Skip to main content
Log in

C–H···Y (Y=N, O, π) Hydrogen Bond: A Unique Unconventional Hydrogen Bond

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

We present a spectroscopic overview of the C–H···Y (Y = hydrogen bond acceptors) hydrogen bonded (HB or H-bond) complexes in this article. Although C–H···Y interactions have been recognized as H-bonding interactions for quite some time, they have not been investigated spectroscopically until recently. Recent results indicated that unlike the conventional hydrogen bond, C–H···Y H-bond has interesting spectroscopic characteristics, i.e. it shows both red as well as blue shift in C–H stretching frequency upon H-bond formation. This review presents examples of red, blue, and zero shifted C–H···Y H-bonds investigated in our laboratory that were characterized using laser-based IR and UV spectroscopic techniques applied to the cold isolated molecular complexes formed under supersonic expansion conditions. Along with spectroscopic information, ab initio/DFT-predicted geometry optimized structures of various conformers, harmonic frequency calculations of the optimized structures, and a number of properties such as electron densities at the bond critical points, orbital interaction energies, binding energies of the C–H···Y bound complexes are also summarized for better understanding of this type of H-bond. Not only the spectroscopic shift in C–H stretching frequency, but also the role of C–H···O H-bonds in microsolvation of several organic molecules has been highlighted. It has been found that depending upon activation of C–H moiety, C–H···Y H-bonds can provide primary or secondary stabilization for the growth of the primary solvation shell around organic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Reprinted with permission from Ref.75. Copyright © 2014 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 5:

Reference92—reproduced by permission of the PCCP Owner Societies.

Figure 6:

Reference95—reproduced by permission of the PCCP Owner Societies.

Figure 7:

Reference95—reproduced by permission of the PCCP Owner Societies.

Figure 8:

Reference95—reproduced by permission of the PCCP Owner Societies.

Figure 9:

Adapted with permission from Ref.39. Copyright © 2019 American Chemical Society.

Figure 10:

Reprinted with permission from Ref.39. Copyright © 2019 American Chemical Society.

Similar content being viewed by others

References

  1. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York, pp 29–121

    Google Scholar 

  2. Moore TS, Winmill TF (1912) The state of amines an aqueous solution. J Chem Soc 101:1635–1676

    CAS  Google Scholar 

  3. Latimer WM, Rodebush WH (1920) Polarity and ionization from the standpoint of the Lewis theory of valence. J Am Chem Soc 42:1419–1433

    CAS  Google Scholar 

  4. Biswal HS, Chakraborty S, Wategaonkar S (2008) Experimental evidence of OH···S hydrogen bonding in supersonic jet. J Chem Phys 129:184311–184317

    Google Scholar 

  5. Mundlapati VR, Sahoo DK, Ghosh S, Purame UK, Pandey S, Acharya R, Pal N, Tiwari P, Biswal HS (2017) Spectroscopic evidences for strong hydrogen bonds with selenomethionine in proteins. J Phys Chem Lett 8:794–800

    CAS  Google Scholar 

  6. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Interrelation between H-bond and Pi-electron delocalization. Chem Rev 105:3513–3560

    CAS  Google Scholar 

  7. Sutor DJ (1962) C–H···O hydrogen bond in crystals. Nature 195:68–69

    CAS  Google Scholar 

  8. Sutor DJ (1963) Evidence for existence of C–H···O hydrogen bonds in crystals. J Chem Soc 1105-1110

  9. Taylor R, Kennard O (1982) Crystallographic evidence for the existence of C–H···O, C–H···N, and C–H···C1 hydrogen-bonds. J Am Chem Soc 104:5063–5070

    CAS  Google Scholar 

  10. Wahl MC, Sundaralingam M (1997) C–H···O hydrogen bonding in biology. Trends Biochem Sci 22:97–102

    CAS  Google Scholar 

  11. Senes A, Ubarretxena-Belandia I, Engelman DM (2001) The C–H···O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci USA 98:9056–9061

    CAS  Google Scholar 

  12. Horowitz S, Trievel RC (2012) Carbon-oxygen hydrogen bonding in biological structure and function. J Biol Chem 287:41576–41582

    CAS  Google Scholar 

  13. Brovarets OO, Yurenko YP, Hovorun DM (2014) Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study. J Biomol Struct Dyn 32:993–1022

    CAS  Google Scholar 

  14. Yurenko YP, Zhurakivsky RO, Samijlenko SP, Hovorun DM (2011) Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick Pairs, quantum chemical and AIM analysis. J Biomol Struct Dyn 29:51–65

