Skip to main content

Advertisement

Log in

Exploring Hydrogen Bond in Biological Molecules

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Life makes extensive use of non-covalent interactions, as they are a convenient way to build complex structures that can be assembled or disassembled quickly, with a minimum energy consumption. Among the inter-molecular interactions, hydrogen bond plays a central role, and it is the main responsible of the structure of proteins, DNA, and several other superstructures in the cell. Characterization of hydrogen bond in biologic environment is not an easy task, and several complex and imaginative techniques have been developed to circumvent the technical challenges of such studies. We present here an overview of the field of mass-resolved laser spectroscopy applied to nucleobases, peptides, and monosaccharides to demonstrate that despite the different environment the molecules encounter in the jet, such experiments yield important structural information that helps understanding the role played by hydrogen bond in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:

Adapted from Ref.16.

Figure 2:

Adapted from Ref.24.

Figure 3:

Adapted from Ref. 28.

Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:

Adapted from Ref. 141.

Similar content being viewed by others

References

  1. Crowe SA, Dossing LN, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535

    CAS  Google Scholar 

  2. Hobza P, Muller-Dethlefs K (2010) Non-covalent interactions. RCS Publishing, Milan

    Google Scholar 

  3. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2011) Revealing Non-Covalent Interactions. J Am Chem Soc 132:6498–6506

    Google Scholar 

  4. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    CAS  Google Scholar 

  5. Stone AJ (2002) The theory of intermolecular forces. Oxford University Press, Oxford

    Google Scholar 

  6. Müller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–168

    Google Scholar 

  7. Biochemistry of Lipids (2002) Lipoproteins and membranes. Elsevier Science, New York

    Google Scholar 

  8. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    CAS  Google Scholar 

  9. Lehninger A, Nelson D, Cox M (2008) Lehninger principles of biochemistry. W. H. Freeman, New York

    Google Scholar 

  10. Poblotzki A, Gottschalk HC, Suhm MA (2017) Tipping the scales: spectroscopic tools for intermolecular energy balances. J Phys Chem Lett 8:5656–5665

    CAS  Google Scholar 

  11. Puzzarini C, Bloino J, Tasinato N, Barone V (2019) Accuracy and interpretability: the devil and the holy grail. New routes across old boundaries in computational spectroscopy. Chem Rev 119:8131–8191

    CAS  Google Scholar 

  12. Dopfer O, Fujii M (2016) Probing solvation dynamics around aromatic and biological molecules at the single-molecular level. Chem Rev 116:5432–5463

    CAS  Google Scholar 

  13. Smalley RE, Levy DH, Wharton L (1975) Molecular-jet spectroscopy. Laser Focus 11:40–43

    CAS  Google Scholar 

  14. Smalley RE, Blazy JA, Fitch PSH, Kim MS, Wharton L, Levy DH (1976) Laser spectroscopy in supersonic molecular-beams. Opt Commun 18:59–60

    Google Scholar 

  15. Zwier T (2001) Laser spectroscopy of jet-cooled biomolecules and their water-containing clusters: Water bridges and molecular conformation. J Phys Chem A 105:8827–8839

    CAS  Google Scholar 

  16. León I, Millán J, Cocinero EJ, Lesarri A, Fernández JA (2013) Magic numbers in the solvation of the propofol dimer. Chem Phys Chem 14:1558–1562

    Google Scholar 

  17. Ashfold MNR, Howe JD (1994) Multiphoton spectroscopy of molecular species. Annu Rev Phys Chem 45:57–82

    CAS  Google Scholar 

  18. Held A, Pratt DW (1992) Hydrogen bonding in the symmetry-equivalent C2h dimer of 2-pyridone in its S0 and S2 electronic states. Effect of deuterium substitution. J Chem Phys 96:4869–4876

    CAS  Google Scholar 

  19. Becucci M, Melandri S (2016) Resolution spectroscopic studies of complexes formed by medium-size organic molecules. Chem Rev 116:5014–5037

    CAS  Google Scholar 

  20. Pérez C, Muckle MT, Zaleski DP, Seifert NA, Temelso B, Shields GC, Kisiel Z, Pate BH (2012) Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy. Science 336:897–901

    Google Scholar 

  21. Seifert NA, Steber AL, Neill JL, Pérez C, Zaleski DP, Pate BH, Lesarri A (2013) The interplay of hydrogen bonding and dispersion in phenol dimer and trimer: structures from broadband rotational spectroscopy. Phys Chem Chem Phys 15:11468–11477

    CAS  Google Scholar 

  22. Pérez C, León I, Lesarri A, Pate BH, Martínez R, Millán J, Fernández JA (2018) Isomerism of the aniline trimer. Angew Chem Int Ed 57:15112–15116

