ding R, Chen Z (2018) RecNet: a deep neural network for personalized POI recommendation in location-based social networks. Int J Geogr Inf Sci 32(8):1631–1648

    Article  Google Scholar 

  • Dópido I, Li J, Plaza A, Bioucas-Dias JM (2012) A new semi-supervised approach for hyperspectral image classification with different active learning strategies. In: 2012 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), IEEE, pp 1–4

  • Dópido I, Li J, Marpu PR, Plaza A, Dias JMB, Benediktsson JA (2013) Semisupervised self-learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 51(7):4032–4044

    Article  Google Scholar 

  • Du P, Tan K, Xing X (2012a) A novel binary tree support vector machine for hyperspectral remote sensing image classification. Opt Commun 285(13–14):3054–3060

    Article  Google Scholar 

  • Du P, Xia J, Zhang W, Tan K, Liu Y, Liu S (2012b) Multiple classifier system for remote sensing image classification: a review. Sensors 12(4):4764–4792

    Article  Google Scholar 

  • Du P, Samat A, Gamba P, Xie X (2014) Polarimetric SAR image classification by boosted multiple-kernel extreme learning machines with polarimetric and spatial features. Int J Remote Sens 35(23):7978–7990

    Article  Google Scholar 

  • Du P, Li E, Xia J, Samat A, Bai X (2019) Feature and model level fusion of pretrained CNN for remote sensing scene classification. IEEE J Sel Top Appl Earth Obs Remote Sens 12(8):2600–2611

    Article  Google Scholar 

  • Ethem A (2010) Introduction to machine learning (second edition). The MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Fan RE, Chen PH, Lin CJ (2005) Working set selection using second order information for training support vector machines. J Mach Learn Res 6(Dec):1889–1918

    Google Scholar 

  • Fang L, Li S, Duan W, Ren J, Benediktsson JA (2015) Classification of hyperspectral images by exploiting spectral–spatial information of superpixel via multiple kernels. IEEE Trans Geosci Remote Sens 53(12):6663–6674

    Article  Google Scholar 

  • Fauvel M, Benediktsson JA, Chanussot J, Sveinsson JR (2008) Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans Geosci Remote Sens 46(11):3804–3814

    Article  Google Scholar 

  • Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC (2012) Advances in spectral-spatial classification of hyperspectral images. Proc IEEE 101(3):652–675

    Article  Google Scholar 

  • Fotheringham A, Charlton M, Brundson C (2015) Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environ Plan 30:1905–1927

  • Frélicot C, Mascarilla L, Fruchard A (2004) An ambiguity measure for pattern recognition problems using triangular-norms combination. WSEAS Trans Syst 8(3):2710–2715

    Google Scholar 

  • Frohlich H, Chapelle O, Scholkopf B (2003) Feature selection for support vector machines by means of genetic algorithm. In: Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence,pp 142–148

  • Ghamisi P, Souza R, Benediktsson JA, Zhu XX, Rittner L, Lotufo RA (2016) Extinction profiles for the classification of remote sensing data. IEEE Trans Geosci Remote Sens 54(10):5631–5645

    Article  Google Scholar 

  • Giacinto G, Roli F (1997) Adaptive selection of image classifiers. In: International conference on image analysis and processing. Springer, Berlin, Heidelberg, pp. 38-45

  • Goldman S, Zhou Y (2000) Enhancing supervised learning with unlabeled data. In: ICML, pp 327-334

  • Goovaerts P (2011) A coherent geostatistical approach for combining choropleth map and field data in the spatial interpolation of soil properties. Eur J Soil Sci 62(3):371–380

    Article  Google Scholar 

  • Gu Y, Liu T, Jia X, Benediktsson JA, Chanussot J (2016) Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification. IEEE Trans Geosci Remote Sens 54(6):3235–3247

    Article  Google Scholar 

  • Guo H, Zhen L, Hao J, Wang C, Jie L, Liang D (2017) Big Earth Data: a new challenge and opportunity for Digital Earth’s development. Int J Digit Earth 10(1):1–12

    Article  Google Scholar 

  • Hagenauer J, Omrani H, Helbich M (2019) Assessing the performance of 38 machine learning models: the case of land consumption rates in Bavaria, Germany. Int J Geogr Inf Sci 33(7):1399–1419

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer

  • Hermes L, Frieau D, Puzicha J et al (1999) Support vector machines for land usage classification in Landsat imagery. IEEE International Geoscience & Remote Sensing Symposium, pp 348–350

