Skip to main content

Advertisement

Log in

Cellular Plasticity in Matrix-attached and -Detached Cells: Implications in Metastasis

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

The ability of cells to assume different phenotypes without changing their genotype is referred to as cellular plasticity. It is increasingly being recognized as a fundamental and essential property of cancer cells, which enables their adaptation to the changing environmental conditions, imposed by both disease progression and therapeutic intervention. Epithelial–mesenchymal transition (EMT) is a classical well-studied example of cellular plasticity during cancer progression that aids cancer spread by metastasis. A closely associated phenomenon that entails metastatic progression is the detachment of cancer cells from the extracellular matrix (ECM) at the primary tumor site, their passage and survival in the circulation in an anchorage-independent form, and subsequent re-attachment at a distant site to establish new tumor growth. In this review, we discuss molecular and metabolic plasticity in matrix-attached and -detached states of cancer cells that aid in metastatic cancer progression. Further, cellular plasticity enables cancer cells within a population to assume different phenotypic states, thus leading to cancer heterogeneity—an emerging evil that needs to be tackled for overcoming therapy failure and achieving better treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Similar content being viewed by others

References

  1. Snell-Rood EC (2012) Selective processes in development: implications for the costs and benefits of phenotypic plasticity. Integr Comp Biol 52:31–42

    Google Scholar 

  2. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat 154:8–20

    CAS  Google Scholar 

  3. Jia D et al (2017) Distinguishing mechanisms underlying EMT tristability. Cancer Converg 1:1–19

    Google Scholar 

  4. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science. https://doi.org/10.1126/science.1203543

    Article  Google Scholar 

  5. Thiery JP (2009) Metastasis: alone or Together? Curr Biol 19:R1121–R1123

    CAS  Google Scholar 

  6. Senft D, Ronai ZA (2016) Adaptive stress responses during tumor metastasis and dormancy. Trends in Cancer 2:429–442

    Google Scholar 

  7. Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15:740–746

    CAS  Google Scholar 

  8. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273

    CAS  Google Scholar 

  9. Yang X, Liang X, Zheng M, Tang Y (2018) Cellular phenotype plasticity in cancer dormancy and metastasis. Front Oncol 8:1–12

    Google Scholar 

  10. Hanahan D, Weinberg RA (2011) Review hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  Google Scholar 

  11. Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124:619–626

    CAS  Google Scholar 

  12. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33

    CAS  Google Scholar 

  13. Nievers MG, Schaapveld RQJ, Sonnenberg A (1999) Biology and function of hemidesmosomes. Matrix Biol 18:5–17

    CAS  Google Scholar 

  14. Barczyk M, Carracedo S (2010) At-a-glance article. Cell Tissue Sci. https://doi.org/10.1007/s00441-009-0834-6

    Article  Google Scholar 

  15. Harburger DS, Calderwood DA (2009) Erratum: Integrin signalling at a glance (Journal of Cell Science vol. 122 (159-163)). J Cell Sci 122:1472

    CAS  Google Scholar 

  16. Frisch SM, Ruoslahti E (1997) Integrins and anoikis. Curr Opin Cell Biol 9:701–706

    CAS  Google Scholar 

  17. Zhong X, Rescorla FJ (2012) Cell surface adhesion molecules and adhesion-initiated signaling: understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell Signal 24:393–401

    CAS  Google Scholar 

  18. Saha M et al (2018) AMPK–Akt double-negative feedback loop in breast cancer cells regulates their adaptation to matrix deprivation. Cancer Res 78:1497–1510

    CAS  Google Scholar 

  19. Farris JC et al (2016) Grainyhead-like 2 reverses the metabolic changes induced by the oncogenic epithelial-mesenchymal transition: effects on anoikis. Mol Cancer Res 14:528–538

    CAS  Google Scholar 

  20. Huang RYJ et al (2013) An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis 4:e915

    CAS  Google Scholar 

  21. Grosse-wilde A, Fouquier A, Mcintosh E, Ertaylan G (2015) Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLoS ONE. https://doi.org/10.1371/journal.pone.0126522

    Article  Google Scholar 

  22. Paoli P, Giannoni E, Chiarugi P (2013) Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta: Mol Cell Res 1833:3481–3498

    CAS  Google Scholar 

  23. Jessen KR, Mirsky R, Arthur-Farraj P (2015) The role of cell plasticity in tissue repair: adaptive cellular reprogramming. Dev Cell 34:613–620