    Google Scholar 

  23. Calabrese C, Li W, Prampolini G, Evangelisti L, Uriarte I, Cacelli I, Melandri S, Cocinero EJ (2019) A general treatment to study molecular complexes stabilized by Hydrogen-, Halogen-, and Carbon-Bond networks: experiment and theory of (CH2F2)n···(H2O)m. Angew Chem Int Ed 58:8437–8442

    CAS  Google Scholar 

  24. Usabiaga I, Camiruaga A, Calabrese C, Maris A, Fernández JA (2019) Exploring caffeine-phenol interactions by the inseparable duet of experimental and theoretical data. Chem Eur J 25:14230–14236

    CAS  Google Scholar 

  25. Zwier TS (1996) The spectroscopy of solvation in hydrogen-bonded aromatic clusters. Annu Rev Phys Chem 47:205–241

    CAS  Google Scholar 

  26. Fernández JA, Unamuno I, Longarte A, Castaño F (2001) S-0, S-1, and ion I-0 binding energies of the p-methoxyphenethylamine(H2O)(1-4) complexes. J Phys Chem A 105:961–968

    Google Scholar 

  27. Longarte A, Fernández JA, Unamuno I, Castaño F (2000) Isomer structures and vibrational assignment of the methyl-p-aminobenzoate(H2O)(1) complex. J Chem Phys 112:3170–3180

    CAS  Google Scholar 

  28. León I, Millan J, Cocinero E, Lesarri A, Castaño F, Fernández JA (2012) Mimicking anaesthetic-receptor interaction: a combined spectroscopic and computational study of propofol···phenol. Phys Chem Chem Phys 14:8956–8963

    Google Scholar 

  29. Siffert L, Blaser S, Ottiger P, Leutwyler S (2018) Transition from water wires to bifurcated H-bond networks in 2-Pyridone·(H2O)n, n = 1-4 Clusters. J Phys Chem A 122:9285–9297

    CAS  Google Scholar 

  30. Knochenmuss R, Sinha RK, Leutwyler S (2019) Face, Notch, or Edge? Intermolecular dissociation energies of 1-naphthol complexes with linear molecules. J Chem Phys 150:234303

    Google Scholar 

  31. Asami H, Tokugawa M, Masaki Y, Ishiuchi S, Gloaguen E, Seio K, Saigusa H, Fujii M, Sekine M, Mons M (2016) Effective strategy for conformer-selective detection of short-lived excited state species: application to the IR spectroscopy of the N1H Keto tautomer of guanine. J Phys Chem A 120:2179–2184

    CAS  Google Scholar 

  32. Habka S, Sohn WY, Vaquero-Vara V, Geleoc M, Tardivel B, Brenner V, Gloaguen E, Mons M (2018) On the turn-inducing properties of asparagine: the structuring role of the amide side chain, from isolated model peptides to crystallized proteins. Phys. Chem. Chem. Phys. 20:3411–3423

    CAS  Google Scholar 

  33. Kumar S, Mishra KK, Singh SK, Borish K, Dey S, Sarkar B, Das A (2019) Observation of a weak intra-residue C5 hydrogen-bond in a dipeptide containing Gly-Pro sequence. J Chem Phys 151:104309

    Google Scholar 

  34. Bernhard D, Fatima M, Poblotzki A, Steber AL, Pérez C, Suhm MA, Schnell M, Gerhards M (2019) Dispersion-controlled docking preference: multi-spectroscopic study on complexes of dibenzofuran with alcohols and water. Phys Chem Chem Phys 21:16032–16046

    CAS  Google Scholar 

  35. Mori H, Kugisaki H, Inokuchi Y, Nishi N, Miyoshi E, Sakota K, Ohashi K, Sekiya H (2002) LIF and IR dip spectra of jet-cooled p-aminophenol-M (M = CO, N2): hydrogen-bonded or van der waals-bonded structure?. J Phys Chem A 106:4886–4890

    CAS  Google Scholar 

  36. Dietrich F, Bernhard D, Fatima M, Pérez C, Schnell M, Gerhards M (2018) The effect of dispersion on the structure of diphenyl ether aggregates. Angew Chem Int Ed Engl 57:9534–9537

    CAS  Google Scholar 

  37. Weiler M, Bartl K, Gerhards M (2012) Infrared/ultraviolet quadruple resonance spectroscopy to investigate structures of electronically excited states. J Chem Phys 136:114202–114206

    CAS  Google Scholar 

  38. Bartl K, Funk A, Gerhards M (2008) IR/UV spectroscopy on jet cooled 3-hydroxyflavone (H2O)n (n = 1,2) clusters along proton transfer coordinates in the electronic ground and excited states. J Chem Phys 129:234306–234311

