Skip to main content
Log in

Non-orthogonal Multiple Access: An Enabler for Massive Connectivity

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Two of the most challenging goals for the fifth generation (5G) and beyond communication systems are massive connectivity and higher capacity. The use of traditional orthogonal multiple access techniques limits the number of users that can be served using available resources due to orthogonality constraint. Moreover, the available resources may not be utilized effectively by alloted users thereby resulting in inefficiency and user unfairness. This imposes a severe drawback in cases where the number of users to be served are high, like in the Internet of Things or ultra-dense 5G networks. Hence, introducing non-orthogonality to multiple access scheme is advocated as a superior methodology to serve multiple users simultaneously, thereby achieving multi-fold enhancement in connectivity. In scenarios with massive number of users, non-orthogonal multiple access scheme (NOMA) increases the number of active connections by superimposing signals of multiple users on the same resource block, thereby also utilizing the available resources efficiently. This article presents an overview of the integration of NOMA with several other leading technologies for 5G and beyond networks to enhance the connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Similar content being viewed by others

References

  1. Series M (2015) IMT Vision–framework and overall objectives of the future development of IMT for 2020 and beyond. Recommendation ITU, p 2083

  2. Ding Z, Fan P, Poor HV (2016) Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans Veh Technol 65(8):6010–6023

    Article  Google Scholar 

  3. Ping L, Liu L, Wu K, Leung WK (2006) Interleave division multiple-access. IEEE Trans Wirel Commun 5(4):938–947

    Article  Google Scholar 

  4. Higuchi K, Benjebbour A (2015) Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Trans Commun 98(3):403–414

    Article  Google Scholar 

  5. 3GPP (2015) Study on downlink multiuser superposition transmission (MUST) for LTE (Release 13), TR36.85

  6. 3GPP NTT-DOCOMO (2016) Initial views and evaluation results on non-orthogonal multiple access for NR, R1-165175

  7. Hoshyar R, Wathan FP, Tafazolli R (2008) Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Trans Signal Process 56(4):1616–1626

    Article  Google Scholar 

  8. 3GPP, Huawei, HiSilicon (2016) Sparse code multiple access (SCMA) for 5G radio transmission, R1-162155

  9. Dai X, Zhang Z, Bai B, Chen S, Sun S (2018) Pattern division multiple access: a new multiple access technology for 5G. IEEE Wirel Commun 25(2):54–60

    Article  Google Scholar 

  10. Yuan Z, Yu G, Li W, Yuan Y, Wang X, Xu J (2016) Multi-user shared access for internet of things. In: IEEE vehicular technology conference, VTC Spring, pp 1–5

  11. 3GPP, MediaTek Inc., CMCC, etc. (2016) New work item proposal: downlink multiuser superposition transmission for LTE, RP-160680

  12. Swami P, Bhatia V, Vuppala S, Ratnarajah T (2017) User fairness and performance enhancement for cell edge user in NOMA-HCN with offloading. In: IEEE vehicular technology conference (VTC Spring), pp 1–5

  13. Swami P, Bhatia V, Vuppala S, Ratnarajah T (2018) Joint optimization of power allocation and channel ratio for offloading in NOMA-HetNets. In: IEEE globecom workshops (GC Wkshps), pp 1–6

  14. Razavi R, Dianati M, Imran MA (2017) Non-orthogonal multiple access (NOMA) for future radio access. 5G mobile communication. Springer, Berlin, pp 135–163

    Chapter  Google Scholar 

  15. Benjebbour A, Saito Y, Kishiyama Y, Li A, Harada A, Nakamura T (2013) Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. In: IEEE international symposium intelligent signal process. Communication system (ISPACS), pp 770–774

  16. (2015) Recommendation ITU-R M.2083: IMT Vision, Framework and overall objectives of the future development of IMT for 2020 and beyond

  17. 3GPP, Huawei, HiSilicon (2016) Multiple access for UL small packets transmission, R1-164036

  18. 3GPP, CATT (2016) Discussion on scenarios and use cases for multiple access, R1-164246

  19. Chandra K, Marcano AS, Mumtaz S, Prasad RV, Christiansen HL (2018) Unveiling capacity gains in ultradense networks: using mm-wave NOMA. IEEE Veh Technol Mag 13(2):75–83

    Article  Google Scholar 

  20. Zhu L, Zhang J, Xiao Z, Cao X, Wu DO, Xia X-G (2019) Joint Tx–Rx beamforming and power allocation for 5G millimeter-wave non-orthogonal multiple access (MmWave-NOMA) networks. IEEE Trans Commun 20:20

    Google Scholar 

  21. Thornburg A, Bai T, Heath RW Jr (2016) Performance analysis of outdoor mmWave ad hoc networks. IEEE Trans Signal Process 64(15):4065–4079

    Article  Google Scholar 

  22. Li Y, Andrews JG, Baccelli F, Novlan TD, Zhang J (2016) On the initial access design in millimeter wave cellular networks. In: IEEE Globecom Workshops (GC Wkshps), pp 1–6

