Skip to main content

Advertisement

Log in

Multiscale Methods for Fracture: A Review\(^\bigstar \)

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

The global response of a system is often governed by the material behaviour at smaller length scales. Investigating the system mechanics at the smallest scale does not always provide the complete picture. Therefore, in the ambitious objective to derive the overall full-scale global response using a bottom-up approach, multiscale methods coupling disparate length and time scales have been evolved in the past two decades. The major objective of the multiscale methods is to reduce the computational costs by coupling the inexpensive coarse-scale/continuum based models with expensive fine-scale models. The fine-scale region is employed in the critical areas, such as crack tips or core of the dislocation. To improve the efficiency the fine-scale domain is adaptively adjusted as the defects propagate. As a result, the accuracy of the fine-scale model is combined with the efficiency of the coarse-scale model, arriving at a computationally efficient and accurate multiscale model. Currently, multiscale methods are applied to study problems in numerous fields, involving multiphysics. In this article, we present an overview of the multiscale methods for fracture applications. We discussed the techniques to model the coarse- and fine-scale domains, details of the coupling methods, adaptivity, and efficient coarse-graining techniques. The article is concluded with comments on recent trends and future scope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

Similar content being viewed by others

References

  1. Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529–1563

    Article  Google Scholar 

  2. Abraham FF, Walkup R, Gao H, Duchaineau M, DeLaRubia TD, Seager M (2002) Simulating materials failure by using up to one billion atoms and the world’s fastest computer: work-hardening. Proc Nat Acad Sci 99(9):5777–5782

    Article  Google Scholar 

  3. Buehler MJ, Hartmaier A, Gao H, Duchaineau M, Abraham FF (2004) Atomic plasticity: description and analysis of a one-billion atom simulation of ductile materials failure. Comput Methods Appl Mech Eng 193(48–51):5257–5282

    Article  Google Scholar 

  4. Liu WK, Su H, Belytschko T, Li S, Chang CT (2000) Multi-scale methods. Int J Numer Methods Eng 47:1343–1361

    Article  Google Scholar 

  5. Miller RE, Tadmor EB (2002) The quasicontinuum method: overview, applications and current directions. J Comput Aided Mater Des 9(3):203–239

    Article  Google Scholar 

  6. Belytschko T, Xiao SP (2003) Coupling methods for continuum model with molecular model. Int J Multiscale Comput Eng 1(1):115–126

    Article  Google Scholar 

  7. Xiao SP, Belytschko T (2004) A bridging domain method for coupling continua with molecular dynamics. Comput Methods Appl Mech Eng 193(17–20):1645–1669

    Article  Google Scholar 

  8. Liu WK, Park HS, Qian D, Karpov EG, Kadowaki H, Wagner GJ (2006) Bridging scale methods for nanomechanics and materials. Comput Methods Appl Mech Eng 195(13–16):1407–1421

    Article  Google Scholar 

  9. Belytschko T, Loehnert S, Song JH (2008) Multiscale aggregating discontinuities: a method for circumventing loss of material stability. Int J Numer Methods Eng 73(6):869–894

    Article  Google Scholar 

  10. Gracie R, Belytschko T (2008) Concurrently coupled atomistic and XFEM models for dislocations and cracks. Int J Numer Meth Eng 78(3):354–378

    Article  Google Scholar 

  11. Talebi H, Silani M, Bordas SPA, Kerfriden P, Rabczuk T (2014) A computational library for multiscale modelling of material failure. Comput Mech 53(5):1047–1071

    Article  Google Scholar 

  12. Budarapu PR, Gracie R, Bordas SPA, Rabczuk T (2014) An adaptive multiscale method for quasi-static crack growth. Comput Mech 53(6):1129–1148

    Article  Google Scholar 

  13. Shenoy VB, Miller RE, Tadmor EB, Rodney D, Phillips R, Ortiz M (1999) An adaptive finite element approach to atomic-scale mechanics-the quasicontinuum method. J Mech Phys Solids 47(3):611–642

    Article  Google Scholar 

  14. Beex LAA, Peerlings RHJ, Geers MGD (2011) A quasicontinuum methodology for multiscale analysis of discrete microstructural models. Int J Numer Methods Eng 87:701–718

    Article  Google Scholar 

  15. Sun Y, Peng Q, Lu G (2013) Quantum mechanical modeling of hydrogen assisted cracking in aluminum. Phys Rev B 88:104109

    Article  Google Scholar 

  16. Beex LAA, Kerfriden P, Rabczuk T, Bordas SPA (2014) Quasicontinuum-based multiscale approaches for plate-like beam lattices experiencing in-plane and out-of-plane deformation. Comput Methods Appl Mech Eng 279:348–378

    Article  Google Scholar 

  17. Beex LAA, Peerlings RHJ, Geers MGD (2014) A multiscale quasicontinuum method for lattice models with bond failure and fiber sliding. Comput Methods Appl Mech Eng 269:108–122

    Article  Google Scholar 

  18. Hajibeygi H, Karvounis D, Jenny P (2011) A hierarchical fracture model for the iterative multiscale finite volume method. J Comput Phys 230:8729–8743

    Article  Google Scholar 

  19. Paggi M, Wriggers P (2012) Stiffness and strength of hierarchical polycrystalline materials with imperfect interfaces. J Mech Phys Solids 60:557–572

    Article  Google Scholar 

  20. Paggi M, Corrado M, Rodriguez MA (2013) A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules. Compos Struct 95:630–638

    Article  Google Scholar 

  21. Wudtke I, Talebi H, Silani M, Werner F (2015) A hierarchical multi-scale approach to mechanical characterization of heat affected zone in welded connections. Comput Mater Sci 96:396–402

    Article  Google Scholar 

  22. Lawrimore WB, Paliwal B, Chandler MQ, Johnson KL, Horstemeyer MF (2016) Hierarchical multiscale modeling of polyvinyl alcohol/montmorillonite nanocomposites. Polymer 99:386–398

    Article  Google Scholar 

  23. Lyu D, Fan H, Li S (2016) A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals. Eng Fract Mech 163:327–347

    Article  Google Scholar 

  24. Feyel F (1999) Multiscale FE\(^2\) elastoviscoplastic analysis of composite structures. Comput Mater Sci 16(1–4):344–354

    Article  Google Scholar 

  25. Feyel F, Chaboche JL (2000) FE\(^2\) multiscale approach for modeling the elastoviscoplastic behavior of long fiber sic/ti composite materials. Comput Methods Appl Mech Eng 183:309–330

    Article  Google Scholar 

  26. Feyel F, Chaboche JL (2001) Multi-scale non linear FE\(^2\) analysis of composite structures: damage and fiber size effects. In: Saanouni K (ed.) Numerical Modelling in Damage Mechanics - NUMEDAM00. Revue Eur Elem Finis 10:449–472