    CAS  Google Scholar 

  39. Cocinero EJ, Çarçabal P (2015) Rijs AM, Oomens J (eds) In gas-phase IR spectroscopy and structure of biological molecules. Springer, New York, pp 299–334

  40. Barry CS, Cocinero EJ, Çarçabal P, Gamblin DP, Stanca-Kaposta E, Remmert SM, Fernández-Alonso MC, Rudic S, Simons JP, Davis BG (2013) ‘Naked’ and hydrated conformers of the conserved core pentasaccharide of N-linked glycoproteins and its building blocks. J Am Chem Soc 135:16895–16903

    CAS  Google Scholar 

  41. Stanca-Kaposta E, Çarçabal P, Cocinero EJ, Hurtado P, Simons JP (2013) Carbohydrate-aromatic interactions: vibrational spectroscopy and structural assignment of isolated monosaccharide complexes with p-hydroxy toluene and N-acetyl l-tyrosine methylamide. J Phys Chem B 117:8135–8142

    CAS  Google Scholar 

  42. Aguado E, León I, Cocinero EJ, Lesarri A, Fernández JA, Castaño F (2009) Molecular recognition in the gas phase: benzocaine-phenol as a model qof anaesthetic-receptor interaction. Phys Chem Chem Phys 11:11608–11616

    CAS  Google Scholar 

  43. Bhattacherjee A, Wategaonkar S (2016) Water bridges anchored by a C-HO hydrogen bond: the role of weak interactions in molecular solvation. Phys Chem Chem Phys 18:27745–27749

    CAS  Google Scholar 

  44. Bhattacherjee A, Wategaonkar S (2015) Conformational preferences of monohydrated clusters of imidazole derivatives revisited. Phys Chem Chem Phys 17:20080–20092

    CAS  Google Scholar 

  45. Biswal HS, Gloaguen E, Mons M, Bhattacharyya S, Shirhatti PR, Wategaonkar S (2011) Structure of the indole-benzene dimer revisited. J Phys Chem A 115:9485–9492

    CAS  Google Scholar 

  46. Rijs AM and Oomens J (eds) (2015) Gas-phase IR spectroscopy and structure of biological molecules. Springer International Publishing, Heidelberg, New York, Dordrecht, London

    Google Scholar 

  47. de Vries MS (2015) In Rijs MA, Oomens J (eds) Gas-phase ir spectroscopy and structure of biological molecules. Springer International Publishing, Cham, pp 271–297

  48. Jaeqx S, Du WN, Meijer EJ, Oomens J, Rijs AM (2013) Conformational study of Z-Glu-OH and Z-Arg-OH: dispersion interactions versus conventional hydrogen bonding. J Phys Chem A 117:1216–1227

    CAS  Google Scholar 

  49. Rijs AM, Kabelac M, Abo-Riziq A, Hobza P, de Vries MS (2011) Isolated gramicidin peptides probed by IR spectroscopy. Chem Phys Chem 12:1816–1821

    CAS  Google Scholar 

  50. Rijs AM, Kay ER, Leigh DA, Buma WJ (2011) IR spectroscopy on jet-cooled isolated two-station rotaxanes. J Phys Chem A 115:9669–9675

    CAS  Google Scholar 

  51. León I, Cocinero EJ, Rijs AM, Millán J, Alonso E, Lesarri A, Fernández JA (2013) Formation of water polyhedrons in propofol-water clusters. Phys Chem Chem Phys 15:568–575

    Google Scholar 

  52. León I, Cocinero E, Millán J, Jaeqx S, Rijs A, Lesarri A, Castaño F, Fernández JA (2012) Exploring microsolvation of the anesthetics propofol. Phys Chem Chem Phys 14:4398

    Google Scholar 

  53. León I, Cocinero EJ, Millán J, Rijs AM, Usabiaga I, Lesarri A, Castaño F, Fernández JA (2012) A combined spectroscopic and theoretical study of propofol·(H2O)3. J Chem Phys 137:074303

    Google Scholar 

  54. Nakamura T, Schmies M, Patzer A, Miyazaki M, Ishiuchi S, Weiler M, Dopfer O, Fujii M (2014) Solvent migration in microhydrated aromatic aggregates: ionization-induced site switching in the 4-aminobenzonitrile-water cluster. Chemistry 20:2031–2039

    CAS  Google Scholar 

  55. Schmies M, Patzer A, Schuetz M, Miyazaki M, Fujii M, Dopfer O (2014) Microsolvation of the acetanilide cation (AA(+)) in a nonpolar solvent: IR spectra of AA(+)-L-n clusters (L = He, Ar, N-2; n <= 10). Phys Chem Chem Phys 16:7980–7995

