Skip to main content

Advertisement

Log in

Carbon-Encapsulated Electrocatalysts for the Hydrogen Evolution Reaction

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Water electrolysis is a promising approach for large-scale and sustainable hydrogen production; however, its kinetics is slow and requires precious metal electrocatalysts to efficiently operate. Therefore, great efforts are being undertaken to design and prepare low-cost and highly efficient electrocatalysts to boost the hydrogen evolution reaction (HER). This is because traditional transition-metal electrocatalysts and corresponding hybrids with nonmetal atoms rely mainly on the interaction of metal–H bonds for the HER, which inevitably suffers from corrosion in extreme acidic and alkaline solutions. And as a result of all this effort, novel nanostructured electrocatalysts, such as carbon-encapsulated precious metals and non-precious metals including single metals or their alloys, transition-metal carbides, phosphides, oxides, sulfides, and selenides have all been recently reported to exhibit good catalytic activities and stabilities for hydrogen evolution. Here, the catalytic activity is thought to originate from the electron penetration effect of the inner metals to the surface carbon, which can alter the Gibbs free energy of hydrogen adsorption on the surface of materials. In this review, recent progresses of carbon-encapsulated materials for the HER are summarized, with a focus on the unique effects of carbon shells. In addition, perspectives on the future development of carbon-coated electrocatalysts for the HER are provided.

Graphical Abstract

Carbon-encapsulated electrocatalysts, such as carbon-encapsulated precious metals and non-precious metals (single metals or their alloys, metal carbides, phosphides, oxides, sulfides, and selenides), are emerging as promising candidates for water splitting. In this review, recent progresses in carbon-encapsulated electrocatalysts for hydrogen evolution are reviewed, especially the unique effects of carbon shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted with permission from Ref. [31]

Fig. 3

Reprinted with permission from Ref. [35]

Fig. 4

Reprinted with permission from Ref. [51]

Fig. 5

Reprinted with permission from Ref. [65]

Fig. 6

Reprinted with permission from Ref. [69]

Fig. 7

Reprinted with permission from Ref. [71]

Fig. 8

Reprinted with permission from Ref. [82]

Fig. 9

Reprinted with permission from Ref. [38]

Fig. 10

Reprinted with permission from Ref. [85]

Fig. 11

Reprinted with permission from Ref. [90]

Fig. 12

Reprinted with permission from Ref. [94]

Fig. 13

Reprinted with permission from Ref. [99]

Fig. 14

Similar content being viewed by others

References

  1. Owens-Baird, B., Kolen’ko, Y.V., Kovnir, K.: Structure-activity relationships for Pt-free metal phosphide hydrogen evolution electrocatalysts. Chem. Eur. J. 24, 7298–7311 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. Morales-Guio, C.G., Stern, L.A., Hu, X.L.: Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555–6569 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, L.S., Lu, J.J., Yin, S.B., et al.: One-pot synthesized boron-doped RhFe alloy with enhanced catalytic performance for hydrogen evolution reaction. Appl. Catal. B 230, 58–64 (2018)

    Article  CAS  Google Scholar 

  4. Rostrup-Nielsen, J.R., Nielsen, R.: Fuels and energy for the future: the role of catalysis. Catal. Rev. Sci. Eng. 46, 247–270 (2004)

    Article  CAS  Google Scholar 

  5. Wang, J., Xu, F., Jin, H.Y., et al.: Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29, 1605838 (2017)

    Article  CAS  Google Scholar 

  6. Conway, B.E., Jerkiewicz, G.: Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics. Electrochim. Acta 45, 4075–4083 (2000)

    Article  CAS  Google Scholar 

  7. Miao, M., Pan, J., He, T., et al.: Molybdenum carbide-based electrocatalysts for hydrogen evolution reaction. Chem. Eur. J. 23, 10947–10961 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. Liao, L., Wang, S.N., Xiao, J.J., et al.: A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7, 387–392 (2014)

    Article  CAS  Google Scholar 

  9. Wan, C., Regmi, Y.N., Leonard, B.M.: Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53, 6407–6410 (2014)

    Article  CAS  Google Scholar 

  10. Yin, J., Fan, Q.H., Li, Y.X., et al.: Ni–C–N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 138, 14546–14549 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. Kou, Z.K., Wang, T.T., Cai, Y., et al.: Ultrafine molybdenum carbide nanocrystals confined in carbon foams via a colloid-confinement route for efficient hydrogen production. Small Methods 2, 1700396 (2018)

    Article  CAS  Google Scholar 

  12. Wu, T.L., Pi, M.Y., Zhang, D.K., et al.: Three-dimensional porous structural MoP2 nanoparticles as a novel and superior catalyst for electrochemical hydrogen evolution. J. Power Sources 328, 551–557 (2016)

    Article  CAS  Google Scholar 

  13. Zhang, X., Yu, X.L., Zhang, L.J., et al.: Molybdenum phosphide/carbon nanotube hybrids as pH-universal electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 28, 1706523 (2018)