  27. Feyel F, Chaboche JL (2003) A multilevel finite element method (FE\(^2\)) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192:3233–3244

    Article  Google Scholar 

  28. Talebi H, Zi G, Silani M, Samaniego E, Rabczuk T (2012) A simple circular cell method for multi-level finite element analysis. J Appl Math. ID: 526846

  29. Silani M, Ziaei-Rad S, Talebi H, Rabczuk T (2014) A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theoret Appl Fract Mech 74:30–38

    Article  Google Scholar 

  30. Zhu H, Wang Q, Zhuang X (2016) A nonlinear semi-concurrent multiscale method for fractures. Int J Impact Eng 87:65–82

    Article  Google Scholar 

  31. Zhuang X, Wang Q, Zhu H (2017) Multiscale modelling of hydro-mechanical couplings in quasi-brittle materials. Int J Fract. doi:10.1007/s10704-016-0139-1

    Google Scholar 

  32. Wagner GJ, Liu WK (2003) Coupling of atomistic and continuum simulations using a bridging scale decomposition. J Comput Phys 190(1):249–279

    Article  Google Scholar 

  33. Park HS, Karpov EG, Liu WK, Klein PA (2005) The bridging scale for two-dimensional atomistic/continuum coupling. Philos Mag 85(1):79–113

    Article  Google Scholar 

  34. Dhia HB (2006) The Arlequin method: a partition of models for concurrent multiscale analyses. In: Challenges in computational mechanics workshop, Cachan, France, 10–12 May, 2006

  35. Farrell DE, Park HS, Liu WK (2007) Implementation aspects of the bridging scale method and application to intersonic crack propagation. Int J Numer Methods Eng 71:583–605

    Article  Google Scholar 

  36. Guidault PA, Belytschko T (2009) Bridging domain methods for coupled atomistic continuum models with \(l^2\) or \(h^1\) couplings. Int J Numer Methods Eng 77(4–5):1566–1592

    Article  Google Scholar 

  37. Broughton J, Abraham FF, Bernstein N, Kaxiras E (1999) Concurrent coupling of length scales: methodology and application. Phys Rev B 60(4):2391–2403

    Article  Google Scholar 

  38. Tang S, Kopacz AM, O’Keefe SC, Olson GB, Liu WK (2013) Concurrent multiresolution finite element: formulation and algorithmic aspects. Comput Mech 52(6):1265–1279

    Article  Google Scholar 

  39. Talebi H, Silani M, Bordas SPA, Kerfriden P, Rabczuk T (2013) Molecular dynamics/XFEM coupling by a three dimensional extended bridging domain with applications to dynamic brittle fracture. Int J Multiscale Comput Eng 11(6):527–541

    Article  Google Scholar 

  40. Vernerey FJ, Kabiri M (2014) Adaptive concurrent multiscale model for fracture and crack propagation in heterogeneous media. Comput Methods Appl Mech Eng 276:566–588

    Article  Google Scholar 

  41. Wu J, Zhang H, Zheng Y (2015) A concurrent multiscale method for simulation of crack propagation. Acta Mech Solida Sin 28(3):235–251

    Article  Google Scholar 

  42. Yang S-W, Budarapu PR, Mahapatra DR, Bordas SPA, Zi G, Rabczuk T (2015) A meshless adaptive multiscale method for fracture. Comput Mater Sci 96B:382–395

    Article  Google Scholar 

  43. Talebi H, Silani M, Rabczuk T (2015) Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Adv Eng Softw 80:82–92

    Article  Google Scholar 

  44. Ghosh S, Lee K, Moorthy S (1994) Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method. Int J Solids Struct 32:27–62

    Article  Google Scholar 

  45. Kouznetsova V, Geers MGD, Brekelsmans WAM (2002) Multi-scale constitutive modeling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260

    Article  Google Scholar 

  46. Guidault PA, Allix O, Champaney L, Navarro JP (2007) A two-scale approach with homogenization for the computation of cracked structures. Comput Struct 85:1360–1371

    Article  Google Scholar 

  47. Özdemir I, Brekelmans WAM, Geers MGD (2008) FE\(^{2}\) computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput Methods Appl Mech Eng 192:602–613

    Article  Google Scholar 

  48. Verhoosel CV, Remmers JJC, Gutiérrez MA, de Borst R (2010) Computational homogenization for adhesive and cohesive failure in quasi-brittle solids. Int J Numer Methods Eng 83(8–9):1155–1179

    Article  Google Scholar 

  49. Nguyen VP, Lloberas-Valls O, Stroeven M, Sluys LJ (2011) Homogenization-based multiscale crack modelling: From micro-diffusive damage to macro-cracks. Comput Methods Appl Mech Eng 200(9–12):1220–1236

    Article  Google Scholar 

  50. Nguyen VP, Lloberas-Valls O, Stroeven M, Sluys LJ (2012) Computational homogenization for multiscale crack modeling. Implementational and computational aspects. Int J Numer Methods Eng 89:192–226

    Article  Google Scholar 

  51. Nguyen-Xuan H, Hoang T, Nguyen VP (2014) An isogeometric analysis for elliptic homogenization problems. Comput Methods Appl Mech Eng 67(9):1722–1741

    Google Scholar 

  52. Svenning E, Fagerström M, Larsson F (2016) On computational homogenization of microscale crack propagation. Int J Numer Meth Eng 108:76–90

    Article  Google Scholar 

  53. Zhang R, Zhang L, Wang R, Zhao Y, Huang R (2016) Simulation of a multistage fractured horizontal well with finite conductivity in composite shale gas reservoir through finite-element method. ACS Energy Fuels 30:9036–9049

    Article  Google Scholar 

  54. Tene M, Kobaisi MSA, Hajibeygi H (2016) Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS). J Comput Phys 321:819–845

    Article  Google Scholar 

  55. Sheng Y, Sousani M, Ingham D, Pourkashanian M (2015) Recent developments in multiscale and multiphase modelling of the hydraulic fracturing process. Math Probl Eng 2015:729672

    Google Scholar 

  56. Liu Y, Filonova V, Hu N, Yuan Z, Fish J, Yuan Z, Belytschko T (2014) A regularized phenomenological multiscale damage model. Int J Numer Methods Eng 99:867–887

    Article  Google Scholar 

  57. Paggi M, Wriggers P (2011) A nonlocal cohesive zone model for finite thickness interfaces—Part I: mathematical formulation and validation with molecular dynamics. Comput Mater Sci 50:1625–1633

    Article  Google Scholar 

  58. Paggi M, Wriggers P (2011) A nonlocal cohesive zone model for finite thickness interfaces—Part II: FE implementation and application to polycrystalline materials. Comput Mater Sci 50(5):1634–1643

    Article  Google Scholar 

  59. Paggi M, Reinoso J (2015) An anisotropic large displacement cohesive zone model for fibrillar and crazing of interfaces. Int J Solids Struct 69–70:106–120