  • Hinton GE (2002) Training products of experts by minimizing contrastive divergence. Neural Comput 14(8):1771–1800

    Article  Google Scholar 

  • Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  Google Scholar 

  • Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425

    Article  Google Scholar 

  • Hu F, Xia GS, Hu J, Zhang L (2015) Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens 7(11):14680–14707

    Article  Google Scholar 

  • Huang CQ, Davis LS, Townshend JRG (2002) An assessment of support vector machines for land cover classification. Int J Remote Sens 23(4):725–749

    Article  Google Scholar 

  • Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501

    Article  Google Scholar 

  • Huang B, Wu B, Barry M (2010a) Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int J Geogr Inf Sci 24(3):383–401

    Article  Google Scholar 

  • Huang SJ, Jin R, Zhou ZH (2010b) Active learning by querying informative and representative examples. In: Advances in neural information processing systems , pp 892-900

  • Inglada J (2007) Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features. ISPRS J Photogramm Remote Sens 62(3):236–248

    Article  Google Scholar 

  • Kanevski M, Pozdnukhov A, Timonin V (2008) Machine learning algorithms for geospatial data. Applications and software tools. International Congress on Environmental Modelling and Software. 53. https://scholarsarchive.byu.edu/iemssconference/2008/all/53

  • Kanevski M, Vadim T, Alexi P (2009) Machine learning for spatial environmental data: theory, applications, and software. EPFL Press

  • Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK (2001) Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput 13(3):637–649

    Article  Google Scholar 

  • Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  • Ko AH, Sabourin R, Britto AS Jr (2008) From dynamic classifier selection to dynamic ensemble selection. Pattern Recogn 41(5):1718–1731

    Article  Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097-1105

  • Kumar A, Kim J, Lyndon D, Fulham M, Feng D (2016) An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J Biomedical Health Inform 21(1):31–40

    Article  Google Scholar 

  • Kuncheva LI (2002) Switching between selection and fusion in combining classifiers: an experiment. IEEE Trans Syst Man Cybern, Part B (Cybernetics) 32(2):146–156

  • Kuo BC, Ho HH, Li CH, Hung CC, Taur JS (2013) A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7(1):317–326

    Google Scholar 

  • Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), IEEE, Vol 2, pp 2169-2178

  • Leng J, Li T, Bai G, Dong Q, Dong H (2016) Cube-CNN-SVM: a novel hyperspectral image classification method. In: 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, pp 1027-1034

  • Li J, Heap AD, Potter A, Daniell JJ (2011a) Application of machine learning methods to spatial interpolation of environmental variables. Environ Model Softw 26:1647–1659

    Article  Google Scholar 

  • Li J, Bioucas-Dias JM, Plaza A (2011b) Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans Geosci Remote Sens 50(3):809–823

    Article  Google Scholar 

  • Li E, Du P, Samat A, Meng Y, Che M (2016) Mid-level feature representation via sparse autoencoder for remotely sensed scene classification. IEEE J Sel Top Appl Earth Obs Remote Sens 10(3):1068–1081

  • Li E, Xia J, Du P, Lin C, Samat A (2017) Integrating multilayer features of convolutional neural networks for remote sensing scene classification. IEEE Trans Geosci Remote Sens 55(10):5653–5665

    Article  Google Scholar 

  • Lin Y, Kang M, Wu Y, Du Q, Liu T (2020) A deep learning architecture for semantic address matching. Int J Geogr Inf Sci 34(3):559–576

    Article  Google Scholar 

  • Liu W, Du P, Zhao Z, Zhang L (2016) An adaptive weighting algorithm for interpolating the soil potassium content. Sci Rep 6:23889

    Article  Google Scholar 

  • Liu W, Zhang HR, Yan DP, Wang SL (2017) Adaptive surface modeling of soil properties in complex landforms. ISPRS Int J Geo Inf 6(6):178

    Article  Google Scholar 

  • Liu, W., Liu, Y., Yang, M., & Xie, M. (2018). Soil property surface modeling based on ensemble learning for complex landforms. In International Conference on Geo-informatics in Sustainable Ecosystem and Society (pp. 1-14). Springer, Singapore

  • Li Z, Chen J, Baltsavias E (2008) Advances in photogrammetry, remote sensing and spatial information sciences: 2008 ISPRS congress book. CRC Press

  • Luo T, Kramer K, Goldgof DB, Hall LO, Samson S, Remsen A, Hopkins T (2005) Active learning to recognize multiple types of plankton. J Mach Learn Res 6(Apr):589–613

