Skip to main content
Log in

Hydrogen Bonds with Chalcogens: Looking Beyond the Second Row of the Periodic Table

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Compared to conventional hydrogen bonds like (O–H···N, N–H···O, O–H···O, N–H···N), hydrogen bonds involving heavier chalcogens like sulfur, selenium, and tellurium have been considered weaker owing to less electronegativity of these elements. However, various instances exist to prove that these hydrogen bonds (H bonds) are of similar strength of conventional hydrogen bonds, although the nature of hydrogen bonding could be different depending on a combination of electronegativity, polarizability, and dispersion effects. We have presented a plethora of such H bonds that have been investigated over past several decades through high-resolution laser spectroscopy, microwave spectroscopy, and quantum chemical calculations. These H bonds not only play important roles in biological systems, but are increasingly being tuned in nature and strength to construct artificial models that can aid our mechanistic understanding of non-covalent interactions and also help in modulation of activity, detection, and combat of diseases. We have discussed how these interactions could be exploited for applications in crystal engineering, superconductivity, gas capture, and field-effect transistor studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:

Adapted with permission from Ref.99 Copyright 2010 American Chemical Society.

Figure 2:

Reproduced from Ref.56 with permission from Royal Society of Chemistry via Copyright Clearance Centre.

Figure 3:
Figure 4:
Figure 5:

Reprinted with permission from ref 26 Copyright 2009 American Chemical Society.

Figure 6:
Figure 7:
Figure 8:

Similar content being viewed by others

References

  1. Perrin CL, Nielson JB (1997) “Strong” hydrogen bonds in chemistry and biology. Annu Rev Phys Chem 48:511–544

    CAS  Google Scholar 

  2. Scheiner S (2017) The nature of the hydrogen bond, from a theoretical perspective. In: Intermolecular interactions in crystals: fundamentals of crystal engineering, vol 410

  3. Jeffrey GA, Jeffrey GA (1997) An introduction to hydrogen bonding, vol 32. Oxford University Press, New York

    Google Scholar 

  4. Bellissent-Funel M-C, Dore JC (2013) Hydrogen bond networks, vol 435. Springer, New York

    Google Scholar 

  5. Desiraju GR, SteinerT (2001) The weak hydrogen bond: in structural chemistry and biology. In: International Union of Crystal, vol 9 (2001)

  6. Aakeröy CB, Seddon KR (1993) The hydrogen bond and crystal engineering. Chem Soc Rev 22:397–407

    Google Scholar 

  7. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P (2011) Defining the hydrogen bond: an account (IUPAC Technical Report). Pure Appl Chem 83:1619–1636

    CAS  Google Scholar 

  8. Desiraju GR (2005) C–H··· O and other weak hydrogen bonds. From crystal engineering to virtual screening. Chem Commun 24:2995–3001

    Google Scholar 

  9. Cupp-Vickery JR, Poulos TL (1995) Structure of cytochrome P450eryF involved in erythromycin biosynthesis. Nat Struct Biol 2:144

    CAS  Google Scholar 

  10. Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195:687–700

    CAS  Google Scholar 

  11. Ueyama N, Nishikawa N, Yamada Y, Okamura T, Nakamura A (1996) Cytochrome P-450 model (Porphinato)(thiolato) iron (III) complexes with single and double NH···S hydrogen bonds at the thiolate site. J Am Chem Soc 118:12826–12827

    CAS  Google Scholar 

  12. Muthu S, Vittal JJ (2004) A new polymorph of 4-pyridinethione containing a helical assembly based on N- H···S hydrogen bonds. Cryst Growth Des 4:1181–1184

    CAS  Google Scholar 

  13. Krepps MK, Parkin S, Atwood DA (2001) Hydrogen bonding with sulfur. Cryst Growth Des 1:291–297

    CAS  Google Scholar 

  14. Sundaresan CN, Dixit S, Venugopalan P (2004) A supramolecular assembly dominated by N-H··· S hydrogen bonds: Structure of 2-thioureidobenzoxazole by single crystal X-ray diffraction. J Mol Struct 693:205–209

    CAS  Google Scholar 

  15. Gregoret LM, Rader SD, Fletterick RJ, Cohen FE (1991) Hydrogen bonds involving sulfur atoms in proteins. Proteins Struct Funct Bioinform 9:99–107

    CAS  Google Scholar 

  16. Adman E, Watenpaugh KD, Jensen LH (1975) NH–S hydrogen bonds in Peptococcus aerogenes ferredoxin, Clostridium pasteurianum rubredoxin, and Chromatium high potential iron protein. Proc Natl Acad Sci 72:4854–4858

    CAS  Google Scholar 

  17. Reid KSC, Lindley PF, Thornton JM (1985) Sulphur–aromatic interactions in proteins. FEBS Lett 190:209–213

    CAS  Google Scholar 

  18. Iwaoka M, Takemoto S, Okada M, Tomoda S (2002) Weak nonbonded S··· X (X=O, N, and S) interactions in proteins Statistical and theoretical studies. Bull Chem Soc Jpn 75:1611–1625

    CAS  Google Scholar 

  19. Brosnan JT, Brosnan ME (2006) Thesulfur-containing amino acids: an overview. J Nutr 136:1636S–1640S

    CAS  Google Scholar 

  20. Zhou P, Tian F, Lv F, Shang Z (2009) Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Proteins Struct Funct Bioinform 76:151–163

    CAS  Google Scholar 

  21. Allen FH, Bird CM, Rowland RS, Raithby PR (1997) Hydrogen-bond acceptor and donor properties of divalent sulfur (YSZ and RSH). Acta Crystallogr B 53:696–701

    Google Scholar 

  22. Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76

    CAS  Google Scholar 

  23. François S, Rohmer M-M, Bénard M, Moreland AC, Rauchfuss TB (2000) The N–H···S hydrogen bond in (TACN) 2Fe2S6 (TACN = triazacyclononane) and in model systems involving the persulfido moiety: an ab initio and DFT study. J Am Chem Soc 122:12743–12750

    Google Scholar 

  24. Kaur D, Aulakh D, Khanna S, Singh H (2014) Theoretical study on the nature of S··· H and O··· H hydrogen bonds. J Sulfur Chem 35:290–303