    CAS  Google Scholar 

  15. Jiang L, Lai LH (2002) CH···O hydrogen bonds at protein–protein interfaces. J Biol Chem 277:37732–37740

    CAS  Google Scholar 

  16. Thakur TS, Kirchner MT, Blaser D, Boese R, Desiraju GR (2010) C–H···F–C hydrogen bonding in 1,2,3,5-tetrafluorobenzene and other fluoroaromatic compounds and the crystal structure of alloxan revisited. CrystEngComm 12:2079–2085

    CAS  Google Scholar 

  17. Chatterjee J, Mierke DF, Kessler H (2008) Conformational preference and potential templates of N-methylated cyclic pentaalanine peptides. Chem Eur J 14:1508–1517

    CAS  Google Scholar 

  18. Erez E, Fass D, Bibi E (2009) How intramembrane proteases bury hydrolytic reactions in the membrane. Nature 459:371–378

    CAS  Google Scholar 

  19. Desiraju GR (1991) The CH···O hydrogen bond in crystals: what is it? Acc Chem Res 24:290–296

    CAS  Google Scholar 

  20. Gu Y, Kar T, Scheiner S (1999) Fundamental properties of the CH···O interaction: is it a true hydrogen bond? J Am Chem Soc 121:9411–9422

    CAS  Google Scholar 

  21. Scheiner S, Kar T, Gu Y (2001) Strength of the CαH···O hydrogen bond of amino acid residues. J Biol Chem 276:9832–9837

    CAS  Google Scholar 

  22. Steiner T, Saenger W (1993) Role of CH···O hydrogen bonds in the coordination of water molecules. Analysis of neutron diffraction data. J Am Chem Soc 115:4540–4547

    CAS  Google Scholar 

  23. Kar T, Scheiner S (2004) Comparison of cooperativity in CH···O and OH···O hydrogen bonds. J Phys Chem A 108:9161–9168

    CAS  Google Scholar 

  24. Popelier P, Bader R (1992) The existence of an intramolecular C–H···O hydrogen bond in creatine and carbamoyl sarcosine. Chem Phys Lett 189:542–548

    CAS  Google Scholar 

  25. Pierce AC, Sandretto KL, Bemis GW (2002) Kinase inhibitors and the case for CH···O hydrogen bonds in protein–ligand binding. Proteins Struct Funct Bioinform 49:567–576

    CAS  Google Scholar 

  26. Braga D, Grepioni F, Biradha K, Pedireddi V, Desiraju GR (1995) Hydrogen bonding in organometallic crystals. 2. CH···O hydrogen bonds in bridged and terminal first-row metal carbonyls. J Am Chem Soc 117:3156–3166

    CAS  Google Scholar 

  27. Samanta AK, Chakraborty T (2010) In: Chaudhuri RK, Mekkaden MV, Raveendran AV, Satya Narayanan A (eds) Recent advances in spectroscopy. Springer, pp 53–61

  28. Mukhopadhyay A, Mukherjee M, Pandey P, Samanta AK, Bandyopadhyay B, Chakraborty T (2009) Blue shifting C − H···O hydrogen bonded complexes between chloroform and small cyclic ketones: ring-size effects on stability and spectral shifts. J Phys Chem A 113:3078–3087

    CAS  Google Scholar 

  29. Reimann B, Buchhold K, Vaupel S, Brutschy B, Havlas Z, Spirko V, Hobza P (2001) Improper, blue-shifting hydrogen bond between fluorobenzene and fluoroform. J Phys Chem A 105:5560–5566

    CAS  Google Scholar 

  30. Shirhatti PR, Maity DK, Wategaonkar S (2013) C-H···Y hydrogen bonds in the complexes of p-cresol and p-cyanophenol with fluoroform and chloroform. J Phys Chem A 117:2307–2316

    CAS  Google Scholar 

  31. Shirhatti PR, Wategaonkar S (2010) Blue shifted hydrogen bond in 3-methylindole·CHX3 complexes (X = Cl, F). Phys Chem Chem Phys 12:6650–6659

    CAS  Google Scholar 

  32. Delanoye SN, Herrebout WA, van der Veken BJ (2002) Improper or classical hydrogen bonding? A comparative cryosolutions infrared study of the complexes of HCClF2, HCCl2F, and HCCl3 with dimethyl ether. J Am Chem Soc 124:7490–7498

