Skip to main content

Advertisement

Log in

Green Sensing and Communication: A Step Towards Sustainable IoT Systems

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

With the advent of Internet of Things (IoT) devices, their reconfigurability, networking, task automation, and control ability have been a boost to the evolution of traditional industries such as health-care, agriculture, power, education, and transport. However, the quantum of data produced by the IoT devices poses serious challenges on its storage, communication, computation, security, scalability, and system’s energy sustainability. To address these challenges, the concept of green sensing and communication has gained importance. This article surveys the existing green sensing and communication approaches to realize sustainable IoT systems for various applications. Further, a few case studies are presented that aim to generate sensed traffic data intelligently as well as prune it efficiently without sacrificing the required service quality. Challenges associated with these green techniques, various open issues, and future research directions for improving the energy efficiency of the IoT systems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Similar content being viewed by others

References

  1. Abdellatif AA, Mohamed A, Chiasserini CF (2018) User-centric networks selection with adaptive data compression for smart health. IEEE Syst J 12(4):3618–3628

    Article  Google Scholar 

  2. Abdellatif AA, Mohamed A, Chiasserini CF, Tlili M, Erbad A (2019) Edge computing for smart health: context-aware approaches, opportunities, and challenges. IEEE Netw 33(3):196–203

    Article  Google Scholar 

  3. Abuadbba A, Khalil I, Yu X (2018) Gaussian approximation based lossless compression of smart meter readings. IEEE Trans Smart Grid 9(5):5047–5056. https://doi.org/10.1109/TSG.2017.2679111

    Article  Google Scholar 

  4. Akbar MA, Ali AAS, Amira A, Benammar M, Bensaali F, Mohamad S, Tang F, Bermak A, Zgaren M, Sawan M (2014) A multi-sensing reconfigurable platform for gas applications. In: IEEE Int. Conf. Microelec. (ICM), pp. 148–151. Doha, Qatar

  5. Avino G, Bande P, Frangoudis PA, Vitale C, Casetti C, Chiasserini CF, Gebru K, Ksentini A, Zennaro G (2019) A MEC-based extended virtual sensing for automotive services. IEEE Trans. Netw, Service Manag

  6. Ba H, Demirkol I, Heinzelman W (2010) Feasibility and benefits of passive RFID wake-up radios for wireless sensor networks. In: Proc. IEEE Global Commun. Conf. (GLOBECOM), pp. 1–5. IEEE

  7. Bodik P, Hong W, Guestrin C, Madden S, Paskin M, Thibaux R (2004) Intel lab data. Online dataset,

  8. Bri D, Coll H, Garcia M, Lloret J (2008) A multisensor proposal for wireless sensor networks. In: IEEE Int. Conf. Sensor Tech. and Appl. (SENSORCOMM), pp. 270–275. Cap Esterel, France

  9. Carrano RC, Passos D, Magalhaes LC, Albuquerque CV (2013) Survey and taxonomy of duty cycling mechanisms in wireless sensor networks. IEEE Commun Surv Tuts 16(1):181–194

    Article  Google Scholar 

  10. Chen W, Wassell IJ (2014) Compressive sleeping wireless sensor networks with active node selection. In: Proc. IEEE Global Commun. Conf. (GLOBECOM), pp. 7–12. Austin, TX, USA

  11. Chen W, Wassell IJ (2016) Optimized node selection for compressive sleeping wireless sensor networks. IEEE Trans Veh Technol 65(2):827–836

    Article  Google Scholar 

  12. Chen Y, Zhao Q (2005) On the lifetime of wireless sensor networks. IEEE Commun Lett 9(11):976–978

    Article  Google Scholar 

  13. Chepuri SP, Leus G (2015) Sparsity-promoting sensor selection for non-linear measurement models. IEEE Trans Signal Process 63(3):684–698

    Article  Google Scholar 

  14. Chowdhury MR, De S, Shukla NK, Biswas RN (2018) Energy-efficient air pollution monitoring with optimum duty-cycling on a sensor hub. In: National Conf. Commun. (NCC), pp. 1–6. IEEE

  15. CVX Research, I. (2012) CVX: Matlab software for disciplined convex programming, version 2.0. http://cvxr.com/cvx

  16. Dai W, Milenkovic O (2009) Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inf Theory 55(5):2230–2249. https://doi.org/10.1109/TIT.2009.2016006