    CAS  Google Scholar 

  25. Biswal HS, Gloaguen E, Loquais Y, Tardivel B, Mons M (2012) Strength of NH···S hydrogen bonds in methionine residues revealed by gas-phase IR/UV spectroscopy. J. Phys. Chem. Lett. 3:755–759

    CAS  Google Scholar 

  26. Biswal HS, Wategaonkar S (2009) Sulfur, not too far behind O, N, and C: SH··· π hydrogen bond. J Phys Chem A 113:12774–12782

    CAS  Google Scholar 

  27. Mundlapati VR, Gautam S, Sahoo DK, Ghosh A, Biswal HS (2017) Thioamide, a hydrogen bond acceptor in proteins and nucleic acids. J Phys Chem Lett 8:4573–4579

    CAS  Google Scholar 

  28. Biswal HS, Wategaonkar S (2011) OH··· X (X=O, S) hydrogen bonding in thetrahydrofuran and tetrahydrothiophene. J Chem Phys 135:134306

    Google Scholar 

  29. Biswal HS, Shirhatti PR, Wategaonkar S (2009) O- H··· O versus O- H··· S hydrogen bonding I: experimental and computational studies on the p-Cresol· H2O and p-Cresol· H2S complexes. J Phys Chem A 113:5633–5643

    CAS  Google Scholar 

  30. Biswal HS, Bhattacharyya S, Bhattacherjee A, Wategaonkar S (2015) Nature and strength of sulfur-centred hydrogen bonds: laser spectroscopic investigations in the gas phase and quantum-chemical calculations. Int Rev Phys Chem 34:99–160

    CAS  Google Scholar 

  31. Biswal HS (2015) Hydrogen bonds involving sulfur: new insights from ab initio calculations and gas phase laser spectroscopy. In: Scheiner S (eds) Noncovalent forces. Challenges and Advances in Computational Chemistry and Physics, Springer, Cham, vol 19, pp 15–45

    Google Scholar 

  32. Mundlapati VR, Ghosh S, Bhattacherjee A, Tiwari P, Biswal HS (2015) Critical assessment of the strength of hydrogen bonds between the sulfur atom of methionine/cysteine and backbone amides in proteins. J Phys Chem Lett 6:1385–1389

    CAS  Google Scholar 

  33. Biswal HS, Chakraborty S, Wategaonkar S (2008) Experimental evidence of O-H–S hydrogen bonding in supersonic jet. J Chem Phys 129:11B613

    Google Scholar 

  34. Behne D, Kyriakopoulos A (2001) Mammalian selenium-containing proteins. Annu Rev Nutr 21:453–473

    CAS  Google Scholar 

  35. Forceville X (2006) Seleno-enzymes and seleno-compounds: the two faces of selenium. Crit Care 10:180

    Google Scholar 

  36. Stadtman TC (1974) Selenium Biochemistry: Proteins containing selenium are essential components of certain bacterial and mammalian enzyme systems. Science 183:915–922

    CAS  Google Scholar 

  37. Köhrle J, Brigelius-Flohé R, Böck A, Gärtner R, Meyer O, Flohé L (2000) Selenium in biology: facts and medical perspectives. Biol Chem 381:849–864

    Google Scholar 

  38. Reich HJ, Hondal RJ (2016) Why nature chose selenium. ACS Chem Biol 11:821–841

    CAS  Google Scholar 

  39. Kaur M, Rob A, Caton-Williams J, Huang Z (2013) Biochemistry of nucleic acids functionalized with sulfur, selenium, and tellurium: roles of the single-atom substitution. In: Biochalcogen chemistry: the biological chemistry of sulfur, selenium, and tellurium, ACS Symposium Series, vol 1152, pp 89–126

    Google Scholar 

  40. Caton-Williams J, Huang Z (2008) Biochemistry of selenium-derivatized naturally occurring and unnatural nucleic acids. Chem Biodivers 5:396–407

    CAS  Google Scholar 

  41. Lin L, Sheng J, Huang Z (2011) Nucleic acid X-ray crystallography via direct selenium derivatization. Chem Soc Rev 40:4591–4602

    CAS  Google Scholar 

  42. H. Sun, S. Jiang and Z. Huang, in Nucleic Acid Crystallography, Springer, pp. 193–204 (2016)

  43. Salon J, Jiang J, Sheng J, Gerlits OO, Huang Z (2008) Derivatization of DNAs with selenium at 6-position of guanine for function and crystal structure studies. Nucleic Acids Res 36:7009–7018

    CAS  Google Scholar 

  44. Sheng J, Huang Z (2008) Selenium derivatization of nucleic acids for phase and structure determination in nucleic acid X-ray crystallography. Int J Mol Sci 9:258–271

    Google Scholar 

  45. Farrell KM, Brister MM, Pittelkow M, Sølling TI, Crespo-Hernández CE (2018) Heavy-atom-substituted nucleobases in photodynamic applications: substitution of sulfur with selenium in 6-thioguanine induces a remarkable increase in the rate of triplet decay in 6-selenoguanine. J Am Chem Soc 140:11214–11218

    CAS  Google Scholar 

  46. Hassan AE, Sheng J, Zhang W, Huang Z (2010) High fidelity of base pairing by 2-selenothymidine in DNA. J Am Chem Soc 132:2120–2121

    CAS  Google Scholar 

  47. Murray JS, Lane P, Politzer P (2008) Simultaneous σ-hole and hydrogen bonding by sulfur-and selenium-containing heterocycles. Int J Quantum Chem 108:2770–2781

    CAS  Google Scholar 

  48. Steiner T (1998) Chloroform molecules donate hydrogen bonds to S, Se, and Te acceptors: evidence from a published series of terminal chalcogenido complexes. J Mol Struct 447:39–42

    CAS  Google Scholar 

  49. Chopra P, Chakraborty S (2018) Computational study of red-and blue-shifted CH··· Se hydrogen bond in Q3CH··· SeH2 (Q=Cl, F, H) complexes. Chem Phys 500:54–61