    CAS  Google Scholar 

  24. Chang-Panesso M, Humphreys BD (2017) Cellular plasticity in kidney injury and repair. Nat Rev Nephrol 13:39–46

    CAS  Google Scholar 

  25. Yuan S, Norgard RJ, Stanger BZ (2019) Cellular plasticity in cancer. Cancer Discov 9:837–851

    CAS  Google Scholar 

  26. Nieto MA, Huang RYYJ, Jackson RAA, Thiery JPP (2016) Emt: 2016. Cell 166:21–45

    CAS  Google Scholar 

  27. Jolly MK et al (2019) Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 194:161–184

    CAS  Google Scholar 

  28. Kröger C et al (2019) Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci USA 116:7353–7362

    Google Scholar 

  29. Aceto N et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158:1110–1122

    CAS  Google Scholar 

  30. Lecharpentier A et al (2011) Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. Br J Cancer 105:1338–1341

    CAS  Google Scholar 

  31. Maddipati R, Stanger BZ (2015) Pancreatic cancer metastases harbor evidence of polyclonality. Cancer Discov 5:1086–1097

    CAS  Google Scholar 

  32. Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    CAS  Google Scholar 

  33. Zhu Y, Luo M, Brooks M, Clouthier SG, Wicha MS (2014) Biological and clinical significance of cancer stem cell plasticity. Clin Transl Med 3:32

    Google Scholar 

  34. Morel AP et al (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3:1–7

    Google Scholar 

  35. Grosse-Wilde A et al (2015) Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLoS ONE 10:1–28

    Google Scholar 

  36. Pastushenko I et al (2018) Identification of the tumour transition states occurring during EMT. Nature 556:463–468

    CAS  Google Scholar 

  37. Boareto M et al (2016) Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. J R Soc Interface 13:20151106

    Google Scholar 

  38. Guo W et al (2012) Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148:1015–1028

    CAS  Google Scholar 

  39. Vesuna F, Lisok A, Kimble B, Raman V (2009) Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression. Neoplasia 11:1318–1328

    CAS  Google Scholar 

  40. Marjanovic ND, Weinberg RA, Chaffer CL (2013) Poised with purpose: cell plasticity enhances tumorigenicity. Cell Cycle 12:2713–2714

    CAS  Google Scholar 

  41. Yang G et al (2012) Dynamic equilibrium between cancer stem cells and non-stem cancer cells in human SW620 and MCF-7 cancer cell populations. Br J Cancer 106:1512–1519

    CAS  Google Scholar 

  42. Achuthan S, Santhoshkumar TR, Prabhakar J, Nair SA, Pillai MR (2011) Drug-induced senescence generates chemoresistant stemlike cells with low reactive oxygen species. J Biol Chem 286:37813–37829

    CAS  Google Scholar 

  43. Chao YL, Shepard CR, Wells A (2010) Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 9:1–18

    Google Scholar 

  44. Karacosta LG et al (2019) Mapping lung cancer epithelial-mesenchymal transition states and trajectories with single-cell resolution. bioRxiv. https://doi.org/10.1101/570341

    Article  Google Scholar 

  45. Ahmed F, Haass NK (2018) Microenvironment-driven dynamic heterogeneity and phenotypic plasticity as a mechanism of melanoma therapy resistance. Front. Oncol. 8:1–7

    Google Scholar 

  46. Paget S (1889) Distribution of secondary growths in cancer of the breast. Lancet 571–573. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(00)49915-0/fulltext

  47. Watnick RS (2017) The role of the tumor microenvironment in regulating angiogenesis. Biomarkers Tumor Microenviron Basic Stud Pract Appl. https://doi.org/10.1007/978-3-319-39147-2_1

    Article  Google Scholar 

  48. Katsuno Y et al (2019) Inhibition 12, 1–36

  49. Mahmoud SMA et al (2012) Tumour-infiltrating macrophages and clinical outcome in breast cancer. J Clin Pathol 65:159–163

    CAS  Google Scholar 

  50. Yang M, Ma B, Shao H, Clark AM, Wells A (2016) Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells. BMC Cancer 16:1–13

    CAS  Google Scholar 

  51. Frater-Schroder M, Risau W, Hallmann R, Gautschi P, Böhlen P (1987) Tumor necrosis factor type α, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci USA 84:5277–5281