    Article  Google Scholar 

  60. Shojaei A, Li G, Fish J, Tan PJ (2014) Multi-scale constitutive modeling of ceramic matrix composites by continuum damage mechanics. Int J Solids Struct 51:4068–4081

    Article  Google Scholar 

  61. Greco F, Leonetti L, Luciano R, Blasi PN (2016) An adaptive multiscale strategy for the damage analysis of masonry modeled as a composite material. Compos Struct 153:972–988

    Article  Google Scholar 

  62. Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam

    Google Scholar 

  63. Verhoosel CV, Remmers JJC, Gutiérrez MA (2010) A partition of unity-based multiscale approach for modelling fracture in piezoelectric ceramics. Int J Numer Methods Eng 82:966–994

    Article  Google Scholar 

  64. Oliver J, Caicedo M, Huespe AE, Hernández JA, Roubin E (2017) Reduced order modeling strategies for computational multiscale fracture. Comput Methods Appl Mech Eng 313:560–595

    Article  Google Scholar 

  65. Xu M, Gracie R, Belytschko T (2009) Bridging the Scales in Science and Engineering. In: Fish J (ed) Multiscale modeling with extended bridging domain method. Oxford University Press, Oxford

    Google Scholar 

  66. Rabczuk T (2013) Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-art review and future perspectives. Appl Math 2013:849231

    Google Scholar 

  67. Ghayour M, Hosseini-Toudeshky H, Jalalvand M, Barbero EJ (2016) Micro/macro approach for prediction of matrix cracking evolution in laminated composites. J Compos Mater 50(19):2647–2659

    Article  Google Scholar 

  68. Kerfriden P, Passieux JC, Bordas SPA (2012) Local/global model order reduction strategy for the simulation of quasi-brittle fracture. Int J Numer Methods Eng 89:154–179

    Article  Google Scholar 

  69. Ojo SO, Budarapu PR, Paggi M (2017) A nonlocal adaptive discrete empirical interpolation method combined with modified hp-refinement for order reduction of molecular dynamics systems. Comput Mater Sci 140:189–208

    Article  Google Scholar 

  70. Budarapu PR, Reinoso J, Paggi M (2017) Concurrently coupled solid shell-based adaptive multiscale method for fracture. Comput Methods Appl Mech Eng 319:338–365. doi:10.1016/j.cma.2017.02.023

    Article  Google Scholar 

  71. Bischoff M, Ramm E (1997) Shear deformable shell elements for large strains and rotations. Int J Numer Methods Eng 40:4427–4449

    Article  Google Scholar 

  72. Miehe C (1998) A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains. Comput Methods Appl Mech Eng 155:193–233

    Article  Google Scholar 

  73. Reinoso J, Paggi M (2014) A consistent interface element formulation for geometrical and material nonlinearities. Comput Mech 54(6):1569–1581

    Article  Google Scholar 

  74. Reinoso J, Blázquez A (2016) Application and finite element implementation of 7-parameter shell element for geometrically nonlinear analysis of layered CFRP composites. Compos Struct 139:263–273

    Article  Google Scholar 

  75. Reinoso J, Paggi M, Areias PMA (2016) A finite element framework for the interplay between delamination and buckling of rubber-like bi-material systems and stretchable electronics. J Eur Ceram Soc 36(9):2371–2382

    Article  Google Scholar 

  76. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  Google Scholar 

  77. Sproul A (2003) Solar cells resources for the secondary science teacher, chapter understanding the p-n junction. University of New South Wales, Sydney

    Google Scholar 

  78. Köntges M, Kunze I, Kajari-Schröder S, Breitenmoser X, Bjrneklett B (2011) The risk of power loss in crystalline silicon based photovoltaic modules due to microcracks. Sol Energy Mater Sol Cells 95:1131–1137

    Article  Google Scholar 

  79. Paggi M, Sapora A (2013) Numerical modelling of microcracking in PV modules induced by thermo-mechanical loads. Energy Proc 38:506–515

    Article  Google Scholar 

  80. Paggi M, Berardone I, Infuso A, Corrado M (2014) Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules. Sci Rep 4:4506

    Article  Google Scholar 

  81. Käsewieter J, Haase F, Larrodé MH, Köntges M (2014) Cracks in solar cell metallization leading to module power loss under mechanical loads. Energy Proc 27:469–477

    Article  Google Scholar 

  82. Yang H, Wang H, Cao D, Sun D, Ju X (2015) Analysis of power loss for crystalline silicon solar module during the course of encapsulation. Int J Photoenergy 2015:251615

    Google Scholar 

  83. Paggi M, Kajari-Schröder S, Eitner U (2011) Thermo-mechanical deformations in photovoltaic laminates. J Strain Anal Eng Des 46(8):772–782

    Article  Google Scholar 

  84. Infuso A, Corrado M, Paggi M (2014) Image analysis of polycrystalline solar cells and modelling of intergranular and transgranular cracking. J Eur Ceram Soc 34(11):2713–2722

    Article  Google Scholar 

  85. Paggi M, Corrado M, Berardone I (2016) A global/local approach for the prediction of the electric response of cracked solar cells in photovoltaic modules under the action of mechanical loads. Eng Fract Mech 168:40–57

    Article  Google Scholar 

  86. Liang T, Shan T-R, Cheng Y-T, Devine BD, Noordhoek M, Li Y, Lu Z, Phillpot SR, Sinnott SB (2013) Classical atomistic simulations of surfaces and heterogeneous interfaces with the charge-optimized many body (COMB) potentials. Mater Sci Eng R 74:255–279

    Article  Google Scholar 

  87. Ramisetti SB, Anciaux G, Molinari JF (2013) Spatial filters for bridging molecular dynamics with finite elements at finite temperatures. Comput Methods Appl Mech Eng 253:28–38

    Article  Google Scholar 

  88. Mulay SS, Becker G, Vayrette R, Raskin JP, Pardoen T, Galceran M, Godet S, Noels L (2015) Multiscale modelling framework for the fracture of thin brittle polycrystalline films: application to polysilicon. Comput Mech 55:73–91

    Article  Google Scholar 

  89. Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys Rev 159(5):98–103

    Article  Google Scholar 

  90. Abraham FF, Broughton JQ, Bernstein N, Kaxiras E (1998) Spanning the length scales in dynamic simulation. Comput Phys 12:538–546

    Article  Google Scholar 

  91. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  Google Scholar 

  92. Khare R, Mielke SL, Paci JT, Zhang S, Ballarini R, Schatz GC, Belytschko T (2007) Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys Rev B 75:075412

    Article  Google Scholar 

  93. Lu Q, Gao W, Huang R (2011) Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension. Modell Simul Mater Sci Eng 19:54006