    CAS  Google Scholar 

  50. Das B, Chakraborty A, Chakraborty S (2017) Effect of ionic charge on OH··· Se hydrogen bond: A computational study. Comput. Theor. Chem. 1102:127–138

    CAS  Google Scholar 

  51. Zhang H, Lin S, Jacobsen EN (2014) Enantioselective selenocyclization via dynamic kinetic resolution of seleniranium ions by hydrogen-bond donor catalysts. J Am Chem Soc 136:16485–16488

    CAS  Google Scholar 

  52. Iwaoka M, Tomoda S (1994) First Observation of a CH… Se” Hydrogen Bond”. J Am Chem Soc 116:4463–4464

    CAS  Google Scholar 

  53. Bibelayi D, Lundemba AS, Allen FH, Galek PT, Pradon J, Reilly AM, Groom CR, Yav ZG (2016) Hydrogen bonding at C = Se acceptors in selenoureas, selenoamides and selones. Acta Crystallogr. Sect B Struct Sci Cryst Eng Mater 72:317–325

    CAS  Google Scholar 

  54. Mundlapati VR, Sahoo DK, Ghosh S, Purame UK, Pandey S, Acharya R, Pal N, Tiwari P, Biswal HS (2017) Spectroscopic Evidences for Strong Hydrogen Bonds with Selenomethionine in Proteins. J Phys Chem Lett 8:794–800

    CAS  Google Scholar 

  55. Schamnad S, Chakraborty S (2015) Substituent effect in OH··· Se hydrogen bond—Density Functional Theory study of para-substituted phenol–SeH2 complexes. Chem Phys Lett 622:28–33

    CAS  Google Scholar 

  56. Mishra KK, Singh SK, Ghosh P, Ghosh D, Das A (2017) The nature of selenium hydrogen bonding: gas phase spectroscopy and quantum chemistry calculations. Phys Chem Chem Phys 19:24179–24187

    CAS  Google Scholar 

  57. SalaiCheettuAmmal S, Venuvanalingam P (2000) Origin and nature of lithium and hydrogen bonds to oxygen, sulfur, and selenium. J Phys Chem A 104:10859–10867

    Google Scholar 

  58. Madzhidov TI, Chmutova GA (2010) The nature of hydrogen bonds with divalent selenium compounds. J. Mol. Struct. THEOCHEM 959:1–7

    CAS  Google Scholar 

  59. Jaju K, Pal D, Chakraborty A, Chakraborty S (2019) Electronic substituent effect on Se–H··· N hydrogen bond: a computational study of para-substituted pyridine-SeH2 complexes. Chem Phys Lett X 4:100031

    Google Scholar 

  60. Cozzolino AF, Elder PJ, Vargas-Baca I (2011) A survey of tellurium-centered secondary-bonding supramolecular synthons. Coord Chem Rev 255:1426–1438

    CAS  Google Scholar 

  61. Andersson C-M, Brattsand R, Hallberg A, Engman L, Persson J, Moldéus P, Cotgreave I (1994) Diaryl tellurides as inhibitors of lipid peroxidation in biological and chemical systems. Free Radic Res 20:401–410

    CAS  Google Scholar 

  62. Ba LA, Döring M, Jamier V, Jacob C (2010) Tellurium: an element with great biological potency and potential. Org Biomol Chem 8:4203–4216

    CAS  Google Scholar 

  63. Yu LY, He KM, Chai DR, Yang CM, Zheng OY (1993) Evidence for telluroamino acid in biological materials and some rules of assimilation of inorganic tellurium by yeast. Anal Biochem 209:318–322

    CAS  Google Scholar 

  64. Ramadan SE, Razak AA, Ragab AM, El-Meleigy M (1989) Incorporation of tellurium into amino acids and proteins in a tellurium-tolerant fungi. Biol Trace Elem Res 20:225

    CAS  Google Scholar 

  65. Liu X, Silks LA, Liu C, Ollivault-Shiflett M, Huang X, Li J, Luo G, Hou Y-M, Liu J, Shen J (2009) Incorporation of tellurocysteine into glutathione transferase generates high glutathione peroxidase efficiency. Angew Chem Int Ed 48:2020–2023

    CAS  Google Scholar 

  66. Satheeshkumar K, Raju S, Singh HB, Butcher RJ (2018) Reactivity of Selenocystine and Tellurocystine: Structure and Antioxidant Activity of the Derivatives. Chem Eur J 24:17513–17522

    CAS  Google Scholar 

  67. Mao S, Dong Z, Liu J, Li X, Liu X, Luo G, Shen J (2005) Semisynthetic tellurosubtilisin with glutathione peroxidase activity. J Am Chem Soc 127:11588–11589

    CAS  Google Scholar 

  68. Shaaban S, Sasse F, Burkholz T, Jacob C (2014) Sulfur, selenium and tellurium pseudopeptides: Synthesis and biological evaluation. Bioorg Med Chem 22:3610–3619

    CAS  Google Scholar 

  69. Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2012) Intermolecular weak interactions in HTeXH dimers (X=O, S, Se, Te): Hydrogen bonds, chalcogen–chalcogen contacts and chiral discrimination. ChemPhysChem 13:496–503

    Google Scholar 

  70. Sanz P, Yáñez M, Mó O (2002) Competition between X-H···Y intramolecular hydrogen bonds and X···Y (X=O, S, and Y=Se, Te) chalcogen–chalcogen interactions. J Phys Chem A 106:4661–4668

    CAS  Google Scholar 

  71. Ebata T, Inokuchi Y, Nakajima A (2019) Experimental methods: generation of cold gas-phase molecules, molecular ions, their clusters, metal clusters, and laser spectroscopy. In: Ebata T, Fujii M (eds) Physical chemistry of cold gas-phase functional molecules and clusters. Springer, Singapore, pp 3–32

    Google Scholar 

  72. Ito M, Ebata T, Mikami N (1988) Laser spectroscopy of large polyatomic molecules in supersonic jets. Annu Rev Phys Chem 39:123–147

    CAS  Google Scholar 

  73. Snels M, Horká-Zelenková V, Hollenstein H, Quack M (2011) High‐resolution FTIR and diode laser spectroscopy of supersonic jets. In: Quack M, Merkt F (eds) Handbook of high-resolution spectroscopy. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470749593.hrs044

