Skip to main content

Advertisement

Log in

Performance overview of an artificial intelligence in biomedics: a systematic approach

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

Artificial intelligence and technological advancements are exceptionally influenced the entire society and mankind. Unprecendented and extensive use of social media, mobile phones and the internet has resulted in accumulation of huge amount of data. Most of this big data are available in unstructured form and it is beyond the capability of traditional systems to manage, maintain, supervise, keeping and analyse the data within a limited time span. Effective analysis and interpretation of health care data provides new insights in the condition of patients and suggest the most appropriate treatment opportunities. Discovery and invention of vital information in medical data helps the health care professionals to arrive at appropriate clinical decisions and improvement of quality of life in a variety of patients. In this article, we have discussed various issues and addressed them with the updated information on big data sources, big data management, big data processing and big data analysis through various tools and techniques. We have also analysed and interpreted the recent applications and advancements in artificial intelligence and big data in the health care technology and m-Health domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbod MF, Catto JW, Linkens DA, Hamdy FC (2007) Application of artificial intelligence to the management of urological cancer. J Urol 178(4):1150–1156

    Google Scholar 

  2. Adamu FB, Habbal A, Hassan S, Les Cottrell R, White B, Abdullahi I (2016) A survey on big data indexing strategies. Technical report. SLAC National Accelerator Laboratory

  3. Ahammad T, Sajib Md, Tabassum M (2016) Towards the application of big data: a new way to make data driven health care decision. Int J Comput Appl 134:15–21. https://doi.org/10.5120/ijca2016908094

    Article  Google Scholar 

  4. Akay MF (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 36(2):3240–3247

    Google Scholar 

  5. Ali A, Sundaraj K, Ahmad B, Ahamed N, Islam A (2012) Gait disorder rehabilitation using vision and non-vision based sensors: a systematic review. Bosnian J Basic Med Sci 12(3):193–202

    Google Scholar 

  6. Begg RK (2005) Artificial intelligence techniques in medicine and health care. In: Encyclopedia of information science and technology. 1st edn. Victoria University, Melbourne, Australia. https://doi.org/10.4018/978-1-59140-553-5.ch030

    Chapter  Google Scholar 

  7. Begoli E, Horey J (2012) Design principles for effective knowledge discovery from big data. Paper presented at the Software Architecture (WICSA) and European Conference on Software Architecture (ECSA), 2012 joint working IEEE/IFIP conference on

  8. Bloom BH (1970) Space/time trade-offs in hash coding with allowable errors. Commun ACM 13(7):422–426

    MATH  Google Scholar 

  9. Borkar VR, Carey MJ, Li C (2012) Big data platforms: what’s next? XRDS: Crossroads ACM Mag Stud 19(1):44–49

    Google Scholar 

  10. Bryant R, Katz RH, Lazowska ED (2008) Big-data computing: creating revolutionary breakthroughs in commerce, science and society. Version 8: December 22, 20081

  11. Caroli A, Manini S, Antiga L, Passera K, Ene-Iordache B, Rota S, van de Vosse FN (2013) Validation of a patient-specific hemodynamic computational model for surgical planning of vascular access in hemodialysis patients. Kidney Int 84(6):1237–1245

    Google Scholar 

  12. Chang AC (2016) Big data in medicine: The upcoming artificial intelligence. Progr Pediatr Cardiol

  13. Chen CP, Zhang C-Y (2014) Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inf Sci 275:314–347

    Google Scholar 

  14. Chen L, Chen CP, Lu M (2011) A multiple-kernel fuzzy C-means algorithm for image segmentation. IEEE Trans Syst Man Cybern Part B (Cybern) 41(5):1263–1274

  15. Chen M, Mao S, Liu Y (2014) Big data: a survey. Mobile Netw Appl 19(2):171–209

    Google Scholar 

  16. Chua K, Chandran V, Acharya U, Lim C (2009) Automatic identification of epileptic electroencephalography signals using higher-order spectra. Proc Inst Mech Eng [H] 223(4):485–495

