Skip to main content
Log in

The Hydrogen Bond: A Hundred Years and Counting

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Since its original inception, a great deal has been learned about the nature, properties, and applications of the H-bond. This review summarizes some of the unexpected paths that inquiry into this phenomenon has taken researchers. The transfer of the bridging proton from one molecule to another can occur not only in the ground electronic state, but also in various excited states. Study of the latter process has developed insights into the relationships between the nature of the state, the strength of the H-bond, and the height of the transfer barrier. The enormous broadening of the range of atoms that can act as both proton donor and acceptor has led to the concept of the CH···O HB, whose properties are of immense importance in biomolecular structure and function. The idea that the central bridging proton can be replaced by any of various electronegative atoms has fostered the rapidly growing exploration of related noncovalent bonds that include halogen, chalcogen, pnicogen, and tetrel bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:

Similar content being viewed by others

References

  1. Latimer WM, Rodebush WH (1920) Polarity and ionization from the standpoint of the Lewis theory of valence. J Am Chem Soc 42:1419–1433

    CAS  Google Scholar 

  2. Pauling L (1940) The nature of the chemical bond. Cornell University Press, Ithaca, p 450

    Google Scholar 

  3. O’Reilly D, Stein RS, Patrascu MB, Jana SK, Kurian J, Moitessier N, Damha MJ (2018) Exploring atypical fluorine-hydrogen bonds and their effects on nucleoside conformations. Chem Eur J 24:16432–16439

    Google Scholar 

  4. Chaudhari SR, Mogurampelly S, Suryaprakash N (2013) Engagement of CF3 group in N-HF-C hydrogen bond in the solution state: NMR spectroscopy and MD simulation studies. J Phys Chem B 117:1123–1129

    CAS  Google Scholar 

  5. Nadas J, Vukovic S, Hay BP (2012) Alkyl chlorides as hydrogen bond acceptors. Comput Theor Chem 988:75–80

    CAS  Google Scholar 

  6. Lai LL, Yang CM, Liu CC, Cheng KL, Wen YS, Hung CH, Luo TT, Kuo MY (2011) Direct evidence of a liquid-crystalline phase induced by intermolecular CHCl interactions on the basis of IR spectroscopy and theoretical simulations. Chem Eur J 17:111–116

    CAS  Google Scholar 

  7. Brammer L, Bruton EA, Sherwood P (2001) Understanding the behavior of halogens as hydrogen bond acceptors. Cryst Growth Des 1:277–290

    CAS  Google Scholar 

  8. Mishra KK, Singh SK, Kumar S, Singh G, Sarkar B, Madhusudhan MS, Das A (2019) Water-mediated selenium hydrogen-bonding in proteins: PDB analysis and gas-phase spectroscopy of model complexes. J Phys Chem A 123:5995–6002

    CAS  Google Scholar 

  9. Sahoo DK, Jena S, Dutta J, Rana A, Biswal HS (2019) Nature and strength of M–H···S and M–H···Se (M = Mn, Fe, & Co) hydrogen bond. J Phys Chem A 123:2227–2236

    CAS  Google Scholar 

  10. Das A, Mandal PK, Lovas FJ, Medcraft C, Walker NR, Arunan E (2018) The H2S dimer is hydrogen-bonded: direct confirmation from microwave spectroscopy. Angew Chem Int Ed 57:15199–15203

    CAS  Google Scholar 

  11. Wategaonkar S, Bhattacherjee A (2018) N–H···S interaction continues to be an enigma: experimental and computational investigations of hydrogen-bonded complexes of benzimidazole with thioethers. J Phys Chem A 122:4313–4321

    CAS  Google Scholar 

  12. Mundlapati VR, Gautam S, Sahoo DK, Ghosh A, Biswal HS (2017) Thioamide, a hydrogen bond acceptor in proteins and nucleic acids. J Phys Chem Lett 8:4573–4579

    CAS  Google Scholar 

  13. Mishra KK, Singh SK, Ghosh P, Ghosh D, Das A (2017) The nature of selenium hydrogen bonding: gas phase spectroscopy and quantum chemistry calculations. Phys Chem Chem Phys 19:24179–24187

    CAS  Google Scholar 

  14. Andersen CL, Jensen CS, Mackeprang K, Du L, Jørgensen S, Kjaergaard HG (2014) Similar strength of the NH···O and NH···S hydrogen bonds in binary complexes. J Phys Chem A 118:11074–11082

    CAS  Google Scholar 

  15. Mintz BJ, Parks JM (2012) Benchmark interaction energies for bologically relevant noncovalent complexes containing divalent sulfur. J Phys Chem A 116:1086–1092

    CAS  Google Scholar 

  16. Biswal HS, Wategaonkar S (2011) OH···X (X = O, S) hydrogen bonding in thetrahydrofuran and tetrahydrothiophene. J Chem Phys 135:134306

    Google Scholar 

  17. Biswal HS, Wategaonkar S (2009) Sulfur, not too far behind O, N, and C: SH···π hydrogen bond. J Phys Chem A 113:12774–12782

    CAS  Google Scholar 

  18. Møller KH, Hansen AS, Kjaergaard HG (2015) Gas phase detection of the NH–P hydrogen bond and importance of secondary interactions. J Phys Chem A 119:10988–10998

    Google Scholar 

  19. Viana RB, da Silva ABF (2015) Interaction between PH3 and small water clusters: understanding the electronic and spectroscopic properties. Comput Theor Chem 1059:35–44