  74. Biswal HS, Wategaonkar S (2009) Nature of the N- H··· S hydrogen bond. J Phys Chem A 113:12763–12773

    CAS  Google Scholar 

  75. Chin W, Dognon J-P, Canuel C, Piuzzi F, Dimicoli I, Mons M, Compagnon I, von Helden G, Meijer G (2005) Secondary structures of short peptide chains in the gas phase: double resonance spectroscopy of protected dipeptides. J Chem Phys 122:054317

    Google Scholar 

  76. Rizzo TR, Stearns JA, Boyarkin OV (2009) Spectroscopic studies of cold, gas-phase biomolecular ions. Int Rev Phys Chem 28:481–515

    CAS  Google Scholar 

  77. Wategaonkar S, Bhattacherjee A (2018) N-H···S interaction continues to be an enigma: experimental and computational investigations of hydrogen-bonded complexes of benzimidazole with thioethers. J Phys Chem A 122:4313–4321

    CAS  Google Scholar 

  78. Dreizler H (1995) Fourier transform microwave spectroscopy—an improved tool for investigation of rotational spectra, Berichte Bunsenges. Für Phys Chem 99:1451–1461

    CAS  Google Scholar 

  79. Goswami M, Arunan E (2011) Microwave spectrum and structure of C6H5CCH···H2S complex. J Mol Spectrosc 268:147–156

    CAS  Google Scholar 

  80. Goswami M, Neill JL, Muckle M, Pate BH, Arunan E (2013) Microwave, infrared-microwave double resonance, and theoretical studies of C2H4···H2S complex. J Chem Phys 139:104303

    CAS  Google Scholar 

  81. Mandal PK, Goswami M, Arunan E (2013) Pulsed nozzle Fourier transform microwave spectroscopic and ab initio investigations on the weakly bound Ar-(H2S) 2 trimer. J Indian Inst Sci 85:353

    Google Scholar 

  82. Laurie VW (1970) Studies of internal molecular motions and conformation by microwave spectroscopy. Acc Chem Res 3:331–338

    CAS  Google Scholar 

  83. Das A, Mandal PK, Lovas FJ, Medcraft C, Walker NR, Arunan E (2018) The H2S dimer is hydrogen-bonded: direct confirmation from microwave spectroscopy. Angew Chem Int Ed 57:15199–15203

    CAS  Google Scholar 

  84. Goswami M, Arunan E (2009) The hydrogen bond: a molecular beam microwave spectroscopist’s view with a universal appeal. Phys Chem Chem Phys 11:8974–8983

    CAS  Google Scholar 

  85. Cole GC, Møllendal H, Guillemin J-C (2006) Spectroscopic and quantum chemical study of the novel compound cyclopropylmethylselenol. J Phys Chem A 110:2134–2138

    CAS  Google Scholar 

  86. Silva WG, Evangelisti L, van Wijngaarden J (2019) Internal motions and sulfur hydrogen bonding in methyl 3-mercaptopropionate. J Phys Chem A. https://doi.org/10.1021/acs.jpca.9b08681

    Article  Google Scholar 

  87. Silva WG, van Wijngaarden J (2009) Sulfur as a hydrogen bond donor in the gas phase: rotational spectroscopic and computational study of 3-mercaptopropionic acid. J Mol Spectrosc 362:1–7

    Google Scholar 

  88. Petitprez D, Demaison J, Wlodarczak G, Guillemin J-C, Møllendal H (2004) 3-Buteneselenol: The First Example of a Selenol with an Intramolecular Hydrogen Bond as Studied by Microwave Spectroscopy and Quantum Chemical Calculations. J Phys Chem A 108:1403–1408

    CAS  Google Scholar 

  89. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B (2009) Petersson GA (2009) Gaussian 09 package. Gaussian Inc., Pittsburgh

    Google Scholar 

  90. Furche F, Ahlrichs R, Hättig C, Klopper W, Sierka M, Weigend F (2014) Turbomole. Wiley Interdiscip Rev Comput Mol Sci 4:91–100

    CAS  Google Scholar 

  91. Kolandaivel P, Nirmala V (2004) Study of proper and improper hydrogen bonding using Bader’s atoms in molecules (AIM) theory and NBO analysis. J Mol Struct 694:33–38

    CAS  Google Scholar 

  92. Bader RFW (2000) AIM2000 program, v. 2.0. McMaster University, Hamilton, Canada

  93. Weinhold F (2012) Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives. J Comput Chem 33:2363–2379

    CAS  Google Scholar 

  94. Stone AJ (2017) Natural bond orbitals and the nature of the hydrogen bond. J Phys Chem A 121:1531–1534

    CAS  Google Scholar 

  95. Glendening ED, Landis CR, Weinhold F (2013) NBO 60: natural bond orbital analysis program. J Comput Chem 34:1429–1437

    CAS  Google Scholar 

  96. Glendening ED, Streitwieser A (1994) Natural energy decomposition analysis: An energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor–acceptor interactions. J Chem Phys 100:2900–2909

    CAS  Google Scholar 

  97. Umeyama H, Morokuma K (1977) The origin of hydrogen bonding. An energy decomposition study. J Am Chem Soc 99:1316–1332

    CAS  Google Scholar 

  98. Biswal HS, Shirhatti PR, Wategaonkar S (2010) O- H··· O versus O- H··· S hydrogen bonding. 2. Alcohols and thiols as hydrogen bond acceptors. J Phys Chem A 114:6944–6955

    CAS  Google Scholar 

  99. Biswal HS, Wategaonkar S (2010) O- H··· O versus O- H··· S hydrogen bonding. 3. IR-UV double resonance study of hydrogen bonded complexes of p-Cresol with diethyl ether and its sulfur analog. J Phys Chem A 114:5947–5957

    CAS  Google Scholar 

  100. Bhattacherjee A, Matsuda Y, Fujii A, Wategaonkar S (2015) Acid-base formalism in dispersion-stabilized S-H··· Y (Y=O, S) hydrogen–bonding interactions. J Phys Chem A 119:1117–1126