    Google Scholar 

  • Mamitsuka NAH (1998) Query learning strategies using boosting and bagging. In Machine learning: Proceedings of the Fifteenth International Conference (ICML’98) (Vol. 1). Morgan Kaufmann Pub

  • Marconcini M, Camps-Valls G, Bruzzone L (2009) A composite semisupervised SVM for classification of hyperspectral images. IEEE Geosci Remote Sens Lett 6(2):234–238

    Article  Google Scholar 

  • Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790

    Article  Google Scholar 

  • Mountrakis G, Jungho I, Caesar O (2011) Support vector machines in remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing 66(3):247–259

    Article  Google Scholar 

  • Nawar S, Buddenbaum H, Hill J, Kozak J, Mouazen AM (2016) Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil Tillage Res 155:510–522

    Article  Google Scholar 

  • Nogueira K, Penatti OA, dos Santos JA (2017) Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recogn 61:539–556

    Article  Google Scholar 

  • Ou D, Tan K, Du Q, Zhu J, Wang X, Chen Y (2019) A novel tri-training technique for the semi-supervised classification of hyperspectral images based on regularized local discriminant embedding feature extraction. Remote Sens 11(6):654

    Article  Google Scholar 

  • Pal M, Foody GM (2010) Feature selection for classification of hyperspectral data by SVM. IEEE Trans Geosci Remote Sens 48(5):2297–2307

    Article  Google Scholar 

  • Penatti OA, Nogueira K, Dos Santos JA (2015) Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 44-51

  • Perronnin F, Dance C (2007) Fisher kernels on visual vocabularies for image categorization. In 2007 IEEE conference on computer vision and pattern recognition, IEEE, pp 1-8

  • Platt JC, Cristianini N, Shawe-Taylor J (2000) Large margin DAGs for multiclass classification. In: Advances in neural information processing systems, pp 547-553

  • Rakotomamonjy A, Mary X, Canu S (2005) Non-parametric regression with wavelet kernels. Appl Stoch Model Bus Ind 21(2):153–163

    Article  Google Scholar 

  • Renda A, Barsacchi M, Bechini A, Marcelloni F (2019) Comparing ensemble strategies for deep learning: an application to facial expression recognition. Expert Syst Appl 136:1–11

    Article  Google Scholar 

  • Riitters KH, Wickham JD, Wade TG (2009) An indicator of forest dynamics using a shifting landscape mosaic. Ecol Indic 9(1):107–117

    Article  Google Scholar 

  • Rodriguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 28(10):1619–1630

    Article  Google Scholar 

  • Roli F, Fumera G (2001) Support vector machines for remote sensing image classification. Image & Signal Processing for Remote Sensing VI. International Society for Optics and Photonics 4170:160–166

  • Romero A, Gatta C, Camps-Valls G (2015) Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans Geosci Remote Sens 54(3):1349–1362

    Article  Google Scholar 

  • Rossel RV, Behrens T (2010) Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158(1–2):46–54

    Article  Google Scholar 

  • Samat A, Du P, Liu S, Li J, Cheng L (2014) E2LMs: ensemble extreme learning machines for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7(4):1060–1069

    Article  Google Scholar 

  • Samat A, Gamba P, Du P, Luo J (2015) Active extreme learning machines for quad-polarimetric SAR imagery classification. Int J Appl Earth Obs Geoinf 35:305–319

    Article  Google Scholar 

  • Samat A, Gamba P, Liu S, Du P, Abuduwaili J (2016a) Jointly informative and manifold structure representative sampling based active learning for remote sensing image classification. IEEE Trans Geosci Remote Sens 54(11):6803–6817

    Article  Google Scholar 

  • Samat A, Li J, Liu S, Du P, Miao Z, Luo J (2016b) Improved hyperspectral image classification by active learning using pre-designed mixed pixels. Pattern Recogn 51:43–58

    Article  Google Scholar 

  • Samiappan S, Moorhead RJ (2015) Semi-supervised co-training and active learning framework for hyperspectral image classification. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, pp 401-404

  • Scudder H (1965) Probability of error of some adaptive pattern-recognition machines. IEEE Trans Inf Theory 11(3):363–371

    Article  Google Scholar 

  • Shi W, Zheng S, Tian Y (2009) Adaptive mapped least squares SVM–based smooth fitting method for DSM generation of LIDAR data. Int J Remote Sens 30(21):5669–5683

