Skip to main content
Log in

Hydrogen Bonding: A Coulombic σ-Hole Interaction

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Molecular electrostatic potentials, in conjunction with polarization, provide the key to understanding hydrogen bonding. As required by the Hellmann–Feynman theorem, hydrogen bonding is a Coulombic interaction between (a) a positive electrostatic potential associated with a region of lower electronic density on the hydrogen (a σ-hole), and (b) a negative site on the hydrogen-bond acceptor. The charge distributions of both the hydrogen-bond donor and the acceptor reflect the polarizing effects of each other’s electric fields. The greater the polarization, the stronger the interaction. This interpretation of hydrogen bonding applies to all of the different categories into which it has been subdivided; they are fundamentally similar. We show that if polarization is minor and the hydrogen bonds relatively weak, then their interaction energies correlate well with the product of the most positive electrostatic potential on the hydrogen and the most negative one on the negative site. It is argued that the partial covalent character that is often attributed to hydrogen bonds simply reflects a greater degree of polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Similar content being viewed by others

References

  1. Grabowski SJ, Sokalski WA, Leszczynski J (2005) How short can the H—H intermolecular contact be? New findings that reveal the covalent nature of extremely strong interactions. J Phys Chem A 109:4331–4341

    CAS  Google Scholar 

  2. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Defining the hydrogen bond: an account (IUPAC Technical Report). Pure Appl Chem 83:1619–1636

    CAS  Google Scholar 

  3. Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books. www.uscibooks.com

  4. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  5. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    CAS  Google Scholar 

  6. Perrin CL (1991) Atomic size dependence of Bader electron populations: significance for questions of resonance stabilization. J Am Chem Soc 113:2865–2868

    CAS  Google Scholar 

  7. Saethre LJ, Siggel MRF, Thomas TD (1991) Molecular charge distribution, core ionization energies, and the point-charge approximation. J Am Chem Soc 113:5224–5230

    CAS  Google Scholar 

  8. Wiener JJM, Grice ME, Murray JS, Politzer P (1996) Molecular electrostatic potentials as indicators of covalent radii. J Chem Phys 104:5109–5111

    CAS  Google Scholar 

  9. Haaland A, Helgaker TU, Ruud K, Shorokhov DJ (2000) Should gaseous BF3 and SiF4 be described as ionic compounds? J Chem Educ 77:1076–1080

    CAS  Google Scholar 

  10. De Proft F, Van Alsenoy C, Peeters A, Langenaker W, Geerlings P (2002) Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density. J Comput Chem 23:1198–1209

    Google Scholar 

  11. Mitzel NW, Vojinović K, Frӧhlich R, Foerster T, Robertson HE, Borisenko KB, Rankin DWH (2005) Three-membered ring or open chain molecule—(F3C)F2SiONMe2 a model for the α- effect in silicon chemistry. J Am Chem Soc 127:13705–13713

    CAS  Google Scholar 

  12. Cerpa E, Krapp A, Vela A, Merino G (2008) The implications of symmetry of the external potential on bond paths. Chem Eur J 14:10232–10234

    CAS  Google Scholar 

  13. Grimme S, Mück-Lichtenfeld C, Erker G, Kehr G, Wang H, Beckers H, Willner H (2009) When do interacting atoms form a chemical bond? Spectroscopic measurements and theoretical analyses of dideuteriophenanthrene. Angew Chem Int Ed 48:2592–2595

    CAS  Google Scholar 

  14. Lane JR, Contreras-Garcia J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) Are bond critical points really critical for hydrogen bonding? J Chem Theory Comput 9:3263–3266

    CAS  Google Scholar 

  15. Foroutan-Nejad C, Shahbazian S, Marek R (2014) Toward a consistent interpretation of the QTAIM: tortuous link between chemical bonds, interactions and bond/line paths. Chem Eur J 20:10140–10152

    CAS  Google Scholar 

  16. Spackman MA (2015) How reliable are intermolecular interaction energies estimated from topological analysis of experimental electron densities? Cryst Growth Des 15:5624–5628

    CAS  Google Scholar 

  17. Wick CR, Clark T (2018) On bond-critical points in QTAIM and weak interactions. J Mol Model 24:142

    Google Scholar 

  18. Clark T, Murray JS, Politzer P (2018) A perspective on quantum mechanics and chemical concepts in describing noncovalent interactions. Phys Chem Chem Phys 20:30076–30082