    CAS  Google Scholar 

  101. Pedireddi VR, Chatterjee S, Ranganathan A, Rao CNR (1997) Noncovalent synthesis of layered and channel structures involving sulfur-mediated hydrogen bonds. J Am Chem Soc 119:10867–10868

    CAS  Google Scholar 

  102. Rigane I, Walha S, Salah AB (2016) Hydrogen bonding in thiobenzamide synthon and its cadmium complex: crystal structure and hirshfeld analysis. J Chem Sci 128:1395–1404

    CAS  Google Scholar 

  103. Contreras Aguilar E, Echeverría GA, Piro OE, Ulic SE, Jios JL, Tuttolomondo ME, Pérez H (2018) Weak and strong hydrogen bonds conducting the supramolecular framework of 1-butyl-3-(1-naphthoyl) thiourea: crystal structure, vibrational studies, DFT methods, Pixel energies and Hirshfeld surface analysis. Mol Phys 116:399–413

    CAS  Google Scholar 

  104. Castillo O, Delgado E, Hernández D, Hernández E, Martín A, Pérez M, Zamora F (2019) Synthesis and crystal structures of ion-pairs based on anionic iron-dithiolenes and alkylammonium as countercation. J Mol Struct 1196:323–331

    CAS  Google Scholar 

  105. Okamura T, Omi Y, Hirano Y, Onitsuka K (2016) Comparative studies on the contribution of NH···S hydrogen bonds in tungsten and molybdenum benzenedithiolate complexes. Dalton Trans 45:15651–15659

    CAS  Google Scholar 

  106. Mielcarek A, Daszkiewicz M, Kazimierczuk K, Ciborska A, Dołęga A (2016) Variable-temperature X-ray diffraction study of structural parameters of NH–S hydrogen bonds in triethylammonium and pyridinium silanethiolates. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:763–770

    CAS  Google Scholar 

  107. Qin Y, Zhang J, Zheng X, Geng H, Zhao G, Xu W, Hu W, Shuai Z, Zhu D (2014) Charge-transfer complex crystal based on extended-π-conjugated acceptor and sulfur-bridged annulene: charge-transfer interaction and remarkable high ambipolar transport characteristics. Adv Mater 26:4093–4099

    CAS  Google Scholar 

  108. Argent SP, Golden E, Ring DJ, Blake AJ, Champness NR (2019) Two-dimensional networks of thiocyanuric acid and imine bases assisted by weak hydrogen bonds. Cryst Growth Des. https://doi.org/10.1021/acs.cgd.9b01055

    Article  Google Scholar 

  109. Okamura T, Takamizawa S, Ueyama N, Nakamura A (1998) Novel rubredoxin model tetrathiolato iron(II) and cobalt(II) complexes containing intramolecular single and double NH···S hydrogen bonds. Inorg Chem 37:18–28

    CAS  Google Scholar 

  110. Ueno T, Inohara M, Ueyama N, Nakamura A (1997) Cooperative redox regulation of [4Fe-4S] ferredoxin model arenethiolate complexes by NH··· S hydrogen bonds and an aromatic C–H··· S interaction. Bull Chem Soc Jpn 70:1077–1083

    CAS  Google Scholar 

  111. Beck BW, Xie Q, Ichiye T (2001) Sequence determination of reduction potentials by cysteinyl hydrogen bonds and peptide dipoles in [4Fe-4S] ferredoxins. Biophys J 81:601–613

    CAS  Google Scholar 

  112. Li C-Y, Zhou J, Zhang Y, Lei Z-X, Bian G-Q, Dai J (2009) Solvothermal synthesis of two cationic indium selenides with I-ion as counterion. Z Für Anorg Allg Chem 635:151–155

    CAS  Google Scholar 

  113. Okamura T, Taniuchi K, Lee K, Yamamoto H, Ueyama N, Nakamura A (2006) Crystal structures and 77Se NMR spectra of molybdenum (IV) areneselenolates having intramolecular NH··· Se hydrogen bonds. Inorg Chem 45:9374–9380

    CAS  Google Scholar 

  114. Sun P, Liu S, Han J, Shen Y, Sun H, Jia D (2017) Solvothermal syntheses, crystal structures, and optical and thermal properties of transition metal selenidostannates. Transit Met Chem 42:387–393

    CAS  Google Scholar 

  115. Warren CJ, Ho DM, Haushalter RC, Bocarsly AB (1994) Electrochemical synthesis of a new gallium telluride containing one-dimensional chains: structure of [(C6H5)4P]GaTe2(en)2(en = ethane-1,2-diamine). J Chem Soc Chem Commun 3:361–363

    Google Scholar 

  116. Chen R, Zhou J, Liu X, Hu F, An L, Kan Y, Xue C (2013) A new polymorph telluridoindate [In (en) 3][In5Te9 (en) 2] with photocatalytic properties. Inorg Chem Commun 28:55–59

    CAS  Google Scholar 

  117. Green DC, Eichhorn BW, Bott SG (1995) An unusual hydrogen bonding network in the layered [Ba2 (OH) 2 (H2O) 10][Se4] compound. J Solid State Chem 120:12–16

    CAS  Google Scholar 

  118. Sánchez-Sanz G, Alkorta I, Elguero J (2017) Theoretical study of intramolecular interactions in peri-substituted naphthalenes: chalcogen and hydrogen bonds. Molecules 22:227

    Google Scholar 

  119. Narayanan SJ, Sridevi B, Chandrashekar TK, Vij A, Roy R (1999) Novel core-modified expanded porphyrins with meso-aryl substituents: synthesis, spectral and structural characterization. J Am Chem Soc 121:9053–9068

    CAS  Google Scholar 

  120. Narayanan SJ, Sridevi B, Chandrashekar TK, Vij A, Roy R (1998) Sapphyrin supramolecules through C–H···S and C–H···Se hydrogen bonds—first structural characterization of meso-arylsapphyrins bearing heteroatoms. Angew Chem Int Ed 37:3394–3397

    CAS  Google Scholar 

  121. Hagiwara H, Okada S (2016) A polymorphism-dependent T 1/2 shift of 100 K in a hysteretic spin-crossover complex related to differences in intermolecular weak CH···X hydrogen bonds (X=S vs. S and N). Chem Commun 52:815–818