    CAS  Google Scholar 

  56. Nakamura T, Miyazaki M, Ishiuchi S, Weiler M, Schmies M, Dopfer O, Fujii M (2013) IR Spectroscopy of the 4-AminobenzonitrileAr Cluster in the S0, S1 Neutral and D0 Cationic States. Chem Phys Chem 14:741–745

    CAS  Google Scholar 

  57. Beckstead AA, Zhang Y, de Vries MS, Kohler B (2016) Life in the light: nucleic acid photoproperties as a legacy of chemical evolution. Phys Chem Chem Phys 18:24228–24238

    CAS  Google Scholar 

  58. Kleinermanns K, Nachtigallová D, de Vries MS (2013) Excited state dynamics of DNA bases. Int Rev Phys Chem 32:308–342

    CAS  Google Scholar 

  59. Abo-Riziq A, Grace L, Nir E, Kabelac M, Hobza P, de Vries MS (2005) Photochemical selectivity in guanine–cytosine base-pair structures. Proc Natl Acad Sci USA 102:20–23

    CAS  Google Scholar 

  60. Shin J, Bernstein ER (2014) Vacuum ultraviolet photoionization of carbohydrates and nucleotides. J Chem Phys 140:044330

    Google Scholar 

  61. Sobolewski AL, Domcke W, Hättig C (2005) Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: the role of electron-driven proton-transfer processes. Proc Natl Acad Sci USA 102:17903–17906

    CAS  Google Scholar 

  62. Zhang W, Yuan S, Wang Z, Qi Z, Zhao J, Dou Y, Lo GV (2011) A semiclassical dynamics simulation for a long-lived excimer state of π-stacked adenines. Chem Phys Lett 506:303–308

    CAS  Google Scholar 

  63. Urashima S, Asami H, Ohba M, Saigusa H (2010) Microhydration of the guanine-guanine and guanine-cytosine base pairs. J Phys Chem A 114:11231–11237

    CAS  Google Scholar 

  64. McGinty RK, Tan S (2015) Nucleosome structure and function. Chem Rev 115:2255–2273

    CAS  Google Scholar 

  65. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 2007(128):635–638

    Google Scholar 

  66. Mondal S, Puranik M (2017) Ultrafast structural dynamics of photoexcited adenine. Phys Chem Chem Phys 19:20224–20240

    CAS  Google Scholar 

  67. Schwell M, Hochlaf M (2015) In: Barbatti M, Borin AC, Ullrichin S (eds) Photoinduced phenomena in nucleic acids I: nucleobases in the gas phase and in solvents. Springer International Publishing, Cham, pp 155–208

  68. Sun C, Ding F, Ding Y, Wang C (2015) The nonadditivity of stacking interactions in adenine–thymine and guanine–cytosine stacked structures: Study by MP2 and SCS-MP2 calculations. J Theor Comput Chem 14:1550037

    CAS  Google Scholar 

  69. Hunger K, Buschhaus L, Biemann L, Braun M, Kovalenko S, Improta R, Kleinermanns K (2013) UV-light-induced hydrogen transfer in guanosine–guanosine aggregates. Chem A Eur J 19:5425–5431

    CAS  Google Scholar 

  70. Mishra D, Pal S (2009) Ionization potential and structure relaxation of adenine, thymine, guanine and cytosine bases and their base pairs: A quantification of reactive sites. J Mol Struct (Thoechem) 902:96–102

    CAS  Google Scholar 

  71. Zeleny T, Hobza P, Kabelac M (2009) Microhydration of guanine···cytosine base pairs, a theoretical Study on the role of water in stability, structure and tautomeric equilibrium. Phys Chem Chem Phys 11:3430–3435

    CAS  Google Scholar 

  72. Shukla MK, Kuramshina GM, Leszczynski J (2007) Evidence of structural non-planarity in excited state: New findings provided by vibrational analysis of the guanine-cytosine base pair. Chem Phys Lett 447:330–334

    CAS  Google Scholar 

  73. Crews B, Abo-Riziq A, Grace L, Callahan M, Kabeláč M, Hobza P, de Vries MS (2005) IR-UV double resonance spectroscopy of guanine-H2O clusters. Phys Chem Chem Phys 7:3015–3020

    CAS  Google Scholar 

  74. Jurecka P, Hobza P (2003) True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine···cytosine, adenine···thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment. J Am Chem Soc 125:15608–15613

    CAS  Google Scholar 

  75. Triandafillou CG, Matsika S (2013) Excited-state tautomerization of gas-phase cytosine. J Phys Chem A 117:12165–12174

    CAS  Google Scholar 

  76. Villani G (2005) Theoretical investigation of hydrogen transfer mechanism in the adenine–thymine base pair. Chem Phys 316:1–8