    Article  Google Scholar 

  94. Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–400

    Article  Google Scholar 

  95. Ansari R, Ajori S, Motevalli B (2012) Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices Microstruct 51:274–289

    Article  Google Scholar 

  96. Xu M, Tabarraei A, Paci J, Oswald J, Belytschko T (2012) A coupled quantum/continuum mechanics study of graphene fracture. Int J Fract 173:163–173

    Article  Google Scholar 

  97. Budarapu PR, Javvaji B, Sutrakar VK, Mahapatra DR, Zi G, Rabczuk T (2015) Crack propagation in graphene. J Appl Phys 118:064307

    Article  Google Scholar 

  98. Budarapu PR, Javvaji B, Sutrakar VK, Mahapatra DR, Zi G, Paggi M, Rabczuk T (2017) Lattice orientation and crack size effect on the mechanical properties of graphene. Int J Fract 203(1):81–91. doi:10.1007/s10704-016-0115-9

    Article  Google Scholar 

  99. Javvaji B, Budarapu PR, Sutrakar VK, Mahapatra DR, Zi G, Paggi M, Rabczuk T (2016) Mechanical properties of graphene: molecular dynamics simulations correlated to continuum based scaling laws. Comput Mater Sci 125:319–327

    Article  Google Scholar 

  100. Amani J, Oterkus E, Areias P, Zi G, Nguyen-Thoi T, Rabczuk T (2016) A non-ordinary state-based peridynamics formulation for thermoplastic fracture. Int J Impact Eng 87:83–94

    Article  Google Scholar 

  101. Wang HS (2015) A meshfree variational multiscale methods for thermo-mechanical material failure. Theoret Appl Fract Mech 75:1–7

    Article  Google Scholar 

  102. Miehe C, Vallicotti D, Zäh DD (2015) Computational structural and material stability analysis in finite electro-elasto-statics of electro-active materials. Int J Numer Methods Eng 102:1605–1637

    Article  Google Scholar 

  103. Thomas S, Ajith KM (2014) Molecular dynamics simulation of the thermo-mechanical properties of monolayer graphene sheet. Proc Mater Sci 5:489–498

    Article  Google Scholar 

  104. Chih-Ping W, Kuan-Hao C, Ming-Wang Y (2008) A meshfree DRK-based collocation method for the coupled analysis of functionally graded magneto-electro-elastic shells and plates. Comput Model Eng Sci 35:181–214

    Google Scholar 

  105. Chih-Ping W, Jian-Sin W, Ming-Wang Y (2009) A DRK interpolation-based collocation method for the analysis of functionally graded piezoelectric hollow cylinders under electro-mechanical loads. Comput Model Eng Sci 52:1–37

    Google Scholar 

  106. Rodríguez GD, Tapia A, Siedel GD, Avilés F (2016) Influence of structural defects on the electrical properties of carbon nanotubes and their polymer composites. Adv Funct Mater. doi:10.1002/adem.201600116

    Google Scholar 

  107. Tiwary CS, Javvaji B, Kumar C, Mahapatra DR, Ozden S, Ajayan PM, Chattopadhyay K (2015) Chemical-free graphene by unzipping carbon nanotubes using cryo-milling. Carbon. doi:10.1016/j.carbon.2015.03.036

    Google Scholar 

  108. Tiwary CS, Vishnu D, Kole AK, Brahmanandam J, Mahapatra DR, Kumbhakar P, Chattopadhyay K (2015) Stabilization of the high-temperature and high-pressure cubic phase of ZnO by temperature-controlled milling. J Mater Sci. doi:10.1007/s10853-015-9394-1

    Google Scholar 

  109. Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T (2014) Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Compos B 59:80–95

    Article  Google Scholar 

  110. Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation package. J Phys Chem A 103:3596–3607

    Article  Google Scholar 

  111. Schmid N, Christ CD, Christen M, Eichenberger AP, van Gunsteren WF (2012) Architecture, implementation and parallelisation of the GROMOS software for biomolecular simulation. Comput Phys Commun 183:890–903

    Article  Google Scholar 

  112. Ferreira RJ, Ferreira MJU, dos Santos DJVA (2012) Insights on p-glycoprotein’s efflux mechanism obtained by molecular dynamics simulations. J Chem Theory Comput 8(6):1853–1864

    Article  Google Scholar 

  113. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Article  Google Scholar 

  114. Barkaoui A, Tlili B, Vercher-Martńez A (2016) A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method. Comput Methods Programs Biomed 134:69–78

    Article  Google Scholar 

  115. Harvey M, Giupponi G, De Fabritiis G (2009) ACEMD: accelerated molecular dynamics simulations in the microseconds timescale. J Chem Theory Comput 5:1632

    Article  Google Scholar 

  116. Harvey M, De Fabritiis G (2009) An implementation of the smooth particle-mesh Ewald (PME) method on GPU hardware. J Chem Theory Comput 5:2371–2377

    Article  Google Scholar 

  117. Agilemolecule (2016) http://www.biomolecular-modeling.com/abalone/. Stockholm University

  118. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1):43–56

    Article  Google Scholar 

  119. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, Bolt SD, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91(1):1–41

    Article  Google Scholar 

  120. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164

    Article  Google Scholar 

  121. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  Google Scholar 

  122. Qian D, Wagner GJ, Liu WK (2003) A multiscale projection method for the analysis of carbon nanotubes. Comput Methods Appl Mech Eng 193(17–20):1603–1632

    Google Scholar 

  123. Qian D, Gondhalekar RH (2004) A virtual atom cluster approach to the mechanics of nanostructures. Int J Multiscale Comput Eng 2(2):277–289

    Article  Google Scholar 

  124. Qian D, Chirputkar S (2014) Bridging scale simulation of lattice fracture using enriched space–time finite element method. Int J Numer Methods Eng 97:819–850

    Article  Google Scholar 

  125. Huang T, Zhang YX, Yang C (2016) Multiscale modelling of multiple-cracking tensile fracture behaviour of engineered cementitious composites. Eng Fract Mech 160:52–66

    Article  Google Scholar 

  126. Fereidoon A, Rajabpour M, Hemmatian H (2013) Fracture analysis of epoxy/SWCNT nanocomposite based on global–local finite element model. Compos B 54:400–408

    Article  Google Scholar 

  127. Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314

    Article  Google Scholar 

  128. Cai Y, Zhuang X, Augarde C (2010) A new partition of unity finite element free from linear dependence problem and processing delta property. Comput Methods Appl Mech Eng 199:1036–1043

    Article  Google Scholar 

  129. Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on Lagrangian kernels. Comput Methods Appl Mech Eng 193(12–14):1035–1063

    Article  Google Scholar 

  130. Belytschko T, Lu YY, Gu L (1994) Element-free galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  Google Scholar 

  131. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  Google Scholar 

  132. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995b) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38:1655–1679