    Google Scholar 

  17. Clifford L (2008) Big data: how do your data grow. Nature 455(7209):28–29

    Google Scholar 

  18. Costa FF (2014) Big data in biomedicine. Drug Discov Today 19(4):433–440

    MathSciNet  Google Scholar 

  19. De Choudhury M, Gamon M, Counts S, Horvitz E (2013) Predicting depression via social media. Paper presented at the ICWSM

  20. Deepa SN, Devi BA (2011) A survey on artificial intelligence approaches for medical image classification. Indian J Sci Technol 4(11):1583–1595. https://doi.org/10.17485/ijst/2011/v4i11/30291

    Article  Google Scholar 

  21. Dussol B, Verdier J-M, Le Goff J-M, Berthezene P, Berland Y (2006) Artificial neural networks for assessing the risk of urinary calcium stone among men. Urol Res 34(1):17–25

    Google Scholar 

  22. El-Sappagh SH, El-Masri S (2014) A distributed clinical decision support system architecture. J King Saud Univ Comput Inf Sci 26(1):69–78

    Google Scholar 

  23. Esteva H, Núñez TG, Rodríguez RO (2007) Neural networks and artificial intelligence in thoracic surgery. Thoracic Surg Clin 17(3):359–367

    Google Scholar 

  24. Fasolin K, Fileto R, Krugery M, Kasterz DS, Ferreirax MR, Cordeirox RL, Traina C (2013) Efficient execution of conjunctive complex queries on big multimedia databases. In: 2013 IEEE International Symposium on Paper presented at the Multimedia (ISM)

  25. Feldman B, Martin EM, Skotnes T (2012) Big data in health care hype and hope. October 2012. Dr. Bonnie, 360

  26. Garlasu D, Sandulescu V, Halcu I, Neculoiu G, Grigoriu O, Marinescu M et al (2013) A big data implementation based on Grid computing. In: Proceedings of the 11th Roedunet International Conference (RoEduNet), 2013, IEEE, p 14

  27. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L (2009) Detecting influenza epidemics using search engine query data. Nature 457(7232):1012–1014

    Google Scholar 

  28. Gorunescu F (2016) Fighting breast cancer with the aid of artificial intelligence: a big challenge. Austin J Cancer Clin Res 3(1):1069

    Google Scholar 

  29. Graupe D, Kordylewski H (1995) Artificial neural network control of FES in paraplegics for patient responsive ambulation. IEEE Trans Biomed Eng 42(7):699–707

    Google Scholar 

  30. Groves P, Kayyali B, Knott D, Van Kuiken S (2013) The ‘big data’revolution in health care. McKinsey Q 2

  31. Gupta R (2014) Journey from data mining to Web Mining to Big Data. arXiv preprint arXiv:1404.4140

  32. Hansen MM, Miron-Shatz T, Lau AYS, Paton C (2014) Big data in science and health care: a review of recent literature and perspectives: contribution of the IMIA social media working group. Yearb Med Inform 9(1):21–26. https://doi.org/10.15265/IY-2014-0004

    Article  Google Scholar 

  33. Hashem IAT, Chang V, Anuar NB, Adewole K, Yaqoob I, Gani A, Chiroma H (2016) The role of big data in smart city. Int J Inf Manage 36(5):748–758

    Google Scholar 

  34. Hermon R, Williams PA (2014) Big data in health care: what is it used for?. In: Proceedings of the 3rd Australian eHealth informatics and security conference. Edith Cowan University, Perth, Western Australia. https://doi.org/10.4225/75/57982b9431b48

    Chapter  Google Scholar 

  35. Huang T, Lan L, Fang X, An P, Min J, Wang F (2015) Promises and challenges of big data computing in health sciences. Big Data Research 2(1):2–11

    Google Scholar 

  36. Jaiswal V, Tiwari A (2013) A survey of image segmentation based on artificial intelligence and evolutionary approach. IOSR-JCE 15(3):71–78

    Google Scholar 

  37. Jiang P, Winkley J, Zhao C, Munnoch R, Min G, Yang LT (2014) An intelligent information forwarder for health care big data systems with distributed wearable sensors