    CAS  Google Scholar 

  77. Nir E, Hunig I, Kleinermanns K, de Vries MS (2003) The nucleobase cytosine and the cytosine dimer investigated by double resonance laser spectroscopy and ab initio calculations. Phys Chem Chem Phys 5:4780–4785

    CAS  Google Scholar 

  78. Nir E, Janzen C, Imhof P, Kleinermanns K, de Vries MS (2002) Pairing of the nucleobases guanine and cytosine in the gas phase studied by IR-UV double-resonance spectroscopy and ab initio calculations. Phys Chem Chem Phys 4:732–739

    CAS  Google Scholar 

  79. Nir E, Janzen C, Imhof P, Kleinermanns K, de Vries MS (2001) Guanine tautomerism revealed by UV-UV and IR-UV hole burning spectroscopy. J Chem Phys 115:4604–4611

    CAS  Google Scholar 

  80. Plutzer C, Nir E, de Vries M, Kleinermanns K (2001) IR-UV double-resonance spectroscopy of the nucleobase adenine. Phys Chem Chem Phys 3:5466–5469

    Google Scholar 

  81. Nir E, Kleinermanns K, de Vries MS (2000) Pairing of isolated nucleic-acid bases in the absence of the DNA backbone. Nature 408:949–951

    CAS  Google Scholar 

  82. Florián J, Leszczynski J, Scheiner S (1995) Ab initio study of the structure of guanine-cytosine base pair conformers in gas phase and polar solvents. Mol Phys 84:469–480

    Google Scholar 

  83. Asami H, Yagi K, Ohba M, Urashima S, Saigusa H (2013) Stacked base-pair structures of adenine nucleosides stabilized by the formation of hydrogen-bonding network involving the two sugar groups. Chem Phys 419:84–89

    CAS  Google Scholar 

  84. Kabelac M, Ryjacek F, Hobza P (2000) Already two water molecules change planar H-bonded structures of the adenine···thymine base pair to the stacked ones: a molecular dynamics simulations study. Phys Chem Chem Phys 2:4906–4909

    CAS  Google Scholar 

  85. González J, Usabiaga I, Arnaiz PF, León I, Martínez R, Millán J, Fernández JA (2017) Competition between stacked and hydrogen bonded structures of cytosine aggregates. Phys Chem Chem Phys 19:8826–8834

    Google Scholar 

  86. Ligare MR, Rijs AM, Berden G, Kabeláč M, Nachtigallova D, Oomens J, de Vries MS (2015) Resonant infrared multiple photon dissociation spectroscopy of anionic nucleotide Monophosphate clusters. J Phys Chem B 119:7894–7901

    CAS  Google Scholar 

  87. González J, Baños I, León I, Contreras-García J, Cocinero EJ, Lesarri A, Fernández JA, Millán J (2016) Unravelling protein-DNA interactions at molecular level: a DFT and NCI study. J Chem Theory Comput 12:523–534

    Google Scholar 

  88. Ponomarenko EA, Poverennaya EV, Ilgisonis EV, Pyatnitskiy MA, Kopylov AT, Zgoda VG, Lisitsa AV, Archakov AI (2016) The size of the human proteome: the width and depth. Int J Anal Chem 2016:7436849

    Google Scholar 

  89. Ng SBL, Doig AJ (1997) Molecular and chemical basis of prion-related diseases. Chem Soc Rev 26:425

    CAS  Google Scholar 

  90. Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Annual Rev Biophys 37:289–316

    CAS  Google Scholar 

  91. Eisenberg D (2003) The discovery of the alpha -helix and beta -sheet, the principal structural features of proteins. Proc Natl Acad Sci 100:11207–11210

    CAS  Google Scholar 

  92. Feldmann RJ (1989) In Wittmann-Liebold B (eds) Methods in protein sequence analysis. Springer, Berlin, Heidelberg, pp 379–384

  93. Clarke OB, Caputo AT, Hill AP, Vandenberg JI, Smith BJ, Gulbis JM (2010) Domain reorientation and rotation of an intracellular assembly regulate conduction in kir potassium channels. Cell 141:1018–1029

    CAS  Google Scholar 

  94. Matthews BW (1972) The gamma turn. evidence for a new folded conformation in proteins. Macromolecules 5:818–819

    CAS  Google Scholar 

  95. Forsting T, Gottschalk HC, Hartwig B, Mons M, Suhm MA (2017) Correcting the record: the dimers and trimers of trans-N-methylacetamide. Phys Chem Chem Phys 19:10727–10737

    CAS  Google Scholar 

  96. Ishiuchi S, Yamada K, Chakraborty S, Yagi K, Fujii M (2013) Gas-phase spectroscopy and anharmonic vibrational analysis of the 3-residue peptide Z-Pro-Leu-Gly-NH2 by the laser desorption supersonic jet technique. Chem Phys 419:145–152