  23. Ghatak G, De Domenico A, Coupechoux M (2018) Coverage analysis and load balancing in HetNets with millimeter wave multi-RAT small cells. IEEE Trans Wirel Commun 17(5):3154–3169

    Article  Google Scholar 

  24. Swami P, Mishra MK, Bhatia V, Ratnarajah T (2019) Outage probability of ultra high frequency and millimeter wave based HetNets with NOMA. In: IEEE international symposium on wireless communication systems (ISWCS), pp 166–170

  25. Swami P, Mishra MK, Bhatia V, Ratnarajah T (2020) Performance analysis of noma enabled hybrid network with limited feedback. IEEE Trans Veh Technol. https://doi.org/10.1109/TVT.2020.2974004

    Article  Google Scholar 

  26. Zhang Z, Yang G, Ma Z, Xiao M, Ding Z, Fan P (2018) Heterogeneous ultradense networks with NOMA: system architecture, coordination framework, and performance evaluation. IEEE Veh Technol Mag 13(2):110–120

    Article  Google Scholar 

  27. Qin Z, Yue X, Liu Y, Ding Z, Nallanathan A (2018) User association and resource allocation in unified NOMA enabled heterogeneous ultra dense networks. IEEE Commun Mag 56(6):86–92

    Article  Google Scholar 

  28. Swami P, Bhatia V, Vuppala S, Ratnarajah T (2018) A cooperation scheme for user fairness and performance enhancement in NOMA-HCN. IEEE Trans Veh Technol 67(12):11965–11978

    Article  Google Scholar 

  29. Swami P, Bhatia V, Vuppala S, Ratnarajah T (2018) On user offloading in NOMA-HetNet using repulsive point process. IEEE Syst J 13(2):1409–1420

    Article  Google Scholar 

  30. Nguyen VM, Kountouris M (2016) Performance limits of network densification. arXiv:1611.07790 (arXiv preprint)

  31. (2017) System architecture for the 5G system, 3GPP TS 23.501

  32. Granelli F, Gebremariam AA, Usman M, Cugini F, Stamati V, Alitska M, Chatzimisios P (2015) Software defined and virtualized wireless access in future wireless networks: scenarios and standards. IEEE Commun Mag 53(6):26–34

    Article  Google Scholar 

  33. Checko A, Christiansen HL, Yan Y, Scolari L, Kardaras G, Berger MS, Dittmann L (2014) Cloud RAN for mobile networks—a technology overview. IEEE Commun Surv Tutor 17(1):405–426

    Article  Google Scholar 

  34. Peng M, Yan S, Zhang K, Wang C (2016) Fog-computing-based radio access networks: issues and challenges. IEEE Netw 30(4):46–53

    Article  Google Scholar 

  35. Li D (2015) Opportunistic DF–AF selection for cognitive relay networks. IEEE Trans Veh Technol 65(4):2790–2796

    Article  Google Scholar 

  36. Liu Y, Pan G, Zhang H, Song M (2016) Hybrid decode-forward and amplify-forward relaying with non-orthogonal multiple access. IEEE Access 4:4912–4921

    Article  Google Scholar 

  37. Zhang Z, Ma Z, Xiao M, Ding Z, Fan P (2016) Full-duplex device-to-device-aided cooperative nonorthogonal multiple access. IEEE Trans Veh Technol 66(5):4467–4471

    Google Scholar 

  38. Swami P, Mishra MK, Trivedi A (2016) Performance analysis of two-tier cellular network using power control and cooperation. In: IEEE international conference on advances in computing, communications and informatics (ICACCI), pp 322–327

  39. Swami P, Mishra MK, Trivedi A (2017) Analysis of downlink power control and cooperation scheme for two-tier heterogeneous cellular network. Int J Commun Syst. https://doi.org/10.1002/dac.3282

    Article  Google Scholar 

  40. Varshney LR (2008) Transporting information and energy simultaneously. In: IEEE international symposium on information theory. IEEE, pp 1612–1616

  41. Ding Z, Peng M, Poor HV (2015) Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun Lett 19(8):1462–1465

    Article  Google Scholar 

  42. Figueiredo M, Alves LN, Ribeiro C (2017) Lighting the wireless world: the promise and challenges of visible light communication. IEEE Consum Electron Mag 6(4):28–37

    Article  Google Scholar 

  43. Yin L, Popoola WO, Wu X, Haas H (2016) Performance evaluation of non-orthogonal multiple access in visible light communication. IEEE Trans Commun 64(12):5162–5175

    Article  Google Scholar 

  44. Inan B, Lee SJ, Randel S, Neokosmidis I, Koonen AM, Walewski JW (2009) Impact of LED nonlinearity on discrete multitone modulation. J Opt Commun Netw 1(5):439–451

    Article  Google Scholar 

  45. Marshoud H, Kapinas VM, Karagiannidis GK, Muhaidat S (2015) Non-orthogonal multiple access for visible light communications. IEEE Photon Technol Lett 28(1):51–54

    Article  Google Scholar 

  46. Yu Y, Giannakis GB (2005) Sicta: a 0.693 contention tree algorithm using successive interference cancellation. In: 24th annual joint conference of the IEEE computer and communications societies, vol 3, pp 1908–1916