    Article  Google Scholar 

  133. Daux CC, Möes N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48:1741–1760

    Article  Google Scholar 

  134. Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modeling. Int J Numer Methods Eng 48:1549–1570

    Article  Google Scholar 

  135. Zi G, Chen H, Xu JX, Belytschko T (2005) The extended finite element method for dynamic fractures. Shock Vib 12(1):9–23

    Article  Google Scholar 

  136. Areias PMA, Belytschko T (2005) Non-linear analysis of shells with arbitrary evolving cracks using XFEM. Int J Numer Methods Eng 62:384–415

    Article  Google Scholar 

  137. Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63:760–788

    Article  Google Scholar 

  138. Bordas SPA, Rabczuk T, Nguyen-Xuan H, Natarajan S, Bog T, Nguyen VP, Do MQ, Nguyen VH (2010) Strain smoothing in FEM and XFEM. Comput Struct 88(23–24):1419–1443

    Article  Google Scholar 

  139. Bordas SPA, Natarajan S, Pont SD, Rabczuk T, Kerfriden P, Mahapatra DR, Noel D, Gao Z, Gao Z (2011) On the performance of strain smoothing for enriched finite element approximations (XFEM/GFEM/PUFEM). Int J Numer Methods Eng 86(4–5):637–666

    Article  Google Scholar 

  140. Nanthakumar SS, Lahmer T, Rabczuk T (2013) Detection of flaws in piezoelectric structures using xfem. Int J Numer Methods Eng 96(6):373–389

    Article  Google Scholar 

  141. Nanthakumar SS, Lahmer T, Rabczuk T (2014) Detection of multiple flaws in piezoelectric structures using XFEM and level sets. Comput Methods Appl Mech Eng 275:98112

    Article  Google Scholar 

  142. Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wuchner R, Bletzinger KU, Bazilevs Y, Rabczuk T (2011) Rotation free isogeometric thin shell analysis using PHT-splines. Comput Methods Appl Mech Eng 200(47–48):3410–3424

    Article  Google Scholar 

  143. Nguyen-Xuan H, Liu GR, Bordas SPA, Natarajan S, Rabczuk T (2013) An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Comput Methods Appl Mech Eng 253:252–273

    Article  Google Scholar 

  144. Vu-Bac N, Nguyen-Xuan H, Chen L, Bordas SPA, Kerfriden P, Simpson RN, Liu GR, Rabczuk T (2011) A noded-based smoothed XFEM for fracture mechanics. Comput Model Eng Sci 73:331–356

    Google Scholar 

  145. Strouboulis T, Copps K, Babuska I (2000) The generalized finite element method: an example of its implementation and illustration of its performance. Int J Numer Methods Eng 47:1401–1417

    Article  Google Scholar 

  146. Strouboulis T, Copps K, Babuska I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190(32–33):4081–4193

    Article  Google Scholar 

  147. Strouboulis T, Zhang L, Babuska I (2003) Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids. Comput Methods Appl Mech Eng 192(28):3109–3161

    Article  Google Scholar 

  148. Strouboulis T, Babuska I, Hidajat R (2006) The generalized finite element method for Helmholtz equation: theory, computation, and open problems. Comput Methods Appl Mech Eng 195:4711–4731

    Article  Google Scholar 

  149. Strouboulis T, Hidajat R, Babuska I (2008) The generalized finite element method for helmholtz equation, Part II: effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment. Comput Methods Appl Mech Eng 197:364–380

    Article  Google Scholar 

  150. Babuska I, Banerjee U, Osborn JE (2004) Generalized finite element methods: main ideas, results, and perspective. Int J Comput Methods 1(1):67–103

    Article  Google Scholar 

  151. Rabczuk T, Zi G (2007a) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39:743–760

    Article  Google Scholar 

  152. Rabczuk T, Bordas SP, Zi G (2007b) A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Comput Mech 40(3):473–495

    Article  Google Scholar 

  153. Zi G, Rabczuk T, Wall W (2007) Extended meshfree methods without branch enrichment for cohesive cracks. Comput Mech 40(2):367–382

    Article  Google Scholar 

  154. Bordas SPA, Rabczuk T, Zi G (2008) Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Eng Fract Mech 75(5):943–960

    Article  Google Scholar 

  155. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2008) A geometrically non-linear three dimensional cohesive crack method for reinforced concrete structures. Eng Fract Mech 75(16):4740–4758

    Article  Google Scholar 

  156. Rabczuk T, Samaniego E (2008) Discontinuous modelling of shear bands using adaptive meshfree methods. Comput Methods Appl Mech Eng 197(6–8):641–658

    Article  Google Scholar 

  157. Rabczuk T, Gracie R, Song J-H, Belytschko T (2010) Immersed particle method for fluid-structure interaction. Int J Numer Methods Eng 81(1):48–71

    Google Scholar 

  158. Ventura G, Xu XJ, Belytschko T (2002) A vector level set method and new discontinuity approximations for crack growth by EFG. Int J Numer Methods Eng 54:923–944

    Article  Google Scholar 

  159. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61:2316–2343

    Article  Google Scholar 

  160. Rabczuk T, Areias PMA (2006) A new approach for modelling slip lines in geological materials with cohesive models. Int J Numer Anal Methods Eng 30(11):1159–1172

    Article  Google Scholar 

  161. Rabczuk T, Belytschko T (2006) Application of particle methods to static fracture of reinforced concrete structures. Int J Fract 137(1–4):19–49

    Article  Google Scholar 

  162. Rabczuk T, Belytschko T (2007) A three dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 1960(29–30):2777–2799

    Article  Google Scholar 

  163. Rabczuk T, Areias PMA, Belytschko T (2007) A meshfree thin shell method for nonlinear dynamic fracture. Int J Numer Methods Eng 72(5):524–548

    Article  Google Scholar 

  164. Rabczuk T, Song JH, Belytschko T (2009) Simulations of instability in dynamic fracture by the cracking particles method. Eng Fract Mech 76(6):730–741

    Article  Google Scholar 

  165. Rabczuk T, Zi G, Bordas SP, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199(37–40):2437–2455

    Article  Google Scholar 

  166. Vu-Bac N, Nguyen-Xuan H, Chen L, Bordas SPA, Zhuang X, Liu GR, Rabczuk T (2013) A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. J Appl Math. doi:10.1155/2013/978026

    Google Scholar 

  167. Chau-Dinh T, Zi G, Lee PS, Song JH, Rabczuk T (2010) Phantom-node method for shell models with arbitrary cracks. Comput Struct 92–93:242–256

    Google Scholar 

  168. Rabczuk T, Zi G, Gerstenberger A, Wall WA (2008) A new crack tip element for the phantom node method with arbitrary cohesive cracks. Int J Numer Methods Eng 75(5):577–599