    CAS  Google Scholar 

  97. Chakraborty S, Yamada K, Ishiuchi S, Fujii M (2012) Gas phase IR spectra of tri-peptide Z-Pro-Leu-Gly: effect of C-terminal amide capping on secondary structure. Chem Phys Lett 531:41–45

    CAS  Google Scholar 

  98. Schwing K, Fricke H, Bartl K, Polkowska J, Schrader T, Gerhards M (2012) Isolated beta-turn model systems investigated by combined IR/UV spectroscopy. Chem Phys Chem 13:1576–1582

    CAS  Google Scholar 

  99. Cocinero EJ, Stanca-Kaposta EC, Gamblin DP, Davis BG, Simons JP (2009) Peptide secondary structures in the gas phase: consensus motif of N-linked glycoproteins. J Am Chem Soc 131:1282–1287

    CAS  Google Scholar 

  100. Baquero EE, James WH, Choi SH, Gellman SH, Zwier TS (2008) Single-conformation ultraviolet and infrared spectroscopy of model synthetic foldamers: beta-peptides Ac-beta(3)-hPhe-NHMe and Ac-beta(3)-hTyr-NHMe. J Am Chem Soc 130:4784–4794

    CAS  Google Scholar 

  101. Haber T, Seefeld K, Kleinermanns K (2007) Mid- and near-infrared spectra of conformers of H-Pro-Trp-OH. J Phys Chem A 111:3038–3046

    Google Scholar 

  102. Toroz D, Van Mourik T (2006) The structure of the gas-phase tyrosine-glycine dipeptide. Mol Phys 104:559–570

    CAS  Google Scholar 

  103. Gregurick SK, Fredj E, Elber R, Gerber RB (1997) Vibrational spectroscopy of peptides and peptide-water complexes: Anharmonic coupled-mode calculations. J Phys Chem B 101:8595–8606

    CAS  Google Scholar 

  104. Cable JR, Tubergen MJ, Levy DH (1989) Fluorescence spectroscopy of jet-cooled tryptophan peptides. J Am Chem Soc 111:9032–9039

    CAS  Google Scholar 

  105. Gloaguen E, De Courcy B, Piquemal J, Pilmei J, Parisel O, Pollet R, Biswal HS, Piuzzi F, Tardivel B, Broquier M, Mons M (2010) Gas-phase folding of a two-residue model peptide chain: on the importance of an interplay between experiment and theory. J Am Chem Soc 132:11860–11863

    CAS  Google Scholar 

  106. Chin W, Piuzzi F, Dognon J, Dimicoli I, Mons M (2005) Gas-phase models of gamma turns: effect of side-chain/backbone interactions investigated by IR/UV spectroscopy and quantum chemistry. J Chem Phys 123:084301

    Google Scholar 

  107. Gloaguen E, Pagliarulo F, Brenner V, Chin W, Piuzzi F, Tardivel B, Mons M (2007) Intramolecular recognition in a jet-cooled short peptide chain: γ-turn helicity probed by a neighbouring residue. Phys Chem Chem Phys 9:4491

    CAS  Google Scholar 

  108. Chin W, Dognon J, Piuzzi F, Tardivel B, Dimicoli I, Mons M (2005) Intrinsic folding of small peptide chains: spectroscopic evidence for the formation of beta-turns in the gas phase. J Am Chem Soc 127:707–712

    CAS  Google Scholar 

  109. Chin W, Dognon J, Canuel C, Piuzzi F, Dimicoli I, Mons M, Compagnon I, Von Helden G, Meijer G (2005) Secondary structures of short peptide chains in the gas phase: double resonance spectroscopy of protected dipeptides. J Chem Phys 122:054317

    Google Scholar 

  110. Nandel FS, Jaswal R (2007) New type of helix and 27 ribbon structure formation in poly (delta)leu peptides: construction of a single-handed template. Biomacromolecules 8:3093–3101

    CAS  Google Scholar 

  111. Chin W, Piuzzi F, Dognon J, Dimicoli I, Tardivel B, Mons M (2005) Gas phase formation of a 310-helix in a three-residue peptide chain: role of side chain-backbone interactions as evidenced by IR-UV double resonance experiments. J Am Chem Soc 127:11900–11901

    CAS  Google Scholar 

  112. Fricke H, Funk A, Schrader T, Gerhards M (2008) Investigation of secondary structure elements by IR/UV double resonance spectroscopy: analysis of an isolated (beta)-sheet model system. J Am Chem Soc 130:4692–4698

    CAS  Google Scholar 

  113. Gloaguen E, Loquais Y, Thomas JA, Pratt DW, Mons M (2013) Spontaneous formation of hydrophobic domains in isolated peptides. J Phys Chem B 117:4945–4955