    CAS  Google Scholar 

  20. Hansen AS, Du L, Kjaergaard HG (2014) Positively charged phosphorus as a hydrogen bond acceptor. J Phys Chem Lett 5:4225–4231

    CAS  Google Scholar 

  21. Schmidbaur H (2019) Proof of concept for hydrogen bonding to gold, Au···H − X. Angew Chem Int Ed 58:5806–5809

    CAS  Google Scholar 

  22. Wang P, Xu H-G, Cao G-J, Zhang W-J, Xu X-L, Zheng W-J (2017) Nonconventional hydrogen bonds between silver anion and nucleobases: size-selected anion photoelectron spectroscopy and density functional calculations. J Phys Chem A 121:8973–8981

    CAS  Google Scholar 

  23. Sanchez-de-Armas R, Ahlquist MSG (2015) On the nature of hydrogen bonds to platinum(II)—Which interaction can predict their strength? Phys Chem Chem Phys 17:812–816

    CAS  Google Scholar 

  24. Schmidbaur H, Raubenheimer HG, Dobrzanska L (2014) The gold-hydrogen bond, Au–H, and the hydrogen bond to gold, AuH–X. Chem Soc Rev 43:345–380

    CAS  Google Scholar 

  25. Falvello LR (2010) The hydrogen bond, front and center. Angew Chem Int Ed Engl 49:10045–10047

    CAS  Google Scholar 

  26. Rizzato S, Bergès J, Mason SA, Albinati A, Kozelka J (2010) Dispersion-driven hydrogen bonding: predicted hydrogen bond between water and patinum(II) identified by neutron diffraction. Angew Chem Int Ed Engl 49:7440–7443

    CAS  Google Scholar 

  27. Kryachko ES, Remacle F (2005) Three-gold clusters form nonconventional hydrogen bonds O–HAu and N–HAu with formamide and formic acid. Chem Phys Lett 404:142–149

    CAS  Google Scholar 

  28. Kozelka J (2015) Agostic and hydrogen-bonding X–H· · ·M interactions involving a d8 metal center: recent advances towards their understanding. In: Scheiner S (ed) Noncovalent forces, vol 19. Springer, Dordrecht, pp 129–158

    Google Scholar 

  29. Ventura E, Monte SAD, Fragoso W, Braga CF, Araújo RCMU (2006) Effects of π bond type, backbone size, and halogen on structural and spectroscopic properties of hydrogen-bonded complexes of the XHπ type between alkenes or alkynes and haloacids (HF and HCl). Int J Quantum Chem 106:1009–1019

    CAS  Google Scholar 

  30. Karle IL, Butcher RJ, Wolak MA, Filho DADS, Uchida M, Brédas JL, Kafafi ZH (2007) Cooperative CH···π interactions in the crystal structure of 2,5-di(3-biphenyl)-1,1-dimethyl-3,4-diphenyl-silole and Its effect on Its electronic properties. J Phys Chem C 111:9543–9547

    CAS  Google Scholar 

  31. Nishio M, Umezawa Y, Honda K, Tsuboyama S, Suezawa H (2009) CH/π hydrogen bonds in organic and organometallic chemistry. CrystEngComm 11:1757–1788

    CAS  Google Scholar 

  32. Gierszal KP, Davis JG, Hands MD, Wilcox DS, Slipchenko LV, Ben-Amotz D (2011) π-Hydrogen bonding in liquid water. J Phys Chem Lett 2:2930–2933

    CAS  Google Scholar 

  33. Kumar S, Pande V, Das A (2012) π-Hydrogen bonding wins over conventional hydrogen bonding interaction: a jet-cooled study of indole···furan heterodimer. J Phys Chem A 116:1368–1374

    CAS  Google Scholar 

  34. Mastrorilli P, Gallo V, Todisco S, Latronico M, Saielli G (2016) Uncovering intramolecular π-type hydrogen bonds in solution by NMR spectroscopy and DFT calculations. Chem Eur J 22:7964–7969

    CAS  Google Scholar 

  35. Aliev AE, Arendorf JRT, Pavlakos I, Moreno RB, Porter MJ, Rzepa HS, Motherwell WB (2015) Surfing π clouds for noncovalent interactions: Arenes versus alkenes. Angew Chem Int Ed 54:551–555

    CAS  Google Scholar 

  36. Grabowski SJ, Sokalski WA, Leszczynski J (2006) Can H…σ, π…H + …σ and σ…H + …σ interactions be classified as H-bonded? Chem Phys Lett 432:33–39

    CAS  Google Scholar 

  37. Grabowski SJ (2019) A − H…σ hydrogen bonds: dihydrogen and cycloalkanes as proton acceptors. ChemPhysChem 20:565–574

    CAS  Google Scholar 

  38. Alkorta I, Elguero J, Bene JED (2010) An ab initio investigation of the properties of H2:HX hydrogen-bonded complexes. Chem Phys Lett 489:159–163

    CAS  Google Scholar 

  39. Grabowski SJ (2013) Dihydrogen bond and X-Hσ interaction as sub-classes of hydrogen bond. J Phys Org Chem 26:452–459

    CAS  Google Scholar 

  40. Pirani F, Cappelletti D, Belpassi L, Tarantelli F (2013) Intermolecular interaction in the NH3–H2 and H2O–H2 complexes by molecular beam scattering experiments: the role of charge transfer. J Phys Chem A 117:12601–12607

    CAS  Google Scholar 

  41. Kvyatkovskaya EA, Nikitina EV, Khrustalev VN, Galmés B, Zubkov FI, Frontera A (in press) Through space “α-effect” between the O-bridge atoms in diepoxybenzo[de]isothiochromene derivatives. Eur J Org Chem. https://doi.org/10.1002/ejoc.201901169