    Article  Google Scholar 

  • Shi W, Goodchild MF, Brian L, Yee L (2012) Advances in geo-spatial information science. CRC Press

  • Smits PC (2002) Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection. IEEE Trans Geosci Remote Sens 40(4):801–813

    Article  Google Scholar 

  • Starck JL, Elad M, Donoho DL (2005) Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans Image Process 14(10):1570–1582

    Article  Google Scholar 

  • Steiniger S, Taillandier P, Weibel R (2010) Utilising urban context recognition and machine learning to improve the generalisation of buildings. Int J Geogr Inf Sci 24:253–282

    Article  Google Scholar 

  • Fotheringham S, Crespo R, Yao J (2015) Geographical and temporal weighted regression (GTWR). Geogr Anal 47(4):431–452

  • Su H, Yong B, Du P, Liu H, Chen C, Liu K (2014) Dynamic classifier selection using spectral-spatial information for hyperspectral image classification. J Appl Remote Sens 8(1):085095

    Article  Google Scholar 

  • Tan K, Du P (2010) Classification of hyperspectral image based on morphological profiles and multi-kernel SVM. In: 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, IEEE, pp 1-4

  • Tan K, Du P (2011) Combined multi-kernel support vector machine and wavelet analysis for hyperspectral remote sensing image classification. Chin Opt Lett 9(1):011003–011006

    Article  Google Scholar 

  • Tan K, Li E, Du Q, Du P (2014) An efficient semi-supervised classification approach for hyperspectral imagery. ISPRS J Photogramm Remote Sens 97:36–45

    Article  Google Scholar 

  • Tan K, Hu J, Li J, Du P (2015) A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination. ISPRS J Photogramm Remote Sens 105:19–29

    Article  Google Scholar 

  • Tan K, Zhu J, Du Q, Wu L, Du P (2016) A novel tri-training technique for semi-supervised classification of hyperspectral images based on diversity measurement. Remote Sens 8(9):749

    Article  Google Scholar 

  • Tan K, Wang H, Zhang Q, Jia X (2018) An improved estimation model for soil heavy metal (loid) concentration retrieval in mining areas using reflectance spectroscopy. J Soils Sediments 18(5):2008–2022

    Article  Google Scholar 

  • Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC (2010a) Multiple spectral–spatial classification approach for hyperspectral data. IEEE Trans Geosci Remote Sens 48(11):4122–4132

    Google Scholar 

  • Tarabalka Y, Chanussot J, Benediktsson JA (2010b) Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recogn 43(7):2367–2379

    Article  Google Scholar 

  • Tuia D, Ratle F, Pacifici F, Kanevski MF, Emery WJ (2009) Active learning methods for remote sensing image classification. IEEE Trans Geosci Remote Sens 47(7):2218–2232

    Article  Google Scholar 

  • Tuia D, Volpi M, Copa L, Kanevski M, Munoz-Mari J (2011) A survey of active learning algorithms for supervised remote sensing image classification. IEEE Journal of Selected Topics in Signal Processing 5(3):606–617

    Article  Google Scholar 

  • Tumer K, Ghosh J (1996) Error correlation and error reduction in ensemble classifiers. Connect Sci 8(3–4):385–404

    Article  Google Scholar 

  • Vardhana M, Arunkumar N, Lasrado S, Abdulhay E, Ramirez-Gonzalez G (2018) Convolutional neural network for bio-medical image segmentation with hardware acceleration. Cogn Syst Res 50:10–14

    Article  Google Scholar 

  • Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on Machine learning, ACM, pp 1096-1103

  • Vohland M, Besold J, Hill J, Fründ HC (2011) Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma 166(1):198–205

    Article  Google Scholar 

  • Wan L, Hong Y, Huang Z, Peng X, Li R (2018) A hybrid ensemble learning method for tourist route recommendations based on geo-tagged social networks. Int J Geogr Inf Sci 32(11):2225–2246

    Article  Google Scholar 

  • Wang R, Chow CY, Kwong S (2015) Ambiguity-based multiclass active learning. IEEE Trans Fuzzy Syst 24(1):242–248

    Article  Google Scholar 

  • Wang Q, Gu Y, Tuia D (2016) Discriminative multiple kernel learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 54(7):3912–3927

    Article  Google Scholar 

  • Wang M, Zhang X, Niu X, Wang F, Zhang X (2019) Scene classification of high-resolution remotely sensed image based on ResNet. Journal of Geovisualization & Spatial Analysis 3(2):16