    Article  CAS  Google Scholar 

  14. Chang, J.F., Li, S.T., Li, G.Q., et al.: Monocrystalline Ni12P5 hollow spheres with ultrahigh specific surface areas as advanced electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 4, 9755–9759 (2016)

    Article  CAS  Google Scholar 

  15. Jin, Y.S., Shen, P.K.: Nanoflower-like metallic conductive MoO2 as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 3, 20080–20085 (2015)

    Article  CAS  Google Scholar 

  16. Phuruangrat, A., Dong, J.H., Hong, S.J., et al.: Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction. J. Mater. Chem. 20, 1683–1690 (2010)

    Article  CAS  Google Scholar 

  17. Liu, Y., Yin, S.B., Shen, P.K.: Asymmetric 3d electronic structure for enhanced oxygen evolution catalysis. ACS Appl. Mater. Interfaces 10, 23131–23139 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, J.Y., Xiao, W., Xi, P.X., et al.: Activating and optimizing activity of CoS2 for hydrogen evolution reaction through the synergic effect of N dopants and S vacancies. ACS Energy Lett. 2, 1022–1028 (2017)

    Article  CAS  Google Scholar 

  19. Benck, J.D., Chen, Z.B., Kuritzky, L.Y., et al.: Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2, 1916–1923 (2012)

    Article  CAS  Google Scholar 

  20. Amiinu, I.S., Pu, Z.H., Liu, X.B., et al.: Multifunctional Mo–N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn–Air batteries. Adv. Funct. Mater. 27, 1702300 (2017)

    Article  CAS  Google Scholar 

  21. Gao, M.R., Liang, J.X., Zheng, Y.R., et al.: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 6, 5982 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang, K., Yan, Y., Guo, L.M., et al.: Strained W(SexS1−x)2 nanoporous films for highly efficient hydrogen evolution. ACS Energy Lett. 2, 1315–1320 (2017)

    Article  CAS  Google Scholar 

  23. Yu, B., Qi, F., Chen, Y.F., et al.: Nanocrystalline Co0.85Se anchored on graphene nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9, 30703–30710 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. Yang, L.J., Zhou, W.J., Jia, J., et al.: Nickel nanoparticles partially embedded into carbon fiber cloth via metal-mediated pitting process as flexible and efficient electrodes for hydrogen evolution reactions. Carbon 122, 710–717 (2017)

    Article  CAS  Google Scholar 

  25. Cui, X.J., Ren, P.J., Deng, D.H., et al.: Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 9, 123–129 (2016)

    Article  CAS  Google Scholar 

  26. Zhang, L.L., Xiao, J., Wang, H.Y., et al.: Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catal. 7, 7855–7865 (2017)

    Article  CAS  Google Scholar 

  27. Zou, X.X., Zhang, Y.: Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. Bockris, J.O.M., Potter, E.C.: The mechanism of the cathodic hydrogen evolution reaction. J. Electrochem. Soc. 99, 169–186 (1952)

    Article  CAS  Google Scholar 

  29. Brad, A.J., Faulkner, L.R.: Electrochemical methods: Fundamentals and applications, vol. 60, pp. 669–676. Wiley (1980)

  30. Yan, Y., Xia, B.Y., Xu, Z.C., et al.: Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal. 4, 1693–1705 (2014)

    Article  CAS  Google Scholar 

  31. Norskov, J.K., Bligaard, T., Logadottir, A., et al.: Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005)

    Article  CAS  Google Scholar 

  32. Greeley, J., Jaramillo, T.F., Bonde, J., et al.: Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. Parsons, R.: The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958)

    Article  CAS  Google Scholar 

  34. Carenco, S., Portehault, D., Boissiere, C., et al.: Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem. Rev. 113, 7981–8065 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. Deng, J., Ren, P.J., Deng, D.H., et al.: Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54, 2100–2104 (2015)

    Article  CAS  Google Scholar 

  36. Pu, Z.H., Amiinu, I.S., He, D.P., et al.: Activating rhodium phosphide-based catalysts for the pH-universal hydrogen evolution reaction. Nanoscale 10, 12407–12412 (2018)

    Article  CAS  PubMed  Google Scholar 

  37. Ma, Y.Y., Wu, C.X., Feng, X.J., et al.: Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ. Sci. 10, 788–798 (2017)

    Article  CAS  Google Scholar 

  38. Anjum, M.A.R., Lee, M.H., Lee, J.S.: BCN network-encapsulated multiple phases of molybdenum carbide for efficient hydrogen evolution reactions in acidic and alkaline media. J. Mater. Chem. A 5, 13122–13129 (2017)

    Article  CAS  Google Scholar 

  39. Li, X., Yang, L., Su, T., et al.: Graphene-coated hybrid electrocatalysts derived from bimetallic metal-organic frameworks for efficient hydrogen