    Google Scholar 

  42. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Definition of the hydrogen bond. Pure Appl Chem 83:1637–1641

    CAS  Google Scholar 

  43. Pimentel GC, McClellan AL (1960) The Hydrogen bond. Freeman, San Francisco

    Google Scholar 

  44. Vinogradov SN, Linnell RH (1971) Hydrogen bonding. Van Nostrand-Reinhold, New York

    Google Scholar 

  45. Joesten MD, Schaad LJ (1974) Hydrogen bonding. Marcel Dekker, New York, p 622

    Google Scholar 

  46. Gilli G, Gilli P (2009) The nature of the hydrogen bond. Oxford University Press, Oxford, p 313

    Google Scholar 

  47. Schuster P (1984) Hydrogen bonds, vol 120. Springer, Berlin, p 117

    Google Scholar 

  48. Schuster P, Zundel G, Sandorfy C (1976) The hydrogen bond. Recent developments in theory and experiments. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  49. Grabowski SJ (2006) Hydrogen bonding—new insights. Springer, Dordrecht

    Google Scholar 

  50. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York, p 375

    Google Scholar 

  51. Weller A (1956) Intramolecular proton transfer in excited states. Z Elektrochem 60:1144–1147

    CAS  Google Scholar 

  52. Taylor CA, El-Bayoumi MA, Kasha M (1969) Excited-state two-proton tautomerism in hydrogen-bonded N-heterocyclic base pairs. Proc Natl Acad Sci USA 63:253–260

    CAS  Google Scholar 

  53. Sengupta PK, Kasha M (1979) Excited-state proton transfer spectroscopy on 3-hyroxyflavone and quercetin. Chem Phys Lett 68:382–385

    CAS  Google Scholar 

  54. Chou PT, McMorrow D, Aartsma TJ, Kasha M (1984) The proton-transfer laser. Gain spectrum and amplification of spontaneous emission of 3-hydroxyflavone. J Phys Chem 88:4596–4599

    CAS  Google Scholar 

  55. Nishiya T, Yamauchi S, Hirota N, Baba M, Hanazaki I (1986) Fluorescence studies of the intramolecularly hydrogen-bonded molecules o-hydroxyacetophenone and salicylamide and related molecules. J Phys Chem 90:5730–5735

    CAS  Google Scholar 

  56. Nagaoka S, Fujita M, Takemura T, Baba H (1986) Fluorescence from an upper excited state of o-hydroxybenzaldehyde in the vapor phase. Chem Phys Lett 123:123–125

    Google Scholar 

  57. Ernsting NP, Nikolaus B (1986) Dye-laser pulse shortening by transient absorption following excited-state intramolecular proton transfer. Appl Phys B 39:155–164

    Google Scholar 

  58. Martinez ML, Cooper WC, Chou P-T (1992) A novel excited-state intramolecular proton transfer molecule, 10-hydroxybenzo[h]quinoline. Chem Phys Lett 193:151–154

    CAS  Google Scholar 

  59. Werner T (1979) Triplet deactivation in benzotriazole-type ultraviolet stabilizers. J Phys Chem 83:320–329

    CAS  Google Scholar 

  60. Tarkka RM, Zhang X, Jenekhe SA (1996) Electrically generated intramolecular proton transfer: electroluminescence and stimulated emission from polymers. J Am Chem Soc 118:9438–9439

    CAS  Google Scholar 

  61. Williams DL, Heller J (1970) Intramolecular proton transfer reactions in excited fluorescent compounds. J Phys Chem 74:4473–4480

    Google Scholar 

  62. Heller HJ, Blattmann HR (1973) Some aspects of stabilization of polymers against light. Pure Appl Chem 36:141–161

    CAS  Google Scholar 

  63. Latajka Z, Scheiner S (1992) Proton transfer in the ground and first excited triplet states of malonaldehyde. J Phys Chem 96:9764–9767

    CAS  Google Scholar 

  64. Luth K, Scheiner S (1994) Excited-state energetics and proton-transfer barriers in malonaldehyde. J Phys Chem 98:3582–3587

    CAS  Google Scholar 

  65. Yang Y, Li D, Li C, Liu Y, Jiang K (2019) Asymmetric substitution changes the UV-induced nonradiative decay pathway and the spectra behaviors of β-diketones. Spectrochim Acta Part A Mol Biomol Spectrosc 207:209–215

    CAS  Google Scholar 

  66. Tsutsumi T, Ono Y, Arai Z, Taketsugu T (2018) Visualization of the intrinsic reaction coordinate and global reaction route map by classical multidimensional scaling. J Chem Theory Comput 14:4263–4270

    CAS  Google Scholar 

  67. Zamastil J, Šimsa D (2017) Quantum effects and quantum chaos in multidimensional tunneling. Phys Rev E 96:062201

    CAS  Google Scholar 

  68. Nandipati KR, Kanakati AK, Singh H, Mahapatra S (2019) Controlled intramolecular H-transfer in malonaldehyde in the electronic ground state mediated through the conical intersection of 1nπ* and 1ππ* excited electronic states. Phys Chem Chem Phys 21:20018–20030

    CAS  Google Scholar 

  69. Coe JD, Martínez TJ (2006) Ab initio molecular dynamics of excited-state intramolecular proton transfer around a three-state conical intersection in malonaldehyde. J Phys Chem A 110:618–630