    Article  Google Scholar 

  • Woods K, Kegelmeyer WP, Bowyer K (1997) Combination of multiple classifiers using local accuracy estimates. IEEE Trans Pattern Anal Mach Intell 19(4):405–410

    Article  Google Scholar 

  • Wu F, Zhao Y (2006) Least squares support vector machine on gaussian wavelet kernel function set. In: International Symposium on Neural Networks, Springer, Berlin, Heidelberg, pp 936-941

  • Xia J, Du P, He X, Chanussot J (2014a) Hyperspectral remote sensing image classification based on rotation forest. IEEE Geosci Remote Sens Lett 11(1):239–243

  • Xia J, Chanussot J, Du P, He X (2014b) Spectral–spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields. IEEE Trans Geosci Remote Sens 53(5):2532–2546

  • Xia J, Chanussot J, Du P, He X (2015a) Rotation-based support vector machine ensemble in classification of hyperspectral data with limited training samples. IEEE Trans Geosci Remote Sens 54(3):1519–1531

    Article  Google Scholar 

  • Xia J, Dalla Mura M, Chanussot J, Du P, He X (2015b) Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles. IEEE Trans Geosci Remote Sens 53(9):4768–4786

    Article  Google Scholar 

  • Xia GS, Hu J, Hu F, Shi B, Bai X, Zhong Y, Zhang L, Lu X (2015) AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans Geosci Remote Sens 55(7):3965–3981

  • Xue Z, Du P, Su H (2014) Harmonic analysis for hyperspectral image classification integrated with PSO optimized SVM. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7(6):2131–2146

    Article  Google Scholar 

  • Xue Z, Li J, Cheng L, Du P (2015) Spectral–spatial classification of hyperspectral data via morphological component analysis-based image separation. IEEE Trans Geosci Remote Sens 53(1):70–84

    Article  Google Scholar 

  • Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM, pp 270-279

  • Yu J, Wang M, Tao D (2012) Semisupervised multiview distance metric learning for cartoon synthesis. IEEE Trans Image Process 21(11):4636–4648

    Article  Google Scholar 

  • Yue TX, Wang SH (2010) Adjustment computation of HASM: a high-accuracy and high-speed method. Int J Geogr Inf Sci 24(11):1725–1743

    Article  Google Scholar 

  • Zhang L, Zhou W, Jiao L (2004) Wavelet support vector machine. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 34(1):34–39

    Article  Google Scholar 

  • Zhang F, Du B, Zhang L (2015) Scene classification via a gradient boosting random convolutional network framework. IEEE Trans Geosci Remote Sens 54(3):1793–1802

    Article  Google Scholar 

  • Zhao B, Zhong Y, Xia GS, Zhang L (2016) Dirichlet-derived multiple topic scene classification model fusing heterogeneous features for high spatial resolution remote sensing imagery. IEEE Trans Geosci Remote Sens 54(4):2108–2123

    Article  Google Scholar 

  • Zhong P, Wang R (2010) Learning conditional random fields for classification of hyperspectral images. IEEE Trans Image Process 19(7):1890–1907

    Article  Google Scholar 

  • Zhou Y, Goldman S (2004) Democratic co-learning. In: 16th IEEE International Conference on Tools with Artificial Intelligence, IEEE, pp 594-602

  • Zhou ZH, Li M (2005) Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans Knowl Data Eng 11:1529–1541

    Article  Google Scholar 

  • Zhu X, Goldberg AB (2009) Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence and machine learning 3(1):1–130

    Article  Google Scholar 

  • Zou Q, Ni L, Zhang T, Wang Q (2015) Deep learning based feature selection for remote sensing scene classification. IEEE Geosci Remote Sens Lett 12(11):2321–2325

    Article  Google Scholar 

Download references

Funding

This study is funded by the National Natural Science Foundation of China (Grant No. 41631176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Du.

Ethics declarations

The authors confirm the paper complies with ethical standards.

Conflict of Interest

The authors declare that there is no conflict of interest.

Ethical Approval

This paper focuses on spatial data handling methods and meets the requirements of ethical approval.

Informed Consent

The authors confirm informed consent to this submission.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, P., Bai, X., Tan, K. et al. Advances of Four Machine Learning Methods for Spatial Data Handling: a Review. J geovis spat anal 4, 13 (2020). https://doi.org/10.1007/s41651-020-00048-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s41651-020-00048-5

Keywords

Navigation