    CAS  Google Scholar 

  114. Yoon I, Seo K, Lee S, Lee Y, Kim B (2007) Conformational study of tyramine and its water clusters by laser spectroscopy. J Phys Chem A 111:1800–1807

    CAS  Google Scholar 

  115. Blom MN, Compagnon I, Polfer NC, von Helden G, Meijer G, Suhai S, Paizs B, Oomens J (2007) Stepwise solvation of an amino acid: the appearance of zwitterionic structures. J Phys Chem A 111:7309–7316

    CAS  Google Scholar 

  116. Sakota K, Kouno Y, Harada S, Miyazaki M, Fujii M, Sekiya H (2012) IR spectroscopy of monohydrated tryptamine cation: rearrangement of the intermolecular hydrogen bond induced by photoionization. J Chem Phys 137:224311

    Google Scholar 

  117. Biswal HS, Loquais Y, Tardivel B, Gloaguen E, Mons M (2011) Isolated monohydrates of a model peptide chain: effect of a first water molecule on the secondary structure of a capped phenylalanine. J Am Chem Soc 133:3931–3942

    CAS  Google Scholar 

  118. Fricke H, Schwing K, Gerlach A, Unterberg C, Gerhards M (2010) Investigations of the water clusters of the protected amino acid Ac-Phe-OMe by applying IR/UV double resonance spectroscopy: microsolvation of the backbone. Phys Chem Chem Phys 12:3511–3521

    CAS  Google Scholar 

  119. Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, SmetanaJr K, Gabius H (2015) A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta (BBA) General Subj 1850:186–235

    Google Scholar 

  120. Gabius H, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313

    CAS  Google Scholar 

  121. Grindley TB (2008) In: Fraser-Reid B, Tatsuta K, Thiem J (eds) Springer, Berlin Heidelberg, pp 3–55

  122. Ghazarian H, Idoni B, Oppenheimer SB (2011) A glycobiology review: Carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 113:236–247

    CAS  Google Scholar 

  123. Stanca-Kaposta EC, Gamblin DP, Cocinero EJ, Frey J, Kroemer RT, Fairbanks AJ, Davis BG, Simons JP (2008) Solvent interactions and conformational choice in a core N-glycan segment: gas phase conformation of the central, branching trimannose unit and its singly hydrated complex. J Am Chem Soc 130:10691–10696

    CAS  Google Scholar 

  124. Gabius HJ (2000) Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften 87:108–121

    CAS  Google Scholar 

  125. Cocinero EJ, Carcabal P, Vaden TD, Simons JP, Davis BG (2011) Sensing the anomeric effect in a solvent-free environment. Nature 469:76-U1400

    Google Scholar 

  126. Cocinero EJ, Çarçabal P, Vaden TD, Davis BG, Simons JP (2011) Exploring carbohydrate–peptide interactions in the gas phase: structure and selectivity in complexes of pyranosides with N-acetylphenylalanine methylamide. J Am Chem Soc 133:4548–4557

    CAS  Google Scholar 

  127. Cocinero EJ, Gamblin DP, Davis BG, Simons JP (2009) The building blocks of cellulose: the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. J Am Chem Soc 131:11117–11123

    CAS  Google Scholar 

  128. Cocinero EJ, Stanca-Kaposta EC, Scanlan EM, Gamblin DP, Davis BG, Simons JP (2008) Conformational choice and selectivity in singly and multiply hydrated monosaccharides in the gas phase. Chem A Eur J 14:8947–8955

    CAS  Google Scholar 

  129. Simons JP (2009) CARB 24-conformational landscapes of polysaccharides and glycopeptides: spectroscopy and modeling of the building blocks. Mol Phys 107:2435–2458

    CAS  Google Scholar 

  130. Jockusch RA, Kroemer RT, Talbot FO, Simons JP (2003) Hydrated sugars in the gas phase: spectroscopy and conformation of singly hydrated phenyl b-d-glucopyranoside. J Phys Chem A 107:10725–10732

    CAS  Google Scholar 

  131. Jockusch RA, Talbot FO, Simons JP (2003) Sugars in the gas phase Part 2: the spectroscopy and structure of jet-cooled phenyl small beta]-D-galactopyranoside. Phys Chem Chem Phys 5:1502–1507

    CAS  Google Scholar 

  132. Talbot FO, Simons JP (2002) Sugars in the gas phase: the spectroscopy and structure of jet-cooled phenyl small beta]-D-glucopyranoside. Phys Chem Chem Phys 4:3562–3565

    CAS  Google Scholar 

  133. Robertson EG, Simons JP (2001) Getting into shape: conformational and supramolecular landscapes in small biomolecules and their hydrated clusters. Phys Chem Chem Phys 3:1–18