    CAS  Google Scholar 

  33. Delanoye SN, Herrebout WA, van der Veken BJ (2002) Blue shifting hydrogen bonding in the complexes of chlorofluoro haloforms with acetone-d6 and oxirane-d4. J Am Chem Soc 124:11854–11855

    CAS  Google Scholar 

  34. Michielsen B, Dom JJJ, van der Veken BJ, Hesse S, Xue ZF, Suhm MA, Herrebout WA (2010) The complexes of halothane with benzene: the temperature dependent direction of the complexation shift of the aliphatic C–H stretching. Phys Chem Chem Phys 12:14034–14044

    CAS  Google Scholar 

  35. van der Veken BJ, Herrebout WA, Szostak R, Shchepkin DN, Havlas Z, Hobza P (2001) The nature of improper, blue-shifting hydrogen bonding verified experimentally. J Am Chem Soc 123:12290–12293

    Google Scholar 

  36. Venkatesan V, Fujii A, Ebata T, Mikami N (2004) A direct experimental evidence for an aromatic C–H···O hydrogen bond by fluorescence-detected infrared spectroscopy. Chem Phys Lett 394:45–48

    CAS  Google Scholar 

  37. Venkatesan V, Fujii A, Ebata T, Mikami N (2005) Infrared and ab initio studies on 1,2,4,5-tetrafluorobenzene clusters with methanol and 2,2,2-trifluoroethanol: presence and absence of an aromatic C–H···O hydrogen bond. J Phys Chem A 109:915–921

    CAS  Google Scholar 

  38. Venkatesan V, Fujii A, Mikami N (2005) A study on aromatic C–H···X (X = N, O) hydrogen bonds in 1,2,4,5-tetrafluorobenzene clusters using infrared spectroscopy and ab initio calculations. Chem Phys Lett 409:57–62

    CAS  Google Scholar 

  39. Ghosh S, Wategaonkar S (2019) C–H···O hydrogen bond anchored water bridge in 1,2,4,5-tetracyanobenzene-water clusters. J Phys Chem A 123:3851–3862

    CAS  Google Scholar 

  40. Samanta AK, Banerjee P, Bandyopadhyay B, Pandey P, Chakraborty T (2017) Antagonistic interplay between an intermolecular CH···O and an intramolecular OH···O hydrogen bond in a 1: 1 complex between 1, 2-cyclohexanedione and chloroform: a combined matrix isolation infrared and quantum chemistry study. J Phys Chem A 121:6012–6020

    CAS  Google Scholar 

  41. Sundararajan K, Ramanathan N (2007) Infrared and ab initio study of acetylene–acetone complex in solid argon and nitrogen matrices. J Mol Struct 833:150–160

    CAS  Google Scholar 

  42. Jemmis E, Giju K, Sundararajan K, Sankaran K, Vidya V, Viswanathan K, Leszczynski J (1999) An ab initio and matrix isolation infrared study of the 1:1 C2H2–CHCl3 adduct. J Mol Struct 510:59–68

    CAS  Google Scholar 

  43. Gopi R, Ramanathan N, Sundararajan K (2014) Experimental evidence for blue-shifted hydrogen bonding in the fluoroform–hydrogen chloride complex: a matrix-isolation infrared and ab initio study. J Phys Chem A 118:5529–5539

    CAS  Google Scholar 

  44. Gopi R, Ramanathan N, Sundararajan K (2015) Hydrogen-bonded complexes of acetylene and acetonitrile: a matrix isolation infrared and computational study. J Mol Struct 1083:364–373

    CAS  Google Scholar 

  45. Sarkar S, Ramanathan N, Gopi R, Sundararajan K (2017) Pyrrole multimers and pyrrole-acetylene hydrogen bonded complexes studied in N2 and para-H2 matrixes using matrix isolation infrared spectroscopy and ab initio computations. J Mol Struct 1149:387–403

    CAS  Google Scholar 

  46. Gopi R, Ramanathan N, Sundararajan K (2017) Experimental evidence for the blue-shifted hydrogen-bonded complexes of CHF3 with π-electron donors. Spectrochim Acta Part A Mol Biomol Spectrosc 181:137–147

    CAS  Google Scholar 

  47. Hobza P, Spirko V, Selzle HL, Schlag EW (1998) Anti-hydrogen bond in the benzene dimer and other carbon proton donor complexes. J Phys Chem A 102:2501–2504