    CAS  Google Scholar 

  70. Sobolewski AL, Domcke W (1999) Photophysics of malonaldehyde: an ab initio study. J Phys Chem A 103:4494–4504

    CAS  Google Scholar 

  71. Luth K, Scheiner S (1995) Proton transfer in ground and excited electronic states of glyoxalmonohydrazine. J Phys Chem 99:7352–7359

    CAS  Google Scholar 

  72. Duan X, Scheiner S (1993) Ground and excited state intramolecular proton transfer in OCCNN ring. Chem Phys Lett 204:36–44

    CAS  Google Scholar 

  73. Rovira MC, Scheiner S (1995) Transfer of a proton between N atoms in excited electronic states of 1,5-diaza-1,3-pentadiene. J Phys Chem 99:9854–9861

    CAS  Google Scholar 

  74. Scheiner S, Kar T, Cuma M (1997) Excited state intramolecular proton transfer in anionic analogues of malonaldehyde. J Phys Chem A 101:5901–5909

    CAS  Google Scholar 

  75. Vener MV, Scheiner S (1995) Hydrogen bonding and proton transfer in the ground and lowest excited singlet states of o-hydroxyacetophenone. J Phys Chem 99:642–649

    CAS  Google Scholar 

  76. Cuma M, Scheiner S, Kar T (1999) Effect of adjoining aromatic ring upon excited state proton transfer. o-Hydroxybenzaldehyde. J Mol Struct (Theochem) 467:37–49

    CAS  Google Scholar 

  77. Vener MV, Scheiner S, Sokolov ND (1994) Theoretical study of hydrogen bonding and proton transfer in the ground and lowest excited singlet states of tropolone. J Chem Phys 101:9755–9765

    CAS  Google Scholar 

  78. Forés M, Scheiner S (1999) Effects of chemical substitution upon excited state proton transfer: fluoroderivatives of salicylaldimine. Chem Phys 246:65–74

    Google Scholar 

  79. Yi M, Scheiner S (1996) Proton transfer between phenol and ammonia in ground and excited electronic states. Chem Phys Lett 262:567–572

    CAS  Google Scholar 

  80. Scheiner S (2000) Theoretical studies of excited state proton transfer in small model systems. J Phys Chem A 104:5898–5909

    CAS  Google Scholar 

  81. Pang X, Jiang C, Xie W, Domcke W (2019) Photoinduced electron-driven proton transfer from water to an N-heterocyclic chromophore: nonadiabatic dynamics studies for pyridine–water clusters. Phys Chem Chem Phys 21:14073–14079

    CAS  Google Scholar 

  82. Pang X, Ehrmaier J, Wu X, Jiang C, Xie W, Sobolewski AL, Domcke W (2018) Photoinduced hydrogen-transfer reactions in pyridine-water clusters: insights from excited-state electronic-structure calculations. Chem Phys 515:550–556

    CAS  Google Scholar 

  83. Wu X, Karsili TNV, Domcke W (2017) Role of electron-driven proton-transfer processes in the ultrafast deactivation of photoexcited anionic 8-oxoGuanine-adenine and 8-oxoGuanine-cytosine base pairs. Molecules 22:135

    Google Scholar 

  84. Trung NT, Khanh PN, Carvalho AJP, Nguyen MT (2019) Remarkable shifts of Csp2-H and O–H stretching frequencies and stability of complexes of formic acid with formaldehydes and thioformaldehydes. J Comput Chem 40:1387–1400

    CAS  Google Scholar 

  85. Bednowitz AL, Post B (1966) Direct determination of the crystal structure of β-fumaric acid. Acta Cryst 21:566–571

    CAS  Google Scholar 

  86. Glasstone S (1937) The structure of some molecular complexes in the liquid phase. Trans Faraday Soc 33:200–214

    CAS  Google Scholar 

  87. Dippy JFJ (1939) The dissociation constants of monocarboxylic acids; Their measurement and their significance in theoretical organic chemistry. Chem Rev 25:151–211

    CAS  Google Scholar 

  88. Sutor DJ (1962) The C-H…O hydrogen bond in crystals. Nature 195:68–69

    CAS  Google Scholar 

  89. Karpfen A (2019) On the interaction of propynal with HNO, HF, HCl, H2O, CH3OH, and NH3: red- and blue-shifting hydrogen bonds and tetrel bonds. Comput Theor Chem 1160:1–13

    CAS  Google Scholar 

  90. Behera B, Das PK (2019) Blue-shifted hydrogen bonding in the gas phase CH/D3CN···HCCl3 complexes. J Phys Chem A 123:1830–1839

    CAS  Google Scholar 

  91. Zhang L, Li D (2019) An insight into intramolecular blue-shifting CH···π hydrogen bonds in 1,3-hexadien-5-yne and its halogen-substituted derivatives. Chem Phys 518:58–68

    CAS  Google Scholar 

  92. Scheiner S (2000) CH···O hydrogen bonding. In: Hargittai M, Hargittai I (eds) Advances in molecular structure research, vol 6. JAI Press, Stamford, pp 159–207

    Google Scholar 

  93. Masunov A, Dannenberg JJ, Contreras RH (2001) C–H bond-shortening upon hydrogen bond formation: influence of an electric field. J Phys Chem A 105:4737–4740

    CAS  Google Scholar 

  94. Pejov L, Hermansson K (2003) On the nature of blueshifting hydrogen bonds: ab initio and density functional studies of several fluoroform complexes. J Chem Phys 119:313–324