    CAS  Google Scholar 

  19. Politzer P, Murray JS (2019) A look at bonds and bonding. Struct Chem 30:1153–1157

    CAS  Google Scholar 

  20. Stewart RF (1979) On the mapping of electrostatic properties from Bragg diffraction data. Chem Phys Lett 65:335–342

    CAS  Google Scholar 

  21. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New York

    Google Scholar 

  22. Klein CL, Stevens ED (1988) Charge density studies of drug molecules. In: Liebman JF, Goldberg A (eds) Structure and reactivity. VCH Publishers, New York, pp 26–64

    Google Scholar 

  23. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109:7968–7979

    CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. (2009) Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT

  25. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    CAS  Google Scholar 

  26. Kollman P, McKelvey J, Johansson A, Rothenberg S (1975) Theoretical studies of hydrogen-bonded dimers. J Am Chem Soc 97:955–965

    CAS  Google Scholar 

  27. Politzer P, Daiker KC (1981) Models for chemical reactivity. In: Deb BM (ed) The force concept in chemistry. Van Nostrand Reinhold, New York, pp 294–387

    Google Scholar 

  28. Legon AC, Millen DJ (1982) Determination of properties of hydrogen-bonded dimers by rotational spectroscopy and a classification of dimer geometries. Faraday Discuss Chem Soc 73:71–87

    CAS  Google Scholar 

  29. Buckingham AD, Fowler PW (1985) A model for the geometries of Van der Waals complexes. Can J Chem 63:2018–2025

    CAS  Google Scholar 

  30. Murray JS, Politzer P (1991) Correlations between the solvent hydrogen-bond-donating parameter α and the calculated molecular surface electrostatic potential. J Org Chem 56:6715–6717

    CAS  Google Scholar 

  31. Murray JS, Ranganathan S, Politzer P (1991) Correlations between the solvent hydrogen bond acceptor parameter β and the calculated molecular electrostatic potential. J Org Chem 56:3734–3737

    CAS  Google Scholar 

  32. Hagelin H, Murray JS, Brinck T, Berthelot M, Politzer P (1995) Family-independent relationships between computed molecular surface quantities and solute hydrogen bond acidity/basicity and solute-induced methanol O–H infrared frequency shifts. Can J Chem 73:483–488

    CAS  Google Scholar 

  33. Kamlet MJ, Abboud J-LM, Abraham MH, Taft RW (1983) Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, β, and some methods for simplifying the generalized solvatochromic equation. J Org Chem 48:2877–2887

    CAS  Google Scholar 

  34. Taft RW, Murray JS (1994) Some effects of molecular structure on hydrogen-bonding interactions. Some macroscopic and microscopic views from experimental and theoretical results. In: Politzer P, Murray JS (eds) Quantitative treatments of solute/solvent interactions. Elsevier, Amsterdam, pp 55–82

    Google Scholar 

  35. Hunter CA (2004) Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew Chem Int Ed 43:5310–5324

    CAS  Google Scholar 

  36. Politzer P, Murray JS (2015) Quantitative analyses of molecular surface electrostatic potentials in relation to hydrogen bonding and co-crystallization. Cryst Growth Des 15:3767–3774

    CAS  Google Scholar 

  37. Etter MC (1990) Encoding and decoding hydrogen bond patterns of organic compounds. Acc Chem Res 23:120–126

    CAS  Google Scholar 

  38. Etter MC (1991) Hydrogen bonds as design elements in organic chemistry. J Phys Chem 95:4601–4610

    CAS  Google Scholar 

  39. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    CAS  Google Scholar 

  40. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    CAS  Google Scholar 

  41. Politzer P, Murray JS, Clark T (2015) σ-Hole bonding: a physical interpretation. Top Curr Chem 358:19–42

    CAS  Google Scholar 

  42. Politzer P, Murray JS, Clark T, Resnati G (2017) The σ-hole revisited. Phys Chem Chem Phys 19:32166–32178

    CAS  Google Scholar 

  43. Politzer P, Murray JS, Clark T (2017) Intermolecular interactions in crystals. In: Novoa JJ (ed) Intermolecular interactions in crystals: fundamentals of crystal engineering. RSC Publishing, London

    Google Scholar 

  44. Politzer P, Murray JS, Jancić GV, Zarić SD (2014) σ-Hole interactions of covalently-bonded nitrogen, phosphorus and arsenic: a survey of crystal structures. Crystals 4:12–31