    CAS  Google Scholar 

  134. Peña I, Cabezas C, Alonso JL (2015) Unveiling epimerization effects: a rotational study of α-d-galactose. Chem Commun 51:10115–10118

    Google Scholar 

  135. Bermúdez C, Peña I, Mata S, Alonso JL (2016) Sweet structural signatures unveiled in ketohexoses. Chem Eur J 22:16829–16837

    Google Scholar 

  136. Alonso ER, Peña I, Cabezas C, Alonso JL (2016) Structural expression of exo-anomeric effect. J Phys Chem Lett 7:845–850

    CAS  Google Scholar 

  137. Alonso JL, Lozoya MA, Pena I, Lopez JC, Cabezas C, Mata S, Blanco S (2014) The conformational behaviour of free d-glucose-at last. Chem Sci 5:515–522

    CAS  Google Scholar 

  138. Cocinero EJ, Lesarri A, Écija P, Cimas A, Davis BG, Basterretxea FJ, Fernández JA, Castaño F (2013) Free fructose is conformationally locked. J Am Chem Soc 135:2845–2852

    CAS  Google Scholar 

  139. Cocinero EJ, Lesarri A, Écija P, Basterretxea FJ, Grabow J, Fernández JA, Castaño F (2012) Ribose found in the gas phase. Angew Chem Int Ed 51:3119–3124

    CAS  Google Scholar 

  140. Peña I, Kolesnikova L, Cabezas C, Bermúdez C, Berdakin M, Simao A, Alonso JL (2014) The shape of d -glucosamine. Phys Chem Chem Phys 16:23244–23250

    Google Scholar 

  141. Camiruaga A, Usabiaga I, Insausti A, Cocinero EJ, León I, Fernández JA (2017) Understanding the role of tyrosine in glycogenin. Mol BioSyst 2017(13):1709–1712

    Google Scholar 

  142. Usabiaga I, González J, León I, Arnaiz PF, Cocinero EJ, Fernández JA (2017) Influence of the anomeric effect in the intermolecular interactions of sugars. J Phys Chem Lett 8:1147–1151

    CAS  Google Scholar 

  143. Usabiaga I, González J, Arnaiz PF, León I, Cocinero EJ, Fernández JA (2016) Modeling the tyrosine-sugar interactions in supersonic expansions: the glucopyranose-phenol clusters. Phys Chem Chem Phys 18:12457–12465

    CAS  Google Scholar 

  144. Su Z, Cocinero EJ, Stanca-Kaposta EC, Davis BG, Simons JP (2009) Carbohydrate-aromatic interactions: a computational and IR spectroscopic investigation of the complex, methyl alpha-L-fucopyranoside center dot toluene, isolated in the gas phase. Chem Phys Lett 471:17–21

    CAS  Google Scholar 

  145. Fernández-Alonso del Carmen M, Cañada FJ, Jiménez-Barbero J, Cuevas G (2005) Molecular recognition of saccharides by proteins. insights on the origin of the carbohydrate-aromatic interactions. J Am Chem Soc 127:7379–7386

    Google Scholar 

  146. Simons JP, Davis BG, Cocinero EJ, Gamblin DP, Stanca-Kaposta EC (2009) Conformational change and selectivity in explicitly hydrated carbohydrates. Tetrahedron-Asymmetry 20:718–722

    CAS  Google Scholar 

  147. Cocinero EJ, Stanca-Kaposta EC, Dethlefsen M, Liu B, Gamblin DP, Davis BG, Simons JP (2009) Hydration of sugars in the gas phase: regioselectivity and conformational in N-acetyl glucosamine and glucose. Chem A Eur J 15:13427–13434

    CAS  Google Scholar 

  148. Usabiaga I, Camiruaga A, Insausti A, Çarçabal P, Cocinero EJ, León I, Fernández JA (2018) Phenyl-(beta)-D-glucopyranoside and phenyl-(beta)-D-galactopyranoside dimers: small structural differences but very different interactions. Front Phys 6:3

    Google Scholar 

Download references

Acknowledgements

This work has received funds from MINECO/FEDER (CTQ2015-68148-C2-1-P), MICIU(PGC2018-098561-B-C21) and Basque Government (IT1162-19). Most of the results presented in this work have been possible thanks to the support of the computing infrastructure of the i2BASQUE academic network and the SGI/IZO-SGIker network. I would like to thank the technical support from the personnel from the UPV/EHU laser facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Fernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, J.A. Exploring Hydrogen Bond in Biological Molecules. J Indian Inst Sci 100, 135–154 (2020). https://doi.org/10.1007/s41745-019-00146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-00146-4

Navigation