    CAS  Google Scholar 

  95. Qian W, Krimm S (2002) Vibrational spectroscopy of hydrogen bonding: origin of the different behavior of the C-H…O hydrogen bond. J Phys Chem A 106:6628–6636

    CAS  Google Scholar 

  96. Li X, Liu L, Schlegel HB (2002) On the physical origin of blue-shifted hydrogen bonds. J Am Chem Soc 124:9639–9647

    CAS  Google Scholar 

  97. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. J Am Chem Soc 125:5973–5987

    CAS  Google Scholar 

  98. Joseph J, Jemmis ED (2007) Red-, blue-, or no-shift hydrogen bonds: a unified explanation. J Am Chem Soc 129:4620–4632

    CAS  Google Scholar 

  99. Karpfen A, Kryachko ES (2009) On the intramolecular origin of the blue shift of A-H stretching frequencies: triatomic hydrides HAX. J Phys Chem A 113:5217–5223

    CAS  Google Scholar 

  100. Grabowski SJ (2011) Red- and blue-shifted hydrogen bonds: the bent rule from quantum theory of atoms in molecules perspective. J Phys Chem A 115:12789–12799

    CAS  Google Scholar 

  101. Mo Y, Wang C, Guan L, Braïda B, Hiberty PC, Wu W (2014) On the nature of blue shifting hydrogen bonds. Chem Eur J 20:8444–8452

    CAS  Google Scholar 

  102. Gu Y, Kar T, Scheiner S (1999) Fundamental properties of the CHO interaction: Is it a true hydrogen bond? J Am Chem Soc 121:9411–9422

    CAS  Google Scholar 

  103. Scheiner S, Gu Y, Kar T (2000) Evaluation of the H-bonding properties of CHO interactions based upon NMR spectra. J Mol Struct (Theochem) 500:441–452

    CAS  Google Scholar 

  104. Scheiner S, Grabowski SJ, Kar T (2001) Influence of hybridization and substitution upon the properties of the CH··O hydrogen bond. J Phys Chem A 105:10607–10612

    CAS  Google Scholar 

  105. Scheiner S, Kar T (2002) Red versus blue-shifting hydrogen bonds: Are there fundamental distinctions? J Phys Chem A 106:1784–1789

    CAS  Google Scholar 

  106. Gu Y, Kar T, Scheiner S (2000) Comparison of the CHN and CHO interactions involving substituted alkanes. J Mol Struct 552:17–31

    CAS  Google Scholar 

  107. Scheiner S, Kar T, Gu Y (2001) Strength of the CαH.O hydrogen bond of amino acid residues. J Biol Chem 276:9832–9837

    CAS  Google Scholar 

  108. Scheiner S, Kar T, Pattanayak J (2002) Comparison of various types of hydrogen bonds involving aromatic amino acids. J Am Chem Soc 124:13257–13264

    CAS  Google Scholar 

  109. Scheiner S (2006) Contributions of NH··O and CH··O H-bonds to the stability of β-sheets in proteins. J Phys Chem B 110:18670–18679

    CAS  Google Scholar 

  110. Pohl G, Plumley JA, Dannenberg JJ (2013) The interactions of phenylalanines in β-sheet-like structures from molecular orbital calculations using density functional theory (DFT), MP2, and CCSD(T) methods. J Chem Phys 138:245102

    Google Scholar 

  111. Wang C-S, Sun C-L (2010) Investigation on the individual contributions of N–H···O=C and C–H···O=C interactions to the binding energies of β-sheet models. J Comput Chem 31:1036–1044

    Google Scholar 

  112. Guo H, Gorin A, Guo H (2009) A peptide-linkage deletion procedure for estimate of energetic contributions of individual peptide groups in a complex environment: application to parallel β-sheets. Interdiscip Sci Comput Life Sci 1:12–20

    CAS  Google Scholar 

  113. Vener MV, Egorova AN, Fomin DP, Tsirel’son VG (2009) A quantum-topological analysis of noncovalent interactions in secondary polyalanine structures. Russ J Phys Chem B 3:541–547

    Google Scholar 

  114. Vener MV, Egorova AN, Fomin DP, Tsirelson VG (2007) QTAIM study of the closed-shell interactions in peptide secondary structures: a cluster treatment of oligo- and polyalanines. Chem Phys Lett 440:279–285

    CAS  Google Scholar 

  115. Parthasarathi R, Raman SS, Subramanian V, Ramasami T (2007) Bader’s electron density analysis of hydrogen bonding in secondary structural elements of proteins. J Phys Chem A 111:7141–7148

    CAS  Google Scholar 

  116. Scheiner S (2007) The strength with which a peptide group can form a hydrogen bond varies with the internal conformation of the polypeptide chain. J Phys Chem B 111:11312–11317

    CAS  Google Scholar 

  117. Scheiner S, Kar T (2005) Effect of solvent upon CH··O hydrogen bonds with implications for protein folding. J Phys Chem B 109:3681–3689

    CAS  Google Scholar 

  118. Scheiner S (2008) Analysis of catalytic mechanism of serine proteases. Viability of ring-flip hypothesis. J Phys Chem B 112:6837–6846

    CAS  Google Scholar 

  119. Horowitz S, Adhikari U, Dirk LMA, Del Rizzo PA, Mehl RA, Houtz RL, Al-Hashimi HM, Scheiner S, Trievel RC (2014) Manipulating Unconventional CH-Based Hydrogen Bonding in a Methyltransferase via Noncanonical Amino Acid Mutagenesis. ACS Chem Biol 9:1692–1697