    Google Scholar 

  45. Kolář MH, Hobza P (2016) Computer-modeling of halogen bonds and other σ-hole interactions. Chem Rev 116:5155–5187

    Google Scholar 

  46. Scilabra P, Terraneo G, Resnati G (2019) The chalcogen bond in crystalline solids: a world parallel to halogen bond. Acc Chem Res 52:1313–1324

    CAS  Google Scholar 

  47. Hennemann M, Murray JS, Politzer P, Riley KE, Clark T (2012) Polarization-induced σ-holes and hydrogen bonding. J Mol Model 18:2461–2469

    CAS  Google Scholar 

  48. Shields ZP-I, Murray JS, Politzer P (2010) Directional tendencies of halogen and hydrogen bonding. Int J Quant Chem 110:2823–2832

    CAS  Google Scholar 

  49. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    CAS  Google Scholar 

  50. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: lex parsimoniae (Occam’s Razor). Comp Theor Chem 998:2–8

    CAS  Google Scholar 

  51. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:521

    Google Scholar 

  52. Clark T (2017) Polarization, donor-acceptor interactions, and covalent contributions in weak interactions: A clarification. J Mol Model 23:297(1–10)

    Google Scholar 

  53. Clark T (2017) Halogen bonds and σ-holes. Faraday Discuss 203:9–27

    CAS  Google Scholar 

  54. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in σ-hole strength and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I). J Mol Model 19:2739–2746

    CAS  Google Scholar 

  55. Wang H, Wang W, Jin WH (2016) σ-Hole bond vs π-hole bond: a comparison based on halogen bond. Chem Rev 116:5072–5104

    CAS  Google Scholar 

  56. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    CAS  Google Scholar 

  57. Politzer P, Murray JS, Halogen bonding and beyond: Factors influencing the nature of CN-R and SiN-R complexes with F-Cl and Cl2, Theor. Chem. Acc. (2012) 131:1114(1-10)

  58. Politzer P, Murray JS, Clark T (2019) Explicit inclusion of polarizing electric fields in σ- and π-hole interactions. J. Phys. Chem. A. https://doi.org/10.1021/acs.jpca.9b08750

    Article  Google Scholar 

  59. Politzer P, Murray JS (2019) Electrostatics and polarization in σ- and π-hole noncovalent interactions: An overview. ChemPhysChem. https://doi.org/10.1002/cphc.201900968R1

    Article  Google Scholar 

  60. Hellmann H (1937) Einführung in die Quantenchemie. Franz Deuticke, Leipzig

    Google Scholar 

  61. Feynman RP (1939) Forces in molecules. Phys Rev 56:340–343

    CAS  Google Scholar 

  62. Huber SM, Jimenez-Izal E, Ugalde JM, Infante I (2012) Unexpected trends in halogen-bond based noncovalent adducts. Chem. Comm. 48:7708–7710

    CAS  Google Scholar 

  63. Rosokha SV, Stern CL, Ritzert JT (2013) Experimental and computational probes of the nature of halogen bonding: complexes of bromine-containing molecules with bromide anions. Chem Eur J 19:8774–8788

    CAS  Google Scholar 

  64. Mitoraj MP, Michalak A (2013) Theoretical description of halogen bonding – an insight based on the natural orbitals for chemical valence combined with the extended-transition-state method (ets-nocv). J Mol Model 19:4681–4688

    CAS  Google Scholar 

  65. Wang C, Danovich D, Mo Y, Shaik S (2014) On the nature of the halogen bond. J Chem Theory Comput 10:3726–3737

    CAS  Google Scholar 

  66. Thirman J, Engelage E, Huber SM, Head-Gordon M (2018) Characterizing the interplay of Pauli repulsion, electrostatics, dispersion and charge transfer in halogen bonding with energy decomposition analysis. Phys Chem Chem Phys 20:905–915

    CAS  Google Scholar 

  67. Hirschfelder JO, Curtiss CF, Bird RB (1954) Theory of Gases and Liquids. Wiley, New York

    Google Scholar 

  68. Berlin T (1951) Binding Regions in Diatomic Molecules. J. Chem. Phys. 19:208–213

    CAS  Google Scholar 

  69. Bader RFW, Pauli Repulsion Exists Only in the Eye of the Beholder, Chem. – Eur. J. (2006) 12:2896-2901

    CAS  Google Scholar 

  70. Levine IN, Chemistry Quantum (eds) (2000) Prentice-Hall, 5th edn. Upper Saddle River, NJ

    Google Scholar 

  71. Morokuma K, Kitaura K (1981) Energy decomposition analysis of molecular interactions. In: Politzer P, Truhlar DG (eds) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Plenum Press, New York, pp 215–242