    CAS  Google Scholar 

  122. Michalczyk R, Schmidt JG, Moody E, Li Z, Wu R, Dunlap RB, Odom JD, Silks LA III (2000) Unusual C–H··· Se = C interactions in aldols of chiral N-acyl selones detected by gradient-selected 1H–77Se HMQC NMR spectroscopy and X-ray crystallography. Angew Chem Int Ed 39:3067–3070

    CAS  Google Scholar 

  123. Sahoo DK, Jena S, Dutta J, Rana A, Biswal HS (2019) Nature and strength of M-H··· S and M–H··· Se (M = Mn, Fe, & Co) hydrogen bond. J Phys Chem A 123:2227–2236

    CAS  Google Scholar 

  124. Sanz ME, López JC, Alonso JL (1998) Observation and properties of the hydrogen-bonded heterodimer tetrahydrothiophene···HCl. J Phys Chem A 102:3681–3689

    CAS  Google Scholar 

  125. Sanz ME, López JC, Alonso JL (1998) Rotational spectrum and structure of the tetrahydrothiophene··· hydrogen fluoride complex. Chem Phys Lett 288:760–766

    CAS  Google Scholar 

  126. Sanz ME, Lesarri A, López JC, Alonso JL (2001) Hydrogen bond in molecules with large-amplitude motions: a rotational study of trimethylene sulfide··· HCl. Angew Chem Int Ed 40:935–938

    CAS  Google Scholar 

  127. Blanco S, Lesarri A, López JC, Alonso JL (2002) Axial and equatorial hydrogen bonds: jet-cooled rotational spectrum of the pentamethylene sulfide··· hydrogen fluoride complex. Chem Eur J 8:1603–1613

    CAS  Google Scholar 

  128. Närhi SM, Malo K, Oilunkaniemi R, Laitinen RS (2013) Tetrahydrofuran ring opening and unexpected oxidation of the furyl ring in the reaction of bis (2-furyl) ditelluride with iodine and triphenylphosphine. Polyhedron 65:308–315

    Google Scholar 

  129. Mak TC, Li Q (1998) Novel inclusion compounds with urea/thiourea/selenourea-anion host lattices. Adv Mol Struct Res 4:151–226

    CAS  Google Scholar 

  130. Lynch DE, McClenaghan I, Light ME, Coles SJ (2002) The solid-state packing of sulfur substituted 2-aminopyrimidines and the occurrence of NH–S hydrogen-bonding associations. Cryst Eng 5:79–94

    CAS  Google Scholar 

  131. Suzuki N, Higuchi T, Urano Y, Kikuchi K, Uekusa H, Ohashi Y, Uchida T, Kitagawa T, Nagano T (1999) Novel iron porphyrin-alkanethiolate complex with intramolecular NH···S hydrogen bond: synthesis, spectroscopy, and reactivity. J Am Chem Soc 121:11571–11572

    CAS  Google Scholar 

  132. Ueyama N, Taniuchi K, Okamura T, Nakamura A, Maeda H, Emura S (1996) Effect of the NH–S hydrogen bond on the nature of Hg–S bonding in bis [2-(acylamino) benzenethiolato] mercury (II) and bis [2, 6-bis (acylamino) benzenethiolato] mercury (II) complexes. Inorg Chem 35:1945–1951

    CAS  Google Scholar 

  133. Ueyama N, Okamura T-A, Nakamura A (1992) Intramolecular NH··· S hydrogen bond in o-acylamino substituted benzenethiolate iron (II) and cobalt (II) complexes. J Chem Soc, Chem Commun 14:1019–1020

    Google Scholar 

  134. Baba K, Okamura T, Suzuki C, Yamamoto H, Yamamoto T, Ohama M, Ueyama N (2006) O-atom-transfer oxidation of [molybdenum (IV) Oxo ${$3, 6-(acylamino) 2-1, 2-benzenedithiolato$}$ 2] 2-promoted by intramolecular NH···S hydrogen bonds. Inorg Chem 45:894–901

    CAS  Google Scholar 

  135. Szyrej M, Wieczorek W, Wozniakc LA (2011) Phenylamino (diphenyl) phosphine selenide: supramolecular aggregation via weak NH··· Se, CH··· π and π···π interactions. Arkivoc 6:286–294

    Google Scholar 

  136. Li Y, Hua G-X, Slawin AMZ, Woollins JD (2009) The X-ray crystal structures of primary aryl substituted selenoamides. Molecules 14:884–892

    CAS  Google Scholar 

  137. Wu R, Hernández G, Odom JD, Dunlap RB, Silks LA (1996) Simple enantiomeric excess determination of amines using chiral selones: unusual N-H··· Se bonding detected by HMQC 1 H/77 Se NMR spectroscopy. Chem Commun 10:1125–1126

    Google Scholar 

  138. Bredenkamp A, Zeng X, Mohr F (2012) Metal complexes of an N-selenocarbamoyl benzamidine. Polyhedron 33:107–113

    CAS  Google Scholar 

  139. Bhattacharyya P, Slawin AMZ, Woollins JD (2001) Bridge cleavage of [{PhP(Se)(μ-Se)}2] by 1,2-C6H4(EH)(E′H) (E, E′ = O or NH). X-ray crystal structure of PhP(Se)(NHC6H4NH-1,2). J Organomet Chem 623:116–119

    CAS  Google Scholar 

  140. Hope H (1965) The crystal structure of N-phenyl-N’-benzoylselenourea. Acta Crystallogr 18:259–264

    CAS  Google Scholar 

  141. Wood PA, Pidcock E, Allen FH (2008) Interaction geometries and energies of hydrogen bonds to C = O and C = S acceptors: a comparative study. Acta Crystallogr B 64:491–496

    CAS  Google Scholar 

  142. Harada T, Yoshida H, Ohno K, Matsuura H, Zhang J, Iwaoka M, Tomoda S (2001) Implications of intramolecular OH···Se hydrogen bonding and CH···O interaction in the conformational stabilization of 2-(methylseleno)ethanol studied by vibrational spectroscopy and density functional theory. J Phys Chem A 105:4517–4523