    CAS  Google Scholar 

  120. Jones CR, Baruah PK, Thompson AL, Scheiner S, Smith MD (2012) Can a C-H···O interaction be a determinant of conformation. J Am Chem Soc 134:12064–12071

    CAS  Google Scholar 

  121. S. Scheiner, Dissection of the Factors Affecting Formation of a CH∙∙∙O H-Bond. A Case Study, Cryst. 5, 327 (2015)

    CAS  Google Scholar 

  122. Driver RW, Claridge TDW, Scheiner S, Smith MD (2016) Torsional and Electronic Factors Control the C − H···O Interaction. Chem Eur J 22:16513–16521

    CAS  Google Scholar 

  123. Adhikari U, Scheiner S (2013) The Magnitude and Mechanism of Charge Enhancement of CH··O H-bonds. J Phys Chem A 117:10551–10562

    CAS  Google Scholar 

  124. B. Nepal and S. Scheiner, Anionic CHX Hydrogen Bonds: Origin of Their Strength, Geometry, and Other Properties, Chem. Eur. J. 21, 1474-1481 (2015)

  125. Nepal B, Scheiner S (2015) Microsolvation of Anions by Molecules Forming CH∙∙X Hydrogen Bonds. Chem Phys 463:137–144

    CAS  Google Scholar 

  126. Scheiner S, Kar T (2008) Spectroscopic and structural signature of the CH–O H-bond. J Phys Chem A 112:11854–11860

    CAS  Google Scholar 

  127. Scheiner S (2009) Identification of spectroscopic patterns of CH–O H-bonds in dipeptides. J. Phys. Chem. B 113:10421–10427

    CAS  Google Scholar 

  128. Scheiner S (2010) Effect of CH…O hydrogen bond length on the geometric and spectroscopic features of the peptide unit of proteins. Int J Quantum Chem 110:2775–2783

    CAS  Google Scholar 

  129. Hassel O (1970) Structural aspects of interatomic charge-transfer bonding. Science 170:497–502

    CAS  Google Scholar 

  130. Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) The nature and geometry of intermolecular interactions between halogens and oxygen or nitrogen. J Am Chem Soc 118:3108–3116

    CAS  Google Scholar 

  131. Allen FH, Lommerse JPM, Hoy VJ, Howard JAK, Desiraju GR (1997) HalogenO(nitro) supramolecular synthon in crystal engineering: a combined crystallographic database and ab initio molecular orbital study. Acta Cryst B53:1006–1016

    CAS  Google Scholar 

  132. Ikuta S (1990) Anisotropy of electron-density distribution around atoms in molecules: N, P, O and S atoms. J. Mol. Struct. (Theochem) 205:191–201

    Google Scholar 

  133. Hathwar VR, Row TNG (2010) Nature of Cl···Cl intermolecular interactions via experimental and theoretical charge density analysis: correlation of polar flattening effects with geometry. J Phys Chem A 114:13434–13441

    CAS  Google Scholar 

  134. Sedlak R, Kolář MH, Hobza P (2015) Polar flattening and the strength of halogen bonding. J Chem Theory Comput 11:4727–4732

    CAS  Google Scholar 

  135. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    CAS  Google Scholar 

  136. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    CAS  Google Scholar 

  137. Solimannejad M, Gharabaghi M, Scheiner S (2011) SHN and SHP blue-shifting H-Bonds and NP interactions in complexes pairing HSN with amines and phosphines. J. Chem. Phys 134:024312

    Google Scholar 

  138. Scheiner S (2011) A new noncovalent force: comparison of PN interaction with hydrogen and halogen bonds. J. Chem. Phys 134:094315

    Google Scholar 

  139. Scheiner S (2011) Effects of multiple substitution upon the PN noncovalent interaction. Chem Phys 387:79–84

    CAS  Google Scholar 

  140. Scheiner S (2011) Effects of substituents upon the PN noncovalent interaction: the limits of its strength. J Phys Chem A 115:11202–11209

    CAS  Google Scholar 

  141. Scheiner S (2011) Can two trivalent N atoms engage in a direct NN noncovalent interaction? Chem Phys Lett 514:32–35

    CAS  Google Scholar 

  142. Scheiner S (2013) The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. Acc Chem Res 46:280–288

    CAS  Google Scholar 

  143. Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen and hydrogen bonds. Int J Quantum Chem 113:1609–1620

    CAS  Google Scholar 

  144. Scheiner S (2011) On the properties of XN noncovalent interactions for first-, second- and third-row X atoms. J Chem Phys 134:164313

    Google Scholar 

  145. Adhikari U, Scheiner S (2014) Effects of charge and substituent on the S···N Chalcogen bond. J Phys Chem A 118:3183–3192

    CAS  Google Scholar 

  146. Nziko VDPN, Scheiner S (2014) Chalcogen bonding between tetravalent SF4 and amines. J Phys Chem A 118:10849–10856

    CAS  Google Scholar 

  147. Azofra LM, Alkorta I, Scheiner S (2015) Chalcogen bonds in complexes of SOXY (X, Y = F, Cl) with nitrogen bases. J Phys Chem A 119:535–541

    CAS  Google Scholar 

  148. Nziko VDPN, Scheiner S (2015) Intramolecular S···O Chalcogen bond as stabilizing factor in geometry of substituted phenyl-SF3 molecules. J Org Chem 80:2356–2363

    CAS  Google Scholar 

  149. Nziko VDPN, Scheiner S (2015) S···π Chalcogen bonds between SF2 or SF4 and C–C multiple bonds. J Phys Chem A 119:5889–5897