  38. Jin Z, Sun Y, Cheng AC (2009) Predicting cardiovascular disease from real-time electrocardiographic monitoring: An adaptive machine learning approach on a cell phone. In: 2009 annual international conference of the IEEE EMBS. https://doi.org/10.1109/IEMBS.2009.5333610

  39. Keri J, Prospectus B (2007) Baseball between the numbers: why everything you know about the game is wrong. Basic Books

  40. Khan N, Yaqoob I, Hashem IAT, Inayat Z, Mahmoud Ali WK, Alam M, Gani A (2014) Big data: survey, technologies, opportunities, and challenges. Sci World J

  41. Khashei M, Eftekhari S, Parvizian J (2012) Diagnosing diabetes type ii using a soft intelligent binary classification model. Rev Bioinf Biometrics 1(1)

  42. Klompas M, McVetta J, Lazarus R, Eggleston E, Haney G, Kruskal BA, Beagan B (2012) Integrating clinical practice and public health surveillance using electronic medical record systems. Am J Prev Med 102(S3):S325–S332. https://doi.org/10.2105/AJPH.2012.300811

    Article  Google Scholar 

  43. Li X, Yao X (2012) Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evol Comput 16(2):210–224

    Google Scholar 

  44. Lisboa PJ (2002) A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw 15(1):11–39

    Google Scholar 

  45. Liu K, Hogan WR, Crowley RS (2011) Natural language processing methods and systems for biomedical ontology learning. J Biomed Inform 44(1):163–179

    Google Scholar 

  46. Liu S, McGree J, Ge Z, Xie Y (2015) Computational and statistical methods for analysing big data with applications. Academic Press

  47. Luo J, Wu M, Gopukumar D, Zhao Y (2016) Big data application in biomedical research and health care: a literature review. Biomed Inf Insights 8:1. https://doi.org/10.4137/BII.S31559

    Article  Google Scholar 

  48. Ma K-L, Parker S (2001) Massively parallel software rendering for visualizing large-scale data sets. IEEE Comput Graph Appl 21(4):72–83

    Google Scholar 

  49. Marling C, Wiley M, Bunescu R, Shubrook J, Schwartz F (2012) Emerging applications for intelligent diabetes management. AI Mag 33(2):67

    Google Scholar 

  50. Mayo C, Kessler M, Eisbruch A, Weyburne G, Feng M, El Naqa I, Anderson C (2016) The big data effort in radiation oncology: data mining or data farming? Adv Radiat Oncol

  51. McAfee A, Brynjolfsson E, Davenport TH, Patil D, Barton D (2012) Big data: the management revolution. Harvard Bus Rev 90(10):61–67

    Google Scholar 

  52. McCartney S, Weltin M, Burchiel KJ (2013) Use of an artificial neural network for diagnosis of facial pain syndromes: an update. Stereotact Funct Neurosurg 92(1):44–52

    Google Scholar 

  53. Nallaperuma D, Lokuge K (2012) Cardiology predictor: cardiology interpretations for medical diagnosis. Sri Lanka J Biomed Inf 2(4)

  54. Nayak J, Acharya RU, Bhat PS, Shetty N, Lim T-C (2009) Automated diagnosis of glaucoma using digital fundus images. J Med Syst 33:337–346. https://doi.org/10.1007/s10916-008-9195-z

    Article  Google Scholar 

  55. Parmeggiani D, Avenia N, Sanguinetti A, Ruggiero R, Docimo G, Siciliano M, Parmeggiani U (2012) Artificial Intelligence against Breast Cancer (ANNES-BC-Project). Ann Ital Chir 83:1–5

    Google Scholar 

  56. Place JF, Truchaud A, Ozawa K, Pardue H, Schnipelsky P (1995) Use of artificial intelligence in analytical systems for the clinical laboratory. J Anal Methods Chem 17(1):1–15

    Google Scholar 

  57. Prakash D, Uma Mageshwari T, Prabakaran K, Suguna A (2013) Detection of heart diseases by mathematical artificial intelligence algorithm using Phonocardiogram signals. Int J Innov Appl Stud 3(1):145–150

    Google Scholar 

  58. Puad Ismail A (2015) Abnormal gait detection using Hexagonal method on model based front view model. J Electr Syst 11(2)