    CAS  Google Scholar 

  48. Hobza P, Spirko V, Havlas Z, Buchhold K, Reimann B, Barth HD, Brutschy B (1999) Anti-hydrogen bond between chloroform and fluorobenzene. Chem Phys Lett 299:180–186

    CAS  Google Scholar 

  49. Yamamoto R, Ebata T, Mikami N (2001) Mode dependent intracluster vibrational energy redistribution rate in size-selected benzonitrile-(CHCl3)n=1–3 clusters. J Chem Phys 114:7866–7876

    CAS  Google Scholar 

  50. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264

    CAS  Google Scholar 

  51. Hobza P, Havlas Z (2002) Improper, blue-shifting hydrogen bond. Theor Chem Acc 108:325–334

    CAS  Google Scholar 

  52. Hobza P (2001) The H-index unambiguously discriminates between hydrogen bonding and improper blue-shifting hydrogen bonding. Phys Chem Chem Phys 3:2555–2556

    CAS  Google Scholar 

  53. Hermansson K (2002) Blue-shifting hydrogen bonds. J Phys Chem A 106:4695–4702

    CAS  Google Scholar 

  54. Pejov L, Hermansson K (2003) On the nature of blue shifting hydrogen bonds: ab initio and density functional studies of several fluoroform complexes. J Chem Phys 119:313–324

    CAS  Google Scholar 

  55. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. J Am Chem Soc 125:5973–5987

    CAS  Google Scholar 

  56. Joseph J, Jemmis ED (2007) Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Am Chem Soc 129:4620–4632

    CAS  Google Scholar 

  57. Levy DH (1980) Laser Spectroscopy of cold gas-phase molecules. Annu Rev Phys Chem 31:197–225

    CAS  Google Scholar 

  58. Levy DH (1981) The spectroscopy of very cold gases. Science 214:263–269

    CAS  Google Scholar 

  59. Zare RN (2012) My life with LIF: a personal account of developing laser-induced fluorescence. Annu Rev Anal Chem 5:1–14

    CAS  Google Scholar 

  60. Friedrich DM, Mcclain WM (1980) 2-photon molecular electronic spectroscopy. Annu Rev Phys Chem 31:559–577

    CAS  Google Scholar 

  61. Ashfold MNR, Howe JD (1994) Multiphoton spectroscopy of molecular-species. Annu Rev Phys Chem 45:57–82

    CAS  Google Scholar 

  62. Brutschy B (2000) The structure of microsolvated benzene derivatives and the role of aromatic substituents. Chem Rev 100:3891–3920

    CAS  Google Scholar 

  63. Wiley WC, McLaren IH (1955) Time-of-flight mass spectrometer with improved resolution. Rev Sci Instrum 26:1150–1157

    CAS  Google Scholar 

  64. Rothman LS, Jacquemart D, Barbe A, Benner DC, Birk M, Brown L, Carleer M, Chackerian C Jr, Chance K, Coudert L et al (2005) The HITRAN 2004 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 96:139–204

    CAS  Google Scholar 

  65. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01, Gaussian, Inc. Wallingford CT

  66. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    CAS  Google Scholar 

  67. Koch U, Popelier PLA (1995) Characterization of C–H···O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    CAS  Google Scholar 

  68. Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural bond orbital analysis program. J Comput Chem 34:1429–1437

    CAS  Google Scholar 

  69. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    CAS  Google Scholar 

  70. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic-structure system. J Comput Chem 14:1347–1363

    CAS  Google Scholar 

  71. Morita S, Fujii A, Mikami N, Tsuzuki S (2006) Origin of the attraction in aliphatic C–H/π interactions: infrared spectroscopic and theoretical characterization of gas-phase clusters of aromatics with methane. J Phys Chem A 110:10583–10590

    CAS  Google Scholar 

  72. Biswal HS, Wategaonkar S (2009) Sulfur, not too far behind O, N, and C: SH···π hydrogen bond. J Phys Chem A 113:12774–12782

    CAS  Google Scholar 

  73. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) The interaction of benzene with chloro- and fluoromethanes: effects of halogenation on CH/π interaction. J Phys Chem A 106:4423–4428

    CAS  Google Scholar 

  74. Li X, Liu L, Schlegel HB (2002) On the physical origin of blue-shifted hydrogen bonds. J Am Chem Soc 124:9639–9647

    CAS  Google Scholar 

  75. Shirhatti PR, Maity DK, Bhattacharyya S, Wategaonkar S (2014) C–H···N hydrogen-bonding interaction in 7-Azaindole:CHX3 (X = F, Cl) complexes. ChemPhysChem 15:109–117