    CAS  Google Scholar 

  150. Rosenfield RE, Parthasarathy R, Dunitz JD (1977) Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles. J Am Chem Soc 99:4860–4862

    CAS  Google Scholar 

  151. Burling FT, Goldstein BM (1992) Computational studies of nonbonded sulfur–oxygen and selenium–oxygen interactions in the thiazole and selenazole nucleosides. J Am Chem Soc 114:2313–2320

    CAS  Google Scholar 

  152. Iwaoka M, Tomoda S (1994) A model study on the effect of an amino group on the antioxidant activity of glutathione peroxidase. J Am Chem Soc 116:2557–2561

    CAS  Google Scholar 

  153. Del Bene JE, Alkorta I, Elguero J (2019) Probing C···S chalcogen bonds in complexes SC:SHX, for X = NO2, NC, F, Cl, CN, CCH, and NH2. Chem Phys Lett 721:86–90

    Google Scholar 

  154. Esrafili MD, Mousavian P, Mohammadian-Sabet F (2019) The influence of hydrogen- and lithium-bonding on the cooperativity of chalcogen bonds: a comparative ab initio study AU—Esrafili, Mehdi D. Mol Phys 117:726–733

    CAS  Google Scholar 

  155. Alkorta I, Legon A (2018) An ab initio investigation of the geometries and binding strengths of Tetrel-, Pnictogen-, and chalcogen-bonded complexes of CO2, N2O, and CS2 with simple lewis bases: some generalizations. Molecules 23:2250

    Google Scholar 

  156. Gleiter R, Haberhauer G, Werz DB, Rominger F, Bleiholder C (2018) From noncovalent chalcogen–chalcogen interactions to supramolecular aggregates: experiments and calculations. Chem Rev 118:2010–2041

    CAS  Google Scholar 

  157. Scheiner S (2015) Comparison of CH···O, SH···O, Chalcogen, and Tetrel bonds formed by neutral and cationic sulfur-containing compounds. J Phys Chem A 119:9189–9199

    CAS  Google Scholar 

  158. Nziko VDPN, Scheiner S (2016) Comparison of π-hole tetrel bonding with σ-hole halogen bonds in complexes of XCN (X = F, Cl, Br, I) and NH3. Phys Chem Chem Phys 18:3581–3590

    CAS  Google Scholar 

  159. Liu M, Li Q, Scheiner S (2017) Comparison of tetrel bonds in neutral and protonated complexes of pyridineTF3 and furanTF3 (T = C, Si, and Ge) with NH3. Phys Chem Chem Phys 19:5550–5559

    CAS  Google Scholar 

  160. Scheiner S (2017) Systematic elucidation of factors that influence the strength of Tetrel bonds. J Phys Chem A 121:5561–5568

    CAS  Google Scholar 

  161. Scheiner S (2018) Steric crowding in Tetrel bonds. J Phys Chem A 122:2550–2562

    CAS  Google Scholar 

  162. Zierkiewicz W, Michalczyk M, Scheiner S (2018) Implications of monomer deformation for tetrel and pnicogen bonds. Phys Chem Chem Phys 20:8832–8841

    CAS  Google Scholar 

  163. Zierkiewicz W, Michalczyk M, Wysokiński R, Scheiner S (2019) Dual geometry schemes in Tetrel bonds: complexes between TF4 (T = Si, Ge, Sn) and pyridine derivatives. Molecules 24:376

    Google Scholar 

  164. Trievel RC, Scheiner S (2018) Crystallographic and computational characterization of methyl tetrel bonding in S-adenosylmethionine-dependent methyltransferases. Molecules 23:2965–2981

    Google Scholar 

  165. Scheiner S (2018) Ability of IR and NMR spectral data to distinguish between a Tetrel bond and a hydrogen bond. J Phys Chem A 122:7852–7862

    CAS  Google Scholar 

  166. Scheiner S (2019) Dependence of NMR chemical shifts upon CH bond lengths of a methyl group involved in a Tetrel bond. Chem Phys Lett 714:61–64

    CAS  Google Scholar 

  167. Zhang J, Hu Q, Li Q, Scheiner S, Liu S (2019) Comparison of σ-hole and π-hole Tetrel bonds in complexes of borazine with TH3F and F2TO/H2TO (T = C, Si, Ge). Int J Quantum Chem 119:e25910

    Google Scholar 

  168. Zierkiewicz W, Michalczyk M, Scheiner S (2018) Comparison between Tetrel bonded complexes stabilized by σ and π hole interactions. Molecules 23:1416

    Google Scholar 

  169. Wei Y, Li Q, Scheiner S (2018) The π-tetrel bond and its influence on hydrogen bonding and proton transfer. ChemPhysChem 19:736–743

    CAS  Google Scholar 

  170. Grabowski SJ (2014) Boron and other triel lewis acid centers: from hypovalency to hypervalency. ChemPhysChem 15:2985–2993

    CAS  Google Scholar 

  171. Grabowski SJ (2015) π-hole bonds: boron and aluminum lewis acid centers. ChemPhysChem 16:1470–1479

    CAS  Google Scholar 

  172. Chi Z, Dong W, Li Q, Yang X, Scheiner S, Liu S (2019) Carbene triel bonds between TrR3 (Tr = B, Al) and N-heterocyclic carbenes. Int J Quantum Chem 119:e25867

    Google Scholar 

  173. Michalczyk M, Zierkiewicz W, Scheiner S (2018) Triel-bonded complexes between TrR3 (Tr = B, Al, Ga; R = H, F, Cl, Br, CH3) and pyrazine. ChemPhysChem 19:3122–3133