    Article  Google Scholar 

  169. Song JH, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67(6):868–893

    Article  Google Scholar 

  170. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33–35):3523–3540

    Article  Google Scholar 

  171. Mergheim J, Kuhl E, Steinmann P (2005) A finite element method for the computational modelling of cohesive cracks. Int J Numer Methods Eng 63:276–289

    Article  Google Scholar 

  172. Mergheim J, Kuhl E, Steinmann P (2007) Towards the algorithmic treatment of 3d strong discontinuities. Commun Numer Methods Eng 23:97–108

    Article  Google Scholar 

  173. Cai Y, Zhuang X, Zhu H (2013) A generalized and efficient method for finite cover generation in the numerical manifold method. Int J Comput Methods 10(5):1350028

    Article  Google Scholar 

  174. Guowei M, Xinmei A, Lei H (2010) The numerical manifold method: a review. Int J Comput Methods 7(1):1–32

    Article  Google Scholar 

  175. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273–1311

    Article  Google Scholar 

  176. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778

    Article  Google Scholar 

  177. Msekh MA, Sargado M, Jamshidian M, Areias P, Rabczuk T (2015) ABAQUS implementation of phase-field model for brittle fracture. Comput Mater Sci 96B:472–484

    Article  Google Scholar 

  178. Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M (2014) Phase-field modeling of fracture in linear thin shells. Theoret Appl Fract Mech 69:102–109

    Article  Google Scholar 

  179. Seleson P, Beneddine S, Prudhomme S (2013) A force-based coupling scheme for peridynamics and classical elasticity. Comput Mater Sci 66:34–49

    Article  Google Scholar 

  180. Tong Q, Li S (2016) Multiscale coupling of molecular dynamics and peridynamics. J Mech Phys Solids 95:169–187

    Article  Google Scholar 

  181. Hughes TJR, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  Google Scholar 

  182. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5–8):229–263

    Article  Google Scholar 

  183. Nguyen VP, Nguyen-Xuan H (2013) High-order b-splines based finite elements for the delamination analysis of laminated composites. Compos Struct 102:261–275

    Article  Google Scholar 

  184. Chien HT, Ferreira AJ, Carrera E, Nguyen-Xuan H (2013) Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory. Compos Struct 104:196–214

    Article  Google Scholar 

  185. Chien HT, Ferreira AJM, Rabczuk T, Bordas SPA, Nguyen-Xuan H (2014) Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. Eur J Mech A Solids 43:89–108

    Article  Google Scholar 

  186. Nguyen-Xuan H, Thai CH, Nguyen-Thoi T (2013) Isogeometric finite element analysis of composite sandwich plates using a new higher order shear deformation theory. Compos Part B 55:558–574

    Article  Google Scholar 

  187. Areias PMA, Rabczuk T (2013) Finite strain fracture of plates and shells with configurational forces and edge rotations. Int J Numer Methods Eng 94:1099–1122

    Article  Google Scholar 

  188. Rabczuk T, Areias PMA (2006) A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Comput Model Eng Sci 16(2):115–130

    Google Scholar 

  189. Nguyen-Thanh N, Valizadeh N, Nguyen MN, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T (2015) An extended isogeometric thin shell analysis based on Kirchhoff–Love theory. Comput Methods Appl Mech Eng 284:265–291

    Article  Google Scholar 

  190. Plews JA, Duarte CA (2016) A two-scale generalized finite element approach for modeling localized thermoplasticity. Int J Numer Methods Eng 108:1123–1158

    Article  Google Scholar 

  191. Akkutlu IY, Efendiev Y, Vasilyeva M (2016) Multiscale model reduction for shale gas transport in fractured media. Comput Geosci 20:953–973

    Article  Google Scholar 

  192. Efendiev E (2015) Generalized multiscale finite element methods (GMsFEM). J Comput Phys 251:116–135

    Article  Google Scholar 

  193. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Article  Google Scholar 

  194. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  Google Scholar 

  195. Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng 17:043001

    Article  Google Scholar 

  196. Fries T-P, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304

    Google Scholar 

  197. Karihaloo BL, Xiao QZ (2003) Modelling of stationary and growing cracks in fe framework without remeshing: a state-of the-art review. Comput Struct 81(3):119–129

  198. Mohammadi S (2008) Extended finite element method for fracture analysis of structures, vol Oxford. Blackwell Publishing, Hoboken

    Book  Google Scholar 

  199. Nguyen VP, Rabczuk T, Bordas SP, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813

    Article  Google Scholar 

  200. Belytschko T, Tabbara M (1996) Dynamic fracture using element-free Galerkin methods. Int J Numer Methods Eng 39:923–938

    Article  Google Scholar 

  201. Bauman P, Dhia H, Elkhodja N, Oden J, Prudhomme S (2008) On the application of the Arlequin method to the coupling of particle and continuum models. Comput Mech 42(4):511–530

    Article  Google Scholar 

  202. Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T (2014) XLME interpolants, a seamless bridge between xfem and enriched meshless methods. Comput Mech 53(1):45–57

    Article  Google Scholar 

  203. Atluri SN, Shengping S (2002) The meshless local Petrov-Galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element methods. Comput Model Eng Sci 3(1):11–51

    Google Scholar 

  204. Liu K, Long S, Li G (2006) A simple and less-costly meshless local Petrov-Galerkin (MLPG) method for the dynamic fracture problem. Eng Anal Boundary Elem 30(1):72–76

    Article  Google Scholar 

  205. Liu GR, Gu YT (2001) A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids. J Sound Vib 246(1):29–46

    Article  Google Scholar 

  206. Liu GR, Zhang GY, Gu YT, Wang YY (2005) A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput Mech 36(6):421–430

    Article  Google Scholar 

  207. Shih-Wei Y, Yung-Ming W, Chih-Ping W, Hsuan-Teh H (2010) A meshless collocation method based on the differential reproducing kernel approximation. Comput Model Eng Sci 60:1–39

    Google Scholar 

  208. Zhuang X, Augarde C, Mathisen K (2012) Fracture modelling using meshless methods and level sets in 3D: framework and modelling. Int J Numer Methods Eng 92:969–998

    Article  Google Scholar 

  209. Chih-Ping W, Shih-Wei Y, Ming-Wang Y, Hsuan-Teh H (2011) A meshless collocation method for the plane problems of functionally graded material beams and plates using the DRK interpolation. Mech Res Commun 38:471–476

    Google Scholar 

  210. Yung-Ming W, Syuan-Mu C, Chih-Ping W (2010) A meshless collocation method based on the differential reproducing kernel interpolation. Comput Mech 45:585–606

    Article  Google Scholar 

  211. Griffith AA (1921) The phenomena of rapture and flow in solids. Philos Trans R Soc Lond A 221:163–198

    Article  Google Scholar 

  212. Irwin G (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  213. Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77(18):3625–3634

    Article  Google Scholar 

  214. Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87:045501

    Article  Google Scholar 

  215. Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture. Comput Methods Appl Mech Eng 273:100–118