    Article  Google Scholar 

  17. Das S, Sidhu TS (2014) Application of compressive sampling in synchrophasor data communication in WAMS. IEEE Trans Ind Inform 10(1):450–460. https://doi.org/10.1109/TII.2013.2272088

    Article  Google Scholar 

  18. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  Google Scholar 

  19. Eichinger F, Efros P, Karnouskos S, Bhm K (2015) A time-series compression technique and its application to the smart grid. VLDB J 24(2):193–218. https://doi.org/10.1007/s00778-014-0368-8

    Article  Google Scholar 

  20. Ejaz W, Anpalagan A, Imran MA, Jo M, Naeem M, Qaisar SB, Wang W (2016) Internet of things (IoT) in 5G wireless communications. IEEE Access 4:10310–10314

    Article  Google Scholar 

  21. Gadde PH, Biswal M, Brahma S, Cao H (2016) Efficient compression of PMU data in WAMS. IEEE Trans Smart Grid 7(5):2406–2413. https://doi.org/10.1109/TSG.2016.2536718

    Article  Google Scholar 

  22. Ge Y, Flueck AJ, Kim DK, Ahn JB, Lee JD, Kwon DY (2015) Power system real-time event detection and associated data archival reduction based on synchrophasors. IEEE Trans Smart Grid 6(4):2088–2097. https://doi.org/10.1109/TSG.2014.2383693

    Article  Google Scholar 

  23. Gupta V, De S (2018) SBL-based adaptive sensing framework for WSN-assisted IoT applications. IEEE Internet Things J 5(6):4598–4612

    Article  Google Scholar 

  24. Gupta V, De S (2019) Adaptive multi-sensing in EH-WSN for smart environment. In: Proc. IEEE Global Commun. Conf. (GLOBECOM). Big Island, HI, USA

  25. Hao J, Zhang B, Jiao Z, Mao S (2015) Adaptive compressive sensing based sample scheduling mechanism for wireless sensor networks. Pervasive Mobile Comput 22:113–125

    Article  Google Scholar 

  26. Harb H, Makhoul A (2017) Energy-efficient sensor data collection approach for industrial process monitoring. IEEE Trans Ind Inform 14(2):661–672

    Article  Google Scholar 

  27. Hooshmand M, Rossi M, Zordan D, Zorzi M (2015) Covariogram-based compressive sensing for environmental wireless sensor networks. IEEE Sens J 16(6):1716–1729

    Article  Google Scholar 

  28. Hwang S, Ran R, Yang J, Kim DK (2015) Multivariated Bayesian compressive sensing in wireless sensor networks. IEEE Sens J 16(7):2196–2206

    Article  Google Scholar 

  29. Jain N, Bohara VA, Gupta A (2018) iDEG: Integrated data and energy gathering framework for practical wireless sensor networks using compressive sensing. IEEE Sens J 19(3):1040–1051

    Article  Google Scholar 

  30. Jamali-Rad H, Simonetto A, Leus G (2014) Sparsity-aware sensor selection: centralized and distributed algorithms. IEEE Signal Process Lett 21(2):217–220

    Article  Google Scholar 

  31. Jamali-Rad H, Simonetto A, Ma X, Leus G (2015) Distributed sparsity-aware sensor selection. IEEE Trans Signal Process 63(22):5951–5964

    Article  Google Scholar 

  32. Jin J, Gubbi J, Marusic S, Palaniswami M (2014) An information framework for creating a smart city through internet of things. IEEE Internet Things J 1(2):112–121

    Article  Google Scholar 

  33. Joshi S, Boyd S (2009) Sensor selection via convex optimization. IEEE Trans Signal Process 57(2):451–462

    Article  Google Scholar 

  34. Karthick DR, Prabaharan AM, Selvaprasanth P (2019) Internet of things based high security border surveillance strategy. Asian J Appl Sci Technol (AJAST) 3:94–100

    Google Scholar 

  35. Kaushik K, Mishra D, De S (2019) Stochastic solar harvesting characterisation for sustainable sensor node operation. IET Wireless Sensor Syst 9(4):208–217

    Article  Google Scholar 

  36. Kaushik K, Mishra D, De S, Chowdhury KR, Heinzelman W (2016) Low-cost wake-up receiver for RF energy harvesting wireless sensor networks. IEEE Sens J 16(16):6270–6278