    CAS  Google Scholar 

  143. Kjaersgaard A, Lane JR, Kjaergaard HG (2019) Room temperature gibbs energies of hydrogen bonded alcohol dimethylselenide complexes. J Phys Chem A. https://doi.org/10.1021/acs.jpca.9b06855

    Article  Google Scholar 

  144. Guo X, Li Q, Xiao B, Yang X, Li W, Cheng J (2015) Influence of F and Se substitution on the structures, stabilities and nature of the complexes between F 2 CSe and HOX (X=F, Cl, Br, and I). RSC Adv 5:52667–52675

    CAS  Google Scholar 

  145. Michielsen B, Verlackt C, van der Veken BJ, Herrebout WA (2012) C–H··· X (X=S, P) hydrogen bonding: the complexes of halothane with dimethyl sulfide and trimethylphosphine. J Mol Struct 1023:90–95

    CAS  Google Scholar 

  146. Csankó K, Illés L, Felföldi K, Kiss JT, Sipos P, Pálinkó I (2011) CH··· S hydrogen bonds as the organising force in 2, 3-thienyl-and phenyl-or 2, 3-dithienyl-substituted propenoic acid aggregates studied by the combination of FT-IR spectroscopy and computations. J Mol Struct 993:259–263

    Google Scholar 

  147. Domagala M, Grabowski SJ (2005) CH···N and CH··· S Hydrogen Bonds Influence of Hybridization on Their Strength. J Phys Chem A 109:5683–5688

    CAS  Google Scholar 

  148. Novoa JJ, Rovira MC, Rovira C, Veciana J, Tarrés J (1995) C–H··· S and S··· S: Two major forces in organic conductors. Adv Mater 7:233–237

    CAS  Google Scholar 

  149. Domagala M, Grabowski SJ, Urbaniak K, Mlostoń G (2003) Role of C- H··· S and C- H··· N hydrogen bonds in organic crystal structures the crystal and molecular structure of 3-methyl-2, 4-diphenyl-(1, 3)-thiazolidine-5-spiro-2 ‘-adamantane and 3-methyl-2, 4, 5, 5-tetraphenyl-(1, 3)-thiazolidine. J Phys Chem A 107:2730–2736

    CAS  Google Scholar 

  150. Iwaoka M, Komatsu H, Tomoda S (1996) Deuterium-induced isotope effects of a C–H··· Se “hydrogen bond” on the IR and NMR spectra of 6 H, 12 H-dibenzo [b, f][1, 5] diselenocin. Bull Chem Soc Jpn 69:1825–1828

    CAS  Google Scholar 

  151. Niedzielski RJ, Drago RS, Middaugh RL (1964) Donor properties of some sulfur compounds. J Am Chem Soc 86:1694–1697

    CAS  Google Scholar 

  152. Vogel GC, Drago RS (1970) Hydrogen bonding of sulfur donors with various phenols. J Am Chem Soc 92:5347–5351

    CAS  Google Scholar 

  153. Sherry AD, Purcell KF (1972) Hydrogen bond interactions with sulfur donors. J Am Chem Soc 94:1848–1853

    CAS  Google Scholar 

  154. Raissi H, Farzad F, Eslamdoost S, Mollania F (2013) Conformational properties and intramolecular hydrogen bonding of 3-amino-propeneselenal: an ab initio and density functional theory studies. J Theor Comput Chem 12:1350025

    Google Scholar 

  155. Szostak R (2011) Blue or red ΔνXH complexation shift in X-H··· CO2 hydrogen-bonded complexes? Chem Phys Lett 516:166–170

    CAS  Google Scholar 

  156. Rafat R, Nowroozi A (2018) A comprehensive theoretical study of conformational analysis, intramolecular hydrogen bond, π-electron delocalization, and tautomeric preferences in 2-selenoformyl-3-thioxo-propionaldehyde. Struct Chem 29:1057–1065

    CAS  Google Scholar 

  157. Gómez Castaño JA, Romano RM, Beckers H, Willner H, Boese R, Della Védova CO (2008) Selenoacetic acid, CH3C(O)SeH: preparation, characterization, and conformational properties. Angew Chem Int Ed 47:10114–10118

    Google Scholar 

  158. Wang D, Chopra P, Wategaonkar S, Fujii A (2019) Electronic and infrared spectroscopy of benzene-(H2S) n (n = 1 and 2): the prototype of the SH-π interaction. J Phys Chem A 123:7255–7260

    CAS  Google Scholar 

  159. Senćanski M, Djordjević I, Grubišić S (2017) Assessing the dispersive and electrostatic components of the selenium–aromatic interaction energy by DFT. J Mol Model 23:162

    Google Scholar 

  160. Thomas SP, Sathishkumar R, Row TG (2015) Organic alloys of room temperature liquids thiophenol and selenophenol. Chem Commun 51:14255–14258

    CAS  Google Scholar 

  161. Jalali E, Nori-Shargh D (2015) Symmetry breaking in the axial symmetrical configurations of enolic propanedial, propanedithial, and propanediselenal: pseudo Jahn-Teller effect versus the resonance-assisted hydrogen bond theory. Can J Chem 93:673–684

    CAS  Google Scholar 

  162. Amsler M (2019) Thermodynamics and superconductivity of Sx Se1−x H 3. Phys. Rev. B 99:060102

    CAS  Google Scholar 

  163. Grzechnik K, Rutkowski K, Mielke Z (2012) The S-H··· N versus O–H··· N hydrogen bonding in the ammonia complexes with CH3OH and CH3SH. J Mol Struct 1009:96–102

    CAS  Google Scholar 

  164. Scheiner S (2015) Comparison of CH··· O, SH··· O, chalcogen, and tetrel bonds formed by neutral and cationic sulfur-containing compounds. J Phys Chem A 119:9189–9199

    CAS  Google Scholar 

  165. Duan G, Smith VH Jr, Weaver DF (2001) Characterization of aromatic-thiol π-type hydrogen bonding and phenylalanine-cysteine side chain interactions through ab initio calculations and protein database analyses. Mol Phys 99:1689–1699