    CAS  Google Scholar 

  174. Mukherjee A, Sanz-Matias A, Velpula G, Waghray D, Ivasenko O, Bilbao N, Jeremy N, Harvey K, Mali S, De Feyter S (2019) Halogenated building blocks for 2D crystal engineering on solid surfaces: lessons from hydrogen bonding. Chem Sci 10:3881–3891

    CAS  Google Scholar 

  175. Xu C, Loh CCJ (2019) A multistage halogen bond catalyzed strain-release glycosylation unravels new hedgehog signaling inhibitors. J Am Chem Soc 141:5381–5391

    CAS  Google Scholar 

  176. Carreras L, Benet-Buchholz J, Franconetti A, Frontera A, van Leeuwen PWNM, Vidal-Ferran A (2019) Halogen bonding effects on the outcome of reactions at metal centres. Chem Commun 55:2380–2383

    CAS  Google Scholar 

  177. Hijazi H, Vacher A, Groni S, Lorcy D, Levillain E, Fave C, Schöllhorn B (2019) Electrochemically driven interfacial halogen bonding on self-assembled monolayers for anion detection. Chem Commun 55:1983–1986

    Google Scholar 

  178. Zhang X, Ren J, Tan SM, Tan D, Lee R, Tan C-H (2019) An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction. Science 363:400–404

    CAS  Google Scholar 

  179. Wang H, Bisoyi HK, Urbas AM, Bunning TJ, Li Q (2019) The halogen bond: an emerging supramolecular tool in the design of functional mesomorphic materials. Chem Eur J 25:1369–1378

    CAS  Google Scholar 

  180. Liu C-Z, Koppireddi S, Wang H, Zhang D-W, Li Z-T (2019) Halogen bonding directed supramolecular quadruple and double helices from hydrogen-bonded arylamide foldamers. Angew Chem Int Ed 58:226–230

    CAS  Google Scholar 

  181. Serpell CJ, Kilah NL, Costa PJ, Félix V, Beer PD (2010) Halogen bond anion templated assembly of an imidazolium pseudorotaxane. Angew Chem Int Ed 49:5322–5326

    CAS  Google Scholar 

  182. Caballero A, White NG, Beer PD (2011) A bidentate halogen-bonding bromoimidazoliophane receptor for bromide ion recognition in aqueous media. Angew Chem Int Ed Engl 50:1845–1848

    CAS  Google Scholar 

  183. Walter SM, Kniep F, Rout L, Schmidtchen FP, Herdtweck E, Huber SM (2012) Isothermal calorimetric titrations on charge-assisted halogen bonds: role of entropy, counterions, solvent, and temperature. J Am Chem Soc 134:8507–8512

    CAS  Google Scholar 

  184. Gilday LC, White NG, Beer PD (2013) Halogen- and hydrogen-bonding triazole-functionalised porphyrin-based receptors for anion recognition. Dalton Trans 42:15766–15773

    CAS  Google Scholar 

  185. Borissov A, Marques I, Lim JYC, Félix V, Smith MD, Beer PD (2019) Anion recognition in water by charge-neutral halogen and chalcogen bonding foldamer receptors. J Am Chem Soc 141:4119–4129

    CAS  Google Scholar 

  186. Klein HA, Beer PD (2019) Iodide discrimination by tetra-iodotriazole halogen bonding interlocked hosts. Chem Eur J 25:3125–3130

    CAS  Google Scholar 

  187. Hein R, Borissov A, Smith MD, Beer PD, Davis JJ (2019) A halogen-bonding foldamer molecular film for selective reagentless anion sensing in water. Chem Commun 55:4849–4852

    CAS  Google Scholar 

  188. Chakraborty S, Maji S, Ghosh R, Jana R, Datta A, Ghosh P (2019) Aryl-platform-based tetrapodal 2-iodo-imidazolium as an excellent halogen bond receptor in aqueous medium. Chem Commun 55:1506–1509

    CAS  Google Scholar 

  189. Nepal B, Scheiner S (2015) competitive halide binding by halogen versus hydrogen bonding: bis-triazole pyridinium. Chem Eur J 21:13330–13335

    CAS  Google Scholar 

  190. Nepal B, Scheiner S (2015) Substituent effects on the binding of halides by neutral and dicationic bis(triazolium) receptors. J Phys Chem A 119:13064–13073

    CAS  Google Scholar 

  191. Nepal B, Scheiner S (2016) Building a better halide receptor: optimum choice of spacer, binding unit, and halosubstitution. ChemPhysChem 17:836–844

    CAS  Google Scholar 

  192. Scheiner S (2017) Assembly of effective halide receptors from components. Comparing hydrogen, halogen, and Tetrel bonds. J Phys Chem 121:3606–3615

    CAS  Google Scholar 

  193. Scheiner S (2017) Comparison of halide receptors based on H, halogen, chalcogen, pnicogen, and tetrel bonds. Faraday Disc 203:213–226

    CAS  Google Scholar 

  194. Scheiner S (2018) Tetrel bonding as a vehicle for strong and selective anion binding. Molecules 23:1147–1155

    Google Scholar 

  195. Scheiner S (2019) Differential binding of tetrel-bonding bipodal receptors to monatomic and polyatomic anions. Molecules 24:227

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Scheiner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheiner, S. The Hydrogen Bond: A Hundred Years and Counting. J Indian Inst Sci 100, 61–76 (2020). https://doi.org/10.1007/s41745-019-00142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-00142-8

Keywords

Navigation