  47. Yu Y, Giannakis GB (2007) High-throughput random access using successive interference cancellation in a tree algorithm. IEEE Trans Inf Theory 53(12):4628–4639

    Article  Google Scholar 

  48. Lee T (1977) The nonlinearity of double-heterostructure LED’s for optical communications. Proc IEEE 65(9):1408–1410

    Article  Google Scholar 

  49. Mitra R, Bhatia V (2017) Precoded chebyshev-NLMS-based pre-distorter for nonlinear LED compensation in NOMA-VLC. IEEE Trans Commun 65(11):4845–4856

    Article  Google Scholar 

  50. Larsson EG, Edfors O, Tufvesson F, Marzetta TL (2014) Massive MIMO for next generation wireless systems. IEEE Commun Mag 52(2):186–195

    Article  Google Scholar 

  51. Liu G, Hou X, Jin J, Wang F, Wang Q, Hao Y, Huang Y, Wang X, Xiao X, Deng A (2017) 3-D-MIMO with massive antennas paves the way to 5G enhanced mobile broadband: from system design to field trials. IEEE J Sel Areas Commun 35(6):1222–1233

    Article  CAS  Google Scholar 

  52. Marzetta TL (2010) Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun 9(11):3590–3600

    Article  Google Scholar 

  53. Ding Z, Adachi F, Poor HV (2015) The application of MIMO to non-orthogonal multiple access. IEEE Trans Wirel Commun 15(1):537–552

    Article  Google Scholar 

  54. Ding Z, Schober R, Poor HV (2016) A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Trans Wirel Commun 15(6):4438–4454

    Article  Google Scholar 

  55. Senel K, Cheng HV, Björnson E, Larsson EG (2019) What role can NOMA play in massive MIMO? IEEE J Sel Top Signal Process 13(3):597–611

    Article  Google Scholar 

  56. Khoshkholgh MG, Navaie K, Yanikomeroglu H (2010) Access strategies for spectrum sharing in fading environment: overlay, underlay, and mixed. IEEE Trans Mob Comput 9(12):1780–1793

    Article  Google Scholar 

  57. Song Z, Wang X, Liu Y, Zhang Z (2019) Joint spectrum resource allocation in NOMA-based cognitive radio network with SWIPT. IEEE Access 7:89594–89603

    Article  Google Scholar 

  58. Xu W, Qiu R, Jiang X-Q (2019) Resource allocation in heterogeneous cognitive radio network with non-orthogonal multiple access. IEEE Access 7:57488–57499

    Article  Google Scholar 

  59. Bastug E, Bennis M, Médard M, Debbah M (2017) Toward interconnected virtual reality: opportunities, challenges, and enablers. IEEE Commun Mag 55(6):110–117

    Article  Google Scholar 

  60. Wang F, Xu J, Ding Z (2017) Optimized multiuser computation offloading with multi-antenna NOMA. In: IEEE Globecom Workshops, pp 1–7

  61. Kiani A, Ansari N (2018) Edge computing aware NOMA for 5G networks. IEEE Internet Things J 5(2):1299–1306

    Article  Google Scholar 

  62. Frew EW, Brown TX (2008) Airborne communication networks for small unmanned aircraft systems. In: Proceedings of the IEEE, vol 96, no 12

  63. Mozaffari M, Saad W, Bennis M, Debbah M (2017) Wireless communication using unmanned aerial vehicles (UAVs): optimal transport theory for hover time optimization. IEEE Trans Wirel Commun 16(12):8052–8066

    Article  Google Scholar 

  64. Liu Y, Qin Z, Cai Y, Gao Y, Li GY, Nallanathan A (2019) Uav communications based on non-orthogonal multiple access. IEEE Wirel Commun 26(1):52–57

    Article  Google Scholar 

  65. Sabharwal A, Schniter P, Guo D, Bliss DW, Rangarajan S, Wichman R (2014) In-band full-duplex wireless: challenges and opportunities. IEEE J Sel Areas Commun 32(9):1637–1652

    Article  Google Scholar 

  66. Sun Y, Ng DWK, Ding Z, Schober R (2017) Optimal joint power and subcarrier allocation for full-duplex multicarrier non-orthogonal multiple access systems. IEEE Trans Commun 65(3):1077–1091

    Article  Google Scholar 

  67. Zhong C, Zhang Z (2016) Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Commun Lett 20(12):2478–2481

    Article  Google Scholar 

  68. Sharma S, Deka K, Bhatia V, Gupta A (2019) Joint power-domain and SCMA-based NOMA system for downlink in 5G and beyond. IEEE Commun Lett 23(6):971–974

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the R&D project under the Visvesvaraya PhD Scheme of Ministry of Electronics and Information Technology, Government of India, being implemented by Digital India Corporation (formerly Media Lab Asia) and Indian Institute of Technology Indore, Indore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragya Swami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, V., Swami, P., Sharma, S. et al. Non-orthogonal Multiple Access: An Enabler for Massive Connectivity. J Indian Inst Sci 100, 337–348 (2020). https://doi.org/10.1007/s41745-020-00162-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-020-00162-9

Keywords

Navigation