    CAS  Google Scholar 

  166. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42:1210–1250

    CAS  Google Scholar 

  167. Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed 50:4808–4842

    CAS  Google Scholar 

  168. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2000) The magnitude of the CH/π interaction between benzene and some model hydrocarbons. J Am Chem Soc 122:3746–3753

    CAS  Google Scholar 

  169. Steiner T, Koellner G (2001) Hydrogen bonds with π-acceptors in proteins: frequencies and role in stabilizing local 3D structures. J Mol Biol 305:535–557

    CAS  Google Scholar 

  170. Saggu M, Levinson NM, Boxer SG (2012) Experimental quantification of electrostatics in X-H···π hydrogen bonds. J Am Chem Soc 134:18986–18997

    CAS  Google Scholar 

  171. Nakanishi W, Hayashi S, Shimizu D, Hada M (2006) Orientational effect of aryl groups on 77Se NMR chemical shifts: experimental and theoretical investigations. Chem Eur J 12:3829–3846

    CAS  Google Scholar 

  172. Boorman PM, Gao X, Parvez M (1992) X-ray structural characterization of a thiolate salt displaying a very strong S-H··· S hydrogen bond. J Chem Soc Chem Commun 22:1656–1658

    Google Scholar 

  173. Mukherjee S, Palit SR, De SK (1970) SH… S type hydrogen-bonding interaction. J Phys Chem 74:1389–1390

    CAS  Google Scholar 

  174. Rafat R, Nowroozi A (2019) Solvent effects on the molecular stability, intramolecular hydrogen bond, and π-electron delocalization in the simple RAHB systems with different donors and acceptors: a quantum chemical study. Struct Chem 30:777–785

    CAS  Google Scholar 

  175. Mino Y, Loehr TM, Wada K, Matsubara H, Sanders-Loehr J (1987) Hydrogen bonding of sulfur ligands in blue copper and iron–sulfur proteins: detection by resonance Raman spectroscopy. Biochemistry 26:8059–8065

    CAS  Google Scholar 

  176. Kolling DJ, Brunzelle JS, Lhee S, Crofts AR, Nair SK (2007) Atomic resolution structures of rieske iron–sulfur protein: role of hydrogen bonds in tuning the redox potential of iron–sulfur clusters. Structure 15:29–38

    CAS  Google Scholar 

  177. Gómez-Tamayo JC, Cordomí A, Olivella M, Mayol E, Fourmy D, Pardo L (2016) Analysis of the interactions of sulfur-containing amino acids in membrane proteins. Protein Sci Publ. Protein Soc 25:1517–1524

    Google Scholar 

  178. Roy G, Sarma BK, Phadnis PP, Mugesh G (2005) Selenium-containing enzymes in mammals: chemical perspectives. J Chem Sci 117:287–303

    CAS  Google Scholar 

  179. Mishra KK, Singh SK, Kumar S, Singh G, Sarkar B, Madhusudhan MS, Das A (2019) Water-mediated selenium hydrogen-bonding in proteins: PDB analysis and gas phase spectroscopy of model complexes. J Phys Chem A 123:5995–6002

    CAS  Google Scholar 

  180. Luo Z (2016) Selenourea: a convenient phasing vehicle for macromolecular X-ray crystal structures. Sci Rep 6:37123

    CAS  Google Scholar 

  181. Somerville L, Krynetski EY, Krynetskaia NF, Beger RD, Zhang W, Marhefka CA, Evans WE, Kriwacki RW (2003) Structure and dynamics of thioguanine-modified duplex DNA. J Biol Chem 278:1005–1011

    CAS  Google Scholar 

  182. Karthika M, Senthilkumar L, Kanakaraju R (2014) Hydrogen-bond interactions in hydrated 6-selenoguanine tautomers: a theoretical study. Struct Chem 25:197–213

    CAS  Google Scholar 

  183. Caton-Williams J, Huang Z (2008) Synthesis and DNA-polymerase incorporation of colored 4-selenothymidine triphosphate for polymerase recognition and DNA visualization. Angew Chem Int Ed 47:1723–1725

    CAS  Google Scholar 

  184. Pati PB, Senanayak SP, Narayan KS, Zade SS (2013) Solution processable benzooxadiazole and benzothiadiazole based D-A-D molecules with chalcogenophene: field effect transistor study and structure property relationship. ACS Appl Mater Interfaces 5:12460–12468

    CAS  Google Scholar 

  185. Zhang S, Wang Y, Zhang J, Liu H, Zhong X, Song HF, Yang G, Zhang L, Ma Y (2015) Phase diagram and high-temperature superconductivity of compressed selenium hydrides. Sci Rep 5:154533

    Google Scholar 

  186. Poropudas MJ, Mikko Rautiainen J, Oilunkaniemi R, Laitinen RS (2016) Synthesis, characterization, and ligand behaviour of a new ditelluroether(C10H7)Te(CH2)4Te(C10H7) and the concurrently formed ionic [(C10H7)Te(CH2)4]Br. Dalton Trans 45:17206–17215

    CAS  Google Scholar 

  187. Sahoo DK, Mundlapati VR, Gagrai AA, Biswal HS (2016) Efficient SO2 capture through multiple chalcogen bonds, sulfur-centered hydrogen bonds and S··· π interactions: a computational study. ChemistrySelect 1:1688–1694

    CAS  Google Scholar 

  188. Gagrai AA, Mundlapati VR, Sahoo DK, Satapathy H, Biswal HS (2016) The role of molecular polarizability in designing organic piezoelectric materials. ChemistrySelect 1:4326–4331

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Department of Atomic Energy and Department of Science and Technology (Project File No: CRG/20l8/000892), Government of India. The authors express their gratitude towards their group members Dr. Venkateswara Rao Mundlapati and Dipak Kumar Sahoo, Prof. Sanjay Wategaonkar, and his group as well as other authors of the cited references for their valuable contributions on hydrogen bonding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himansu S. Biswal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chand, A., Biswal, H.S. Hydrogen Bonds with Chalcogens: Looking Beyond the Second Row of the Periodic Table. J Indian Inst Sci 100, 77–100 (2020). https://doi.org/10.1007/s41745-019-00140-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-00140-w

Navigation