    Article  Google Scholar 

  37. Khan J, Bhuiyan S, Murphy G, Williams J (2016) Data denoising and compression for smart grid communication. IEEE Trans Signal Inf Process Netw 2(2):200–214. https://doi.org/10.1109/TSIPN.2016.2539680

    Article  Google Scholar 

  38. Kozłowski A, Sosnowski J (2019) Energy efficiency trade-off between duty-cycling and wake-up radio techniques in IoT networks. Wireless Pers. Commun. pp. 1–21

  39. Lien SY, Hung SC, Deng DJ, Wang YJ (2017) Efficient ultra-reliable and low latency communications and massive machine-type communications in 5G new radio. In: Proc. IEEE Global Commun. Conf. (GLOBECOM), pp. 1–7. Singapore

  40. Ling Q, Tian Z (2010) Decentralized sparse signal recovery for compressive sleeping wireless sensor networks. IEEE Trans Signal Process 58(7):3816–3827

    Article  Google Scholar 

  41. Mishra D, De S, Chowdhury KR (2015) Charging time characterization for wireless rf energy transfer. IEEE Trans Circuits Syst II Exp Briefs 62(4):362–366

    Article  Google Scholar 

  42. Movassagh M, Aghdasi HS (2017) Game theory based node scheduling as a distributed solution for coverage control in wireless sensor networks. Eng Appl AI 65:137–146

    Article  Google Scholar 

  43. Mukherjee P, De S (2018) cDIP: Channel-aware dynamic window protocol for energy-efficient IoT communications. IEEE Internet Things J 5(6):4474–4485

    Article  Google Scholar 

  44. Mukherjee P, Mishra D, De S (2017) Exploiting temporal correlation in wireless channel for energy-efficient communication. IEEE Trans Green Commun Netw 1(4):381–394

    Article  Google Scholar 

  45. Pardo L (2005) Statistical inference based on divergence measures. CRC Press, Boca Raton

    Google Scholar 

  46. Paruchuri V, Basavaraju S, Durresi A, Kannan R, Iyengar SS (2004) Random asynchronous wakeup protocol for sensor networks. In: Intl. Conf. Broadband Netw., pp. 710–717. IEEE

  47. Patil, K., Kale, N.: A model for smart agriculture using IoT. In: Intl. Conf. Global Trends Signal Process., Inf. Comput. and Commun. (ICGTSPICC), pp. 543–545. IEEE (2016)

  48. Prabha R, Ramesh MV, Rangan VP, Ushakumari P, Hemalatha T (2017) Energy efficient data acquisition techniques using context aware sensing for landslide monitoring systems. IEEE Sens J 17:6006–6018

    Article  Google Scholar 

  49. Quer G, Masiero R, Pillonetto G, Rossi M, Zorzi M (2012) Sensing, compression, and recovery for WSNs: sparse signal modeling and monitoring framework. IEEE Trans Wireless Commun 11(10):3447–3461

    Article  Google Scholar 

  50. Ramesh MV, Rangan VP (2014) Data reduction and energy sustenance in multisensor networks for landslide monitoring. IEEE Sens J 14(5):1555–1563

    Article  Google Scholar 

  51. Ringwelski M, Renner C, Reinhardt A, Weigel A, Turau V (2012) The hitchhiker’s guide to choosing the compression algorithm for your smart meter data. In: IEEE International Energy Conference and Exhibition (ENERGYCON), pp. 935–940. https://doi.org/10.1109/EnergyCon.2012.6348285

  52. Roychowdhury M, Tripathi S, De S. Adaptive multivariate data compression in smart metering internet of things. IEEE Trans. Ind. Informat. (in press 2020). https://doi.org/10.1109/TII.2017.2777148

  53. Shah, J., Mishra, B.: IoT enabled environmental monitoring system for smart cities. In: Intl. conf. internet of things and appl. (IOTA), pp. 383–388. IEEE (2016)

  54. Silvestri S, Urgaonkar R, Zafer M, Ko BJ (2018) A framework for the inference of sensing measurements based on correlation. ACM Trans Sensor Netw 15(1):4