    CAS  Google Scholar 

  76. Qian WL, Krimm S (2002) Vibrational spectroscopy of hydrogen bonding: origin of the different behavior of the C–H···O hydrogen bond. J Phys Chem A 106:6628–6636

    CAS  Google Scholar 

  77. Krajewska M, Olbert-Majkut A, Mielke Z (2002) Matrix infrared spectra and ab initio calculations of the acetylene complexes with nitric and nitrous acids. Phys Chem Chem Phys 4:4305–4313

    CAS  Google Scholar 

  78. Tatamitani Y, Liu BX, Shimada J, Ogata T, Ottaviani P, Maris A, Caminati W, Alonso JL (2002) Weak, improper, C-O···H-C hydrogen bonds in the dimethyl ether dimer. J Am Chem Soc 124:2739–2743

    CAS  Google Scholar 

  79. Lockwood SP, Fuller TG, Newby JJ (2018) Structure and spectroscopy of Furan:H2O complexes. J Phys Chem A 122:7160–7170

    CAS  Google Scholar 

  80. Hussein MA, Millen DJ (1976) Hydrogen-bonding in gas-phase. 4. Infrared spectroscopic investigation of O-H···O and C–H···N complexes–alcohol + ether and trichloromethane + amine systems. J Chem Soc Farad Trans II 72:693–699

    CAS  Google Scholar 

  81. Rutkowski KS, Karpfen A, Melikova SM, Herrebout WA, Koll A, Wolschann P, van der Veken BJ (2009) Cryospectroscopic and ab initio studies of haloform-trimethylamine H-bonded complexes. Phys Chem Chem Phys 11:1551–1563

    CAS  Google Scholar 

  82. Herrebout WA, Melikova SM, Delanoye SN, Rutkowski KS, Shchepkin DN, van der Veken BJ (2005) A cryosolution infrared study of the complexes of fluoroform with ammonia and pyridine: evidence for a C–H···N pseudo blue-shifting hydrogen bond. J Phys Chem A 109:3038–3044

    CAS  Google Scholar 

  83. Guin M, Patwari GN, Karthikeyan S, Kim KS (2011) Do N-heterocyclic aromatic rings prefer π-stacking? Phys Chem Chem Phys 13:5514–5525

    CAS  Google Scholar 

  84. Hippler M (2007) Quantum chemical study and infrared spectroscopy of hydrogen-bonded CHCl3–NH3 in the gas phase. J Chem Phys 127:084306

    Google Scholar 

  85. Hippler M, Hesse S, Suhm MA (2010) Quantum-chemical study and FTIR jet spectroscopy of CHCl3–NH3 association in the gas phase. Phys Chem Chem Phys 12:13555–13565

    CAS  Google Scholar 

  86. Paulson SL, Barnes AJ (1982) Trihalogenomethane—base complexes studied by vibrational spectroscopy in low-temperature matrices. J Mol Struct 80:151–158

    CAS  Google Scholar 

  87. Gord JR, Garrett AW, Bandy RE, Zwier TS (1990) Rempi fragmentation as a probe of hydrogen-bonding in aromatic-X clusters. Chem Phys Lett 171:443–450

    CAS  Google Scholar 

  88. Fujii A, Shibasaki K, Kazama T, Itaya R, Mikami N, Tsuzuki S (2008) Experimental and theoretical determination of the accurate interaction energies in benzene–halomethane: the unique nature of the activated CH/π interaction of haloalkanes. Phys Chem Chem Phys 10:2836–2843

    CAS  Google Scholar 

  89. Jin Z (2006) Imidazole, oxazole and thiazole alkaloids. Nat Prod Rep 23:464–496

    CAS  Google Scholar 

  90. Ghosh S, Reddy CM (2012) Elastic and bendable caffeine cocrystals: implications for the design of flexible organic materials. Angew Chem Int Ed 51:10319–10323

    CAS  Google Scholar 

  91. Garist IV, Verevkin SP, Bara JE, Hindman MS, Danielsen SP (2012) Building blocks for ionic liquids: vapor pressures and vaporization enthalpies of 1-(n-alkyl)-benzimidazoles. J Chem Eng Data 57:1803–1809

    CAS  Google Scholar 

  92. Bhattacherjee A, Wategaonkar S (2015) Conformational preferences of monohydrated clusters of imidazole derivatives revisited. Phys Chem Chem Phys 17:20080–20092