  59. Qureshi I (2015) Glaucoma detection in retinal images using image processing techniques: a survey. Int J Adv Netw Appl 7(2):2705–2718

    Google Scholar 

  60. Raghupathi W, Raghupathi V (2014) Big data analytics in health care: promise and potential. Health Inf Sci Syst 2(1):1

    Google Scholar 

  61. Ramesh A, Kambhampati C, Monson J, Drew P (2004) Artificial intelligence in medicine. Ann R Coll Surg Engl 86(5):334

    Google Scholar 

  62. Roy AK (2016) Impact of big data analytics on health care and society. J Biometr Biostat

  63. Sajda P (2006) Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng 8:537–565. https://doi.org/10.1146/annurev.bioeng.8.061505.095802

    Article  Google Scholar 

  64. Satapathy SK, Dehuri S, Jagadev AK (2016) An empirical analysis of different machine learning techniques for classification of EEG signal to detect epileptic seizure. Int J Appl Eng Res 11(1):120–129

    Google Scholar 

  65. Setlak G, Dąbrowski M, Szajnar W, Piróg-Mazur M, Kożak T (2009) Artificial intelligence approach to diabetes diagnostics. Inf Eng Syst 209

  66. Shortliffe EH, Axline SG, Buchanan BG, Merigan TC, Cohen SN (1973) An artificial intelligence program to advise physicians regarding antimicrobial therapy. Comput Biomed Res 6(6):544–560

    Google Scholar 

  67. Srinivasan U, Arunasalam B (2013) Leveraging big data analytics to reduce health care costs. IT Prof 15(6):21–28

    Google Scholar 

  68. Tenório JM, Hummel AD, Cohrs FM, Sdepanian VL, Pisa IT, de Fátima Marin H (2011) Artificial intelligence techniques applied to the development of a decision–support system for diagnosing celiac disease. Int J Med Inf 80(11):793–802

    Google Scholar 

  69. Tracy SJ (2010) Qualitative quality: eight “big-tent” criteria for excellent qualitative research. Qual Inquiry 16(10):837–851

    Google Scholar 

  70. Wang Y, Hajli N (2017) Exploring the path to big data analytics success in health care. J Bus Res 70:287–299

    Google Scholar 

  71. Xing EP, Ho Q, Xie P, Dai W (2015) Strategies and principles of distributed machine learning on big data. arXiv preprint arXiv:1512.09295

  72. Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimization using cooperative coevolution. Inf Sci 178(15):2985–2999

    MathSciNet  MATH  Google Scholar 

  73. Yaqoob I, Hashem IAT, Gani A, Mokhtar S, Ahmed E, Anuar NB, Vasilakos AV (2016) Big data: from beginning to future. Int J Inf Manage 36(6):1231–1247

    Google Scholar 

  74. Yousafzai A, Gani A, Noor RM, Sookhak M, Talebian H, Shiraz Mm, Khan MK (2016) Cloud resource allocation schemes: review, taxonomy, and opportunities. Knowl Inf Syst 1–35

  75. Zhang D, Guan TH, Widjaja F, Ang WT (2007) Functional electrical stimulation in rehabilitation engineering: a survey. Paper presented at the Proceedings of the 1st international convention on Rehabilitation engineering and assistive technology: in conjunction with 1st Tan Tock Seng Hospital Neurorehabilitation Meeting

  76. Zhou Q, Shi P, Liu H, Xu S (2012) Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems. IEEE Trans Syst Man Cybern Part B (Cybern) 42(6):1608–1619

    Google Scholar 

  77. Zikopoulos P, Eaton C (2011) Understanding big data: analytics for enterprise class hadoop and streaming data. McGraw-Hill Osborne Media

  78. Zikopoulos P, Parasuraman K, Deutsch T, Giles J, Corrigan D (2012) Harness the power of big data the IBM big data platform. McGraw Hill Professional, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashikant Patil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S., Patil, K.R., Patil, C.R. et al. Performance overview of an artificial intelligence in biomedics: a systematic approach. Int. j. inf. tecnol. 12, 963–973 (2020). https://doi.org/10.1007/s41870-018-0243-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-018-0243-8

Keywords

Navigation