    Google Scholar 

  55. de Souza JCS, Assis TML, Pal BC (2017) Data compression in smart distribution systems via singular value decomposition. IEEE Trans Smart Grid 8(1):275–284. https://doi.org/10.1109/TSG.2015.2456979

    Article  Google Scholar 

  56. Stojkoska BLR, Trivodaliev KV (2017) A review of internet of things for smart home: challenges and solutions. J Clean Prod 140:1454–1464

    Article  Google Scholar 

  57. Suman S, De S (2019) Low complexity dimensioning of sustainable solar-enabled systems: A case of base station. IEEE Trans. Sustainable Comput. (in press)

  58. Suman S, Kumar S, De S (2019) UAV-assisted RFET: A novel framework for sustainable WSN. IEEE Trans. Green Commun, Netw

  59. Suman S, Kumar S, De S (2020) Impact of hovering inaccuracy on UAV-aided RFET. IEEE Commun Lett 23(12):2362–2366 in press

    Article  Google Scholar 

  60. Tate JE (2016) Preprocessing and Golomb -Rice encoding for lossless compression of phasor angle data. IEEE Trans Smart Grid 7(2):718–729. https://doi.org/10.1109/TSG.2015.2495290

    Article  Google Scholar 

  61. Tong X, Kang C, Xia Q (2016) Smart metering load data compression based on load feature identification. IEEE Trans Smart Grid 7(5):2414–2422. https://doi.org/10.1109/TSG.2016.2544883

    Article  Google Scholar 

  62. Tripathi S, De S (2018) Dynamic prediction of powerline frequency for wide area monitoring and control. IEEE Trans Ind Inform 14(7):2837–2846. https://doi.org/10.1109/TII.2017.2777148

    Article  Google Scholar 

  63. Tripathi S, De S (2018) An efficient data characterization and reduction scheme for smart metering infrastructure. IEEE Trans Ind Inform 14(10):4300–4308

    Article  Google Scholar 

  64. Unterweger A, Engel D (2015) Resumable load data compression in smart grids. IEEE Trans Smart Grid 6(2):919–929. https://doi.org/10.1109/TSG.2014.2364686

    Article  Google Scholar 

  65. Van Trees HL (2004) Detection, estimation, and modulation theory. John Wiley & Sons, New York

    Google Scholar 

  66. Wang Y, Chen Q, Kang C, Xia Q, Luo M (2017) Sparse and redundant representation-based smart meter data compression and pattern extraction. IEEE Trans Power Syst 32(3):2142–2151. https://doi.org/10.1109/TPWRS.2016.2604389

    Article  Google Scholar 

  67. Wipf DP, Rao BD (2004) Sparse Bayesian learning for basis selection. IEEE Trans Signal Process 52(8):2153–2164

    Article  Google Scholar 

  68. Xiao K, Li J, Yang C (2017) Exploiting correlation for confident sensing in fusion-based wireless sensor networks. IEEE Trans Ind Electron 65(6):4962–4972

    Article  Google Scholar 

  69. Xie L, Chen Y, Kumar PR (2014) Dimensionality reduction of synchrophasor data for early event detection: linearized analysis. IEEE Trans Power Syst 29(6):2784–2794. https://doi.org/10.1109/TPWRS.2014.2316476

    Article  Google Scholar 

  70. Xue T, Dong X, Shi Y (2013) Multiple access and data reconstruction in wireless sensor networks based on compressed sensing. IEEE Trans Wireless Commun 12(7):3399–3411

    Article  Google Scholar 

  71. Yang J, Wu J (2014) Optimal sampling of random processes under stochastic energy constraints. In: Proc. IEEE Global Commun. Conf. (GLOBECOM), pp. 3377–3382. IEEE

  72. Zhang P, Nevat I, Peters GW, Septier F, Osborne MA (2018) Spatial field reconstruction and sensor selection in heterogeneous sensor networks with stochastic energy harvesting. IEEE Trans Signal Process 66(9):2245–2257

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partly supported by the Department of Telecommunication, Government of India, under the Grant No. 4-23/5G test bed/2017-NT, for building end-to-end 5G test bed and TCS RSP fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vini Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Tripathi, S. & De, S. Green Sensing and Communication: A Step Towards Sustainable IoT Systems. J Indian Inst Sci 100, 383–398 (2020). https://doi.org/10.1007/s41745-020-00163-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-020-00163-8

Keywords

Navigation