    CAS  Google Scholar 

  93. Bhattacherjee A, Wategaonkar S (2017) Role of the C (2)–H hydrogen bond donor in gas-phase microsolvation of imidazole derivatives with ROH (R = CH3, C2H5). J Phys Chem A 121:4283–4295

    CAS  Google Scholar 

  94. Bhattacherjee A, Wategaonkar S (2017) Conformational heterogeneity and the role of the C(2)–H donor in mono- and dihydrated clusters of benzoxazole. J Phys Chem A 121:5420–5427

    CAS  Google Scholar 

  95. Bhattacherjee A, Wategaonkar S (2016) Water bridges anchored by a C–H···O hydrogen bond: the role of weak interactions in molecular solvation. Phys Chem Chem Phys 18:27745–27749

    CAS  Google Scholar 

  96. Talbot F, Simons J (2002) Infrared ion dip and ultraviolet spectroscopy of 4-phenyl imidazole, its tautomer, 5-phenyl imidazole, and its multiply hydrated clusters. Eur Phys J D At Mol Opt Plasma Phys 20:389–398

    CAS  Google Scholar 

  97. Coussan S, Manca C, Tanner C, Bach A, Leutwyler S (2003) Ammonia-chain clusters: vibronic spectra of 7-hydroxyquinoline·(NH3)2. J Chem Phys 119:3774–3784

    CAS  Google Scholar 

  98. Matsumoto Y, Ebata T, Mikami N (2001) OH stretching vibrations and hydrogen-bonded structures of 7-hydroxyquinoline-(H2O)1–3 investigated by IR–UV double-resonance spectroscopy. Chem Phys Lett 338:52–60

    CAS  Google Scholar 

  99. Snoek LC, Kroemer RT, Simons JP (2002) A spectroscopic and computational exploration of tryptophan–water cluster structures in the gas phase. Phys Chem Chem Phys 4:2130–2139

    CAS  Google Scholar 

  100. Carney JR, Dian BC, Florio GM, Zwier TS (2001) The role of water bridges in directing the conformational preferences of 3-indole-propionic acid and tryptamine. J Am Chem Soc 123:5596–5597

    CAS  Google Scholar 

  101. Nakajima A, Hirano M, Hasumi R, Kaya K, Watanabe H, Carter C, Williamson J, Miller TA (1997) High-resolution laser-induced fluorescence spectra of 7-Azaindole–water complexes and 7-azaindole dimer. J Phys Chem A 101:392–398

    CAS  Google Scholar 

  102. Tanner C, Manca C, Leutwyler S (2003) Probing the threshold to H atom transfer along a hydrogen-bonded ammonia wire. Science 302:1736–1739

    CAS  Google Scholar 

  103. Garczarek F, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439:109–112

    CAS  Google Scholar 

  104. Freier E, Wolf S, Gerwert K (2011) Proton transfer via a transient linear water-molecule chain in a membrane protein. Proc Natl Acad Sci USA 108:11435–11439

    CAS  Google Scholar 

  105. Kaila VRI, Hummer G (2011) Energetics and dynamics of proton transfer reactions along short water wires. Phys Chem Chem Phys 13:13207–13215

    CAS  Google Scholar 

  106. Park SY, Kim B, Lee YS, Kwon OH, Jang DJ (2009) Triple proton transfer of excited 7-hydroxyquinoline along a hydrogen-bonded water chain in ethers: secondary solvent effect on the reaction rate. Photochem Photobiol Sci 8:1611–1617

    CAS  Google Scholar 

  107. Folmer DE, Wisniewski ES, Stairs JR, Castleman AW (2000) Water-assisted proton transfer in the monomer of 7-azaindole. J Phys Chem A 104:10545–10549

    CAS  Google Scholar 

Download references

Acknowledgements

SJW would like to acknowledge the exemplary hard work and dedication shown by his students Drs. Pranav Shirhatti, Aditi Bhattacherjee, and Sanat Ghosh whose work is presented in the review. The technical support provided by Mr Ajay Patil and Mr Sachin Temkar is also gratefully acknowledged. The work was supported by the Tata Institute of Fundamental Research, Mumbai via project no. 12-R&D-TFR-5.10-0100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Wategaonkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Wategaonkar, S. C–H···Y (Y=N, O, π) Hydrogen Bond: A Unique Unconventional Hydrogen Bond. J Indian Inst Sci 100, 101–125 (2020). https://doi.org/10.1007/s41745-019-00145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-00145-5

Navigation