    CAS  Google Scholar 

  52. Leibovich SJ et al (1987) Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α. Nature 329:630–632

    CAS  Google Scholar 

  53. Baluk P et al (2009) TNF-α drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J Clin Investig 119:2954–2964

    CAS  Google Scholar 

  54. Wu Y, Zhou P (2009) Stabilization of snail by NF-κB is required for inflammation- induced cell migration and invasion. Cancer Cell 15:416–428

    CAS  Google Scholar 

  55. Sanguinetti A, Santini D, Bonafè M, Taffurelli M, Avenia N (2015) Interleukin-6 and pro inflammatory status in the breast tumor microenvironment. World J Surg Oncol 13:4–9

    Google Scholar 

  56. Ferrao P, Behren A, Anderson R, Thompson EW (2015) Editorial: cellular and phenotypic plasticity in cancer. Front Oncol 5:1–3

    Google Scholar 

  57. Hindriksen S, Bijlsma MF (2012) Cancer stem cells, EMT, and developmental pathway activation in pancreatic tumors. Cancers (Basel) 4:989–1035

    CAS  Google Scholar 

  58. Sa E et al (2012) EMT-activating transcription factors in cancer : beyond EMT and tumor invasiveness. Cell Mol Life Sci. https://doi.org/10.1007/s00018-012-1122-2

    Article  Google Scholar 

  59. Graff JR, Gabrielson E, Fujii H, Baylin SB, Herman JG (2000) Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem 275:2727–2732

    CAS  Google Scholar 

  60. Buchheit CL, Rayavarapu RR, Schafer ZT (2012) The regulation of cancer cell death and metabolism by extracellular matrix attachment. Semin Cell Dev Biol 23:402–411

    CAS  Google Scholar 

  61. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J (2012) Spatiotemporal regulation of EMT is essential for squamous cell carcinoma metastasis. Changes 29:997–1003

    Google Scholar 

  62. Ye X, Weinberg RA (2015) Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 25:675–686

    CAS  Google Scholar 

  63. Shaul YD et al (2014) Dihydropyrimidine accumulation is required for the epithelial-mesenchymal transition. Cell 158:1094–1109

    CAS  Google Scholar 

  64. Sciacovelli M, Frezza C (2017) Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J 284:3132–3144

    CAS  Google Scholar 

  65. Cufí S et al (2011) Autophagy positively regulates the CD44+ CD24−/low breast cancer stem-like phenotype. Cell Cycle 10:3871–3885

    Google Scholar 

  66. Bocci F et al (2019) NRF2 activates a partial epithelial-mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. Integr Biol (Camb) 11:251–263

    Google Scholar 

  67. Saxena K, Subbalakshmi AR, Jolly MK (2019) Phenotypic heterogeneity in circulating tumor cells and its prognostic value in metastasis and overall survival. EBioMedicine 46:4–5

    Google Scholar 

  68. Gaude E, Frezza C (2016) Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival. Nat Commun 7:1–9

    Google Scholar 

  69. Papadaki MA et al (2014) Co-expression of putative stemness and epithelial-to-mesenchymal transition markers on single circulating tumour cells from patients with early and metastatic breast cancer. BMC Cancer 14:1–10

    Google Scholar 

  70. Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10:717–728

    CAS  Google Scholar 

  71. Krawczyk N et al (2014) Expression of stem cell and epithelial-mesenchymal transition markers in circulating tumor cells of breast cancer patients. Biomed Res Int 69. https://pubmed.ncbi.nlm.nih.gov/24895575/

  72. De Luca A et al (2015) Mitochondrial biogenesis is required for the anchorage- independent survival and propagation of stem-like cancer cells. Oncotarget 6:14777–14795

    Google Scholar 

  73. Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA (2018) Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. Cells. https://doi.org/10.3390/cells7030021

    Article  Google Scholar 

  74. Gradilone A et al (2011) Circulating tumor cells (CTCs) in metastatic breast cancer (MBC): prognosis, drug resistance and phenotypic characterization. Ann Oncol 22:86–92

    CAS  Google Scholar 

  75. Agnoletto C et al (2019) Heterogeneity in circulating tumor cells: the relevance of the stem-cell subset. Cancers (Basel) 11:9–12

    Google Scholar 

  76. Charpentier M, Martin S (2013) Interplay of stem cell characteristics, EMT, and microtentacles in circulating breast tumor cells. Cancers (Basel) 5:1545–1565