    Google Scholar 

  72. Sokalski WA, Roszak SM (1991) Efficient techniques for the decomposition of intermolecular interaction energy at SCF level and beyond. J. Mol. Struct. (Theochem) 234:387–400

    Google Scholar 

  73. Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94:1887–1930

    CAS  Google Scholar 

  74. Stone AJ (2008) Intermolecular potentials. Science 321:787–789

    CAS  Google Scholar 

  75. Stone AJ, Misquitta AJ (2009) Charge-transfer in symmetry-adapted perturbation theory. Chem Phys Lett 473:201–205

    CAS  Google Scholar 

  76. Stone AJ (2017) Natural Bond Orbitals and the Nature of the Hydrogen Bond. J Phys Chem A 121:1531–1534

    CAS  Google Scholar 

  77. Brinck T, Borrfors AN, Electrostatics and polarization determine the strength of the halogen bond: A red card for charge transfer, J. Mol. Model. (2019) 25:125(1-9)

  78. Clark T, Hesselmann A (2018) The Coulombic σ-hole model describes bonding in CX3I—Y complexes completely. Phys Chem Chem Phys 20:22849–22855

    CAS  Google Scholar 

  79. Clark T, Murray JS, Politzer P (2018) The σ-hole Coulombic interpretation of trihalide anion formation. ChemPhysChem 19:3044–3049

    CAS  Google Scholar 

  80. Marco J, Orza JM, Notario R (1994) Abboud J-LM, Hydrogen bonding of neutral species in the gas phase: the missing link. J Am Chem Soc 116:8841–8842

    CAS  Google Scholar 

  81. Abraham MH, Berthelot M, Laurence C, Taylor PJ, Analysis of hydrogen-bond complexation constants in 1,1,1-trichloroethane: the αH2 βH2 relationship. J. Chem. Soc., Perkin Trans. 2 (1998) 187-191

  82. Abraham MH, Platts JA (2001) Hydrogen bond structural group constants. J Org Chem 66:3484–3491

    CAS  Google Scholar 

  83. Abraham MH, Grellier PL, Prior DV, Taft RW, Morris JJ, Taylor PJ, Laurence C, Berthelot M, Doherty RM, Kamlet MJ (1988) About J-LM, Sraidi K, Guihéneuf G, A general treatment of hydrogen bond complexation constants in tetrachloromethane. J Am Chem Soc 110:8534–8536

    CAS  Google Scholar 

  84. Aakerӧy CB, Wijethunga TK, Desper J (2015) Molecular electrostatic potential dependent selectivity of hydrogen bonding. New J Chem 39:822–828

    Google Scholar 

  85. Lennard-Jones J, Pople JA, The molecular orbital theory of chemical valency. IX. The interaction of paired electrons in chemical bonds. Proc. Royal Soc., London, Series A (1951) 210:190-206

  86. Slater JC (1972) Hellmann-Feynman and virial theorems in the Xα method. J. Chem. Phys. 57:2389–2396

    CAS  Google Scholar 

  87. Bader RFW (2009) Bond paths are not chemical bonds. J Phys Chem A 113:10391–10396

    CAS  Google Scholar 

  88. Kumar RM, Vijay D, Sastry GN, SubramanianV, Intermolecular interactions through energy decomposition, in: Concepts and Methods in Modern Theoretical Chemistry, Ghosh SK, Chattaraj PK, CRC Press, Boca Raton, FL, 2013, pp 313-343

  89. Rahm M, Hoffmann R (2016) Distinguishing bonds. J Am Chem Soc 138:3731–3744

    CAS  Google Scholar 

Download references

Acknowledgements

We are happy to acknowledge very fruitful and enjoyable collaborations over many years with Tore Brinck and Tim Clark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, J.S., Politzer, P. Hydrogen Bonding: A Coulombic σ-Hole Interaction. J Indian Inst Sci 100, 21–30 (2020). https://doi.org/10.1007/s41745-019-00139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-00139-3

Keywords

Navigation