    Article  Google Scholar 

  216. Areias P, Rabczuk T, Msekh MA (2016) Phase-field analysis of finite-strain plates and shells including element subdivision. Comput Methods Appl Mech Eng 312:322–350

    Article  Google Scholar 

  217. Yingjun G, Zhirong L, Lilin H, Hong M (2016) Phase field crystal study of nano-crack growth and branch in materials. Modell Simul Mater Sci Eng 24:055010

    Article  Google Scholar 

  218. Giovanardi B, Scotti A, Formaggia L (2017) A hybrid XFEM-phase field (Xfield) method for crack propagation in brittle elastic materials. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2017.03.039

    Google Scholar 

  219. Areias PMA, Song JH, Belytschko T (2006) Analysis of fracture in thin shells by overlapping paired elements. Comput Methods Appl Mech Eng 195:5343–5360

    Article  Google Scholar 

  220. Liu WK, Qian D, Gonella S, Li S, Chen W, Chirputkar S (2010) Multiscale methods for mechanical science of complex materials: bridging from quantum to stochastic multiresolution continuum. Int J Numer Methods Eng 83:1039–1080

    Article  Google Scholar 

  221. Chen H, Zang M, Zhang YX (2016) A ghost particle-based coupling approach for the combined finite-discrete element method. Finite Elem Anal Des 114:68–77

    Article  Google Scholar 

  222. Kojic M, Filipovic N, Tsuda A (2008) A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method. Comput Methods Appl Mech Eng 197(6–8):821–833

    Article  Google Scholar 

  223. Li X, Wan K (2011) A bridging scale method for granular materials with discrete particle assembly-cosserat continuum modeling. Comput Geotech 38:1052–1068

    Article  Google Scholar 

  224. Kadowaki H, Liu WK (2004) Bridging multi-scale method for localization problems. Comput Methods Appl Mech Eng 193(30–32):3267–3302

    Article  Google Scholar 

  225. Tang S, Hou TY, Liu WK (2006) A mathematical framework of the bridging scale method. Int J Numer Methods Eng 65:1688–1713

    Article  Google Scholar 

  226. Wang W, Chang K-H (2013) Continuum-based sensitivity analysis for coupled atomistic and continuum simulations for 2-d applications using bridging scale decomposition. Struct Multidiscipl Optim 47:867–892

    Article  Google Scholar 

  227. Guidault PA, Belytschko T (2007) On the \({L}^2\) and the \({H}^1\) couplings for an overlapping domain decomposition method using lagrange multipliers. Int J Numer Methods Eng 70:322–350

    Article  Google Scholar 

  228. Gracie R, Belytschko T (2011) Adaptive continuum-atomistic simulations of dislocation dynamics. Int J Numer Methods Eng 86(4–5):575–597

    Article  Google Scholar 

  229. Belytschko T, Xiao SP (2004) A bridging domain method for coupling continua with molecular dynamics. Comput Methods Appl Mech Eng 193(17–20):1645–1669

    Google Scholar 

  230. Fish J, Chen W (2004) Discrete-to-continuum bridging based on multigrid principles. Comput Methods Appl Mech Eng 193:1693–1711

    Article  Google Scholar 

  231. Tabarraei A, Wang X, Sadeghirad A, Song JH (2014) An enhanced bridging domain method for linking atomistic and continuum domains. Finite Elem Anal Des 92:36–49

    Article  Google Scholar 

  232. Xu M, Belytschko T (2008) Conservation properties of the bridging domain method for coupled molecular/continuum dynamics. Int J Numer Methods Eng 76:278–294

    Article  Google Scholar 

  233. Xu M, Gracie R, Belytschko T (2010) A continuum-to-atomistic bridging domain method for composite lattices. Int J Numer Methods Eng 81:1635–1658

    Google Scholar 

  234. Anciaux G, Ramisetti SB, Molinari JF (2012) A finite temperature bridging domain method for MD-FE coupling and application to a contact problem. Comput Methods Appl Mech Eng 205–208:204–212

    Article  Google Scholar 

  235. Tu F, Ling D, Bu L, Yang Q (2014) Generalized bridging domain method for coupling finite elements with discrete elements. Comput Methods Appl Mech Eng 276:509–533

    Article  Google Scholar 

  236. Gurtin ME, Podio-Guidugli P (1996) Configurational forces and the basic laws for crack propagation. J Mech Phys Solids 44(6):905–927

    Article  Google Scholar 

  237. Gurtin ME, Podio-Guidugli P (1998) Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving. J Mech Phys Solids 46(8):1343–1378

    Article  Google Scholar 

  238. Miehe C, Gürses E (2007) A robust algorithm for configurational-force-driven brittle crack propagation with radaptive mesh alignment. Int J Numer Methods Eng 72(2):127–157

    Article  Google Scholar 

  239. Mosler J (2009) A variationally consistent approach for crack propagation based on configurational forces. In: IUTAM symposium on progress in the theory and numerics of configurational mechanics, vol 17. IUTAM Bookseries, pp 239–247

  240. Sih GC (1974) Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 10(3):305–321

    Article  Google Scholar 

  241. Wu CH (1978) Fracture under combined loads by maximum energy release rate criterion. J Appl Mech Trans ASME 45(3):553–558

    Article  Google Scholar 

  242. Goldstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int J Fract 10(4):507–523

    Article  Google Scholar 

  243. Benedetti I, Aliabadi MH (2015) Multiscale modeling of polycrystalline materials: a boundary element approach to material degradation and fracture. Comput Methods Appl Mech Eng 289:429–453

    Article  Google Scholar 

  244. Cynthia LK, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085

    Article  Google Scholar 

  245. Budarapu PR, Gracie R, Yang S-W, Zhuang X, Rabczuk T (2014) Efficient coarse graining in multiscale modeling of fracture. Theoret Appl Fract Mech 69:126–143

    Article  Google Scholar 

  246. Dipasquale D, Zaccariotto M, Galvanetto U (2014) Crack propagation with adaptive grid refinement in 2D peridynamics. Int J Fract 190:1–22

    Article  Google Scholar 

  247. Unger JF (2013) An fe\(^2\)-x\(^1\) approach for multiscale localization phenomena. J Mech Phys Solids 61:928–948

    Article  Google Scholar 

  248. Park K, Paulino GH, Celes W, Espinha R (2012) Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture. Int J Numer Methods Eng 92:1–35

    Article  Google Scholar 

  249. Belytschko T, Song JH (2010) Coarse-graining of multiscale crack propagation. Int J Numer Methods Eng 81(5):537–563

    Google Scholar 

  250. Miller RE, Tadmor EB (2009) A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model Simul Mater Sci Eng 17:053001

    Article  Google Scholar 

  251. Nair AK, Warner DH, Hennig RG (2011) Coupled quantum-continuum analysis of crack tip processes in aluminum. J Mech Phys Solids 59(12):2476–2487