    Google Scholar 

  77. Gong C et al (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32:2261–2272

    CAS  Google Scholar 

  78. Fernandez-Zapico ME (2013) GLI1 finds a new role in cancer stem cell biology. EMBO Mol Med 5:483–485

    CAS  Google Scholar 

  79. Gupta P, Gupta N, Fofaria NM, Ranjan A, Srivastava SK (2019) HER2-mediated GLI2 stabilization promotes anoikis resistance and metastasis of breast cancer cells. Cancer Lett 442:68–81

    CAS  Google Scholar 

  80. Schafer ZT et al (2009) Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461:109–113

    CAS  Google Scholar 

  81. Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078

    CAS  Google Scholar 

  82. Jones RG et al (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293

    CAS  Google Scholar 

  83. Zhang H, Singh RR, Talukder AH, Kumar R (2006) Metastatic tumor antigen 3 is a direct corepressor of the Wnt4 pathway. Genes Dev 20:2943–2948

    CAS  Google Scholar 

  84. Liang J et al (2007) The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9:218–224

    CAS  Google Scholar 

  85. He X et al (2016) Low expression of long noncoding RNA CASC2 indicates a poor prognosis and regulates cell proliferation in non-small cell lung cancer. Tumor Biol 37:9503–9510

    CAS  Google Scholar 

  86. Saxena M et al (2018) AMP-activated protein kinase promotes epithelial-mesenchymal transition in cancer cells through Twist1 upregulation. J Cell Sci. https://doi.org/10.1242/jcs.208314

    Article  Google Scholar 

  87. Gong J et al (2018) Phosphorylation of ULK1 by AMPK is essential for mouse embryonic stem cell self-renewal and pluripotency article. Cell Death Dis 9:1–8

    Google Scholar 

  88. Lahiry M, Rangarajan A (2018) AMPK promotes Notch1 stability to potentiate hypoxia-induced breast cancer aggressiveness. BioRxv. https://www.biorxiv.org/content/10.1101/458489v2

  89. Fung C, Lock R, Gao S, Salas E, Debnath J (2008) Induction of autophagy during extracellular matrix detachment promotes cell survival christopher. Mol Biol Cell 19:797–806

    CAS  Google Scholar 

  90. Ng TL et al (2012) The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis. Cell Dealth Diff. https://doi.org/10.1038/cdd.2011.119

    Article  Google Scholar 

  91. Jeon SM, Hay N (2015) The double-edged sword of AMPK signaling in cancer and its therapeutic implications. Arch Pharm Res 38:346–357

    CAS  Google Scholar 

  92. Hindupur SK et al (2014) Identification of a novel AMPK-PEA15 axis in the anoikis-resistant growth of mammary cells. Breast Cancer Res 16:420

    Google Scholar 

  93. Sundararaman A, Amirtham U, Rangarajan A (2016) Calcium-oxidant signaling network regulates AMP-activated protein kinase (AMPK) activation upon matrix deprivation. J Biol Chem 291:14410–14429

    CAS  Google Scholar 

  94. Jeon SM, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485:661–665

    CAS  Google Scholar 

  95. Jiang P, Du W, Wu M (2014) Regulation of the pentose phosphate pathway in cancer. Protein Cell 5:1–11

    Google Scholar 

  96. Davison CA et al (2013) Antioxidant enzymes mediate survival of breast cancer cells deprived of extracellular matrix. Cancer Res 73:3704–3715

    CAS  Google Scholar 

  97. Kumar S (2019) Feedback loops involving AMPK, ERK and TFEB in matrix detachment leads to non- genetic heterogeneity, 5–10. https://www.biorxiv.org/content/10.1101/736546v1

  98. Yeung KT, Yang J (2017) Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol 11:28–39

    Google Scholar 

Download references

Acknowledgements

We acknowledge Ms. Neha Deshpande for proofreading the manuscript. The definitions were variably adapted from Encyclopaedia Britannica, Wikipedia, Khan Academy, and Genetics Home Reference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annapoorni Rangarajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranganathan, S., Kumar, S., Mohanty, S.S. et al. Cellular Plasticity in Matrix-attached and -Detached Cells: Implications in Metastasis. J Indian Inst Sci 100, 525–536 (2020). https://doi.org/10.1007/s41745-020-00179-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-020-00179-0

Keywords

Navigation