    Article  Google Scholar 

  252. Liu W, Hong J-W (2012) A coupling approach of discretized peridynamics with finite element method. Comput Methods Appl Mech Eng 245–246:163–175

    Article  Google Scholar 

  253. Talebian M, Al-Khoury R, Sluys LJ (2013) A computational model for coupled multiphysics processes of CO\(_2\) sequestration in fractured porous media. Adv Water Resour 59:238–255

    Article  Google Scholar 

  254. Jothi S, Croft TN, Brown SGR (2015) Multiscale multiphysics model for hydrogen embrittlement in polycrystalline nickel. J Alloys Compd 645:S500–S504

    Article  Google Scholar 

  255. Reifsnider K, Raihan MDR, Vadlamudi V (2016) Heterogeneous fracture mechanics for multi-defect analysis. Compos Struct 156:20–28

    Article  Google Scholar 

  256. Grujicic M, Ramaswami S, Yavari R, Galgalikar R (2016) Multiphysics computational analysis of white-etch cracking failure mode in wind turbine gearbox bearings. Proc IMechE Part L J Mater Des Appl 230(1):43–63

    Google Scholar 

  257. Wu W, Xiao X, Huang X, Yan S (2014) A multiphysics model for the in situ stress analysis of the separator in a lithium-ion battery cell. Comput Mater Sci 83:127–136

    Article  Google Scholar 

  258. Jiang T, Rudraraju S, Roy A, Van der Ven A, Garikipati K, Falk ML (2016) Multiphysics simulations of lithiation-induced stress in Li\(_{1+x}\) Ti\(_2\)O\(_4\) electrode particles. J Phys Chem C 120:27871–27881

    Article  Google Scholar 

  259. PantanoMF Bernai RA, Pagnotta L, Espinosa HD (2015) Multiphysics design and implementation of a microsystem for displacement-controlled tensile testing of nanomaterials. Meccanica 50:549–569

    Article  Google Scholar 

  260. Saft A, Kaliske M (2013) A hybrid interface-element for the simulation of moisture-induced cracks in wood. Eng Fract Mech 102:32–50

    Article  Google Scholar 

  261. Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

    Article  Google Scholar 

  262. Mielke SL, Troya D, Zhang S, Li J-L, Xiao S, Car R, Ruoff RS, Schatz GC, Belytschko T (2004) The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem Phys Lett 390:413–420

    Article  Google Scholar 

  263. Svensson MM, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels Alder reactions and Pt(P(t-Bu)3)2+H2 oxidative addition. J Phys Chem 100:19357–19363

    Article  Google Scholar 

  264. Khare R, Mielke SL, Schatz GC, Belytschko T (2008) Multiscale coupling schemes spanning the quantum mechanical, atomistic forcefield, and continuum regimes. Comput Methods Appl Mech Eng 197:3190–3202

    Article  Google Scholar 

  265. Park JY, Park CH, Park JS, Kong K-J, Chang H, Im S (2010) Multiscale computations for carbon nanotubes based on a hybrid QM/QC (quantum mechanical and quasicontinuum) approach. J Mech Phys Solids 58:86–102

    Article  Google Scholar 

  266. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    Article  Google Scholar 

  267. Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–166

    Article  Google Scholar 

  268. Ren H, Zhuang X, Cai Y, Rabczuk T (2016) Dual-horizon peridynamics. Int J Numer Meth Eng 108(12):1451–1476

    Article  Google Scholar 

  269. Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: A stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782

    Article  Google Scholar 

  270. Parks ML, Lehoucq RB, Plimpton SJ, Silling SA (2008) Implementing peridynamics within a molecular dynamics code. Comput Phys Commun 179:777–783

    Article  Google Scholar 

  271. Rahman R, Foster JT (2014) Bridging the length scales through nonlocal hierarchical multiscale modeling scheme. Comput Mater Sci 92:401–415

    Article  Google Scholar 

  272. Brothers MD, Foster JT, Millwater HR (2014) A comparison of different methods for calculating tangent-stiffness matrices in a massively parallel computational peridynamics code. Comput Methods Appl Mech Eng 279:247–267

    Article  Google Scholar 

  273. Zhang Y, Yao H, Ortiz C, Xu J, Dao M (2012) Bio-inspired interfacial strengthening strategy through geometrically interlocking designs. J Mech Behav Biomed Mater 15:70–77

    Article  Google Scholar 

  274. Egan P, Sinko R, LeDuc PR, Keten S (2005) The role of mechanics in biological and bio-inspired systems. Nat Commun 6:7418

    Article  Google Scholar 

  275. Tang Z, Kotov NA, Magonov S, Ozturk B (2003) Nanostructured artificial nacre. Nat Mater 2(6):413

    Article  Google Scholar 

  276. Niebel TP, Bouville F, Kokkinis D, Studart AR (2016) Role of the polymer phase in the mechanics of nacre-like composites. J Mech Phys Solids 96:133–146

    Article  Google Scholar 

  277. Awaja F, Zhang S, Tripathi M, Nikiforov A, Pugno N (2016) Cracks, microcracks and fracture in polymer structures: formation, detection, autonomic repair. Prog Mater Sci 83:536–573

    Article  Google Scholar 

  278. Wang W, Elbanna A (2014) Crack propagation in bone on the scale of mineralized collagen fibrils: role of polymers with sacrificial bonds and hidden length. Bone 68:20–31

    Article  Google Scholar 

  279. Fratzl P, Kolednik O, Fischer FD, Dean MN (2016) The mechanics of tessellations-bioinspired strategies for fracture resistance. Chem Soc Rev 45:252

    Article  Google Scholar 

  280. Ma S, Scheider I, Bargmann S (2016) Continuum damage modeling and simulation of hierarchical dental enamel. Model Simul Mater Sci Eng 24:045014

    Article  Google Scholar 

  281. Ural A, Mischinski S (2013) Multiscale modeling of bone fracture using cohesive finite elements. Eng Fract Mech 103:141–152

    Article  Google Scholar 

  282. Rabiei R, Bekah S, Barthelat F (2010) Failure mode transition in nacre and bone-like materials. Acta Biomater 6:4081–4089

    Article  Google Scholar 

Download references

Acknowledgements

PRB acknowledge the funding from the European Research Council (ERC), Grant No. 306622 through the ERC Starting Grant “Multi-field and multi-scale Computational Approach to Design and Durability of PhotoVoltaic Modules”—CA2PVM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Budarapu.

Additional information

\(^\bigstar \)Dedicated to the researchers of IISc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budarapu, P.R., Rabczuk, T. Multiscale Methods for Fracture: A Review\(^\bigstar \) . J Indian Inst Sci 97, 339–376 (2017). https://doi.org/10.1007/s41745-017-0041-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-017-0041-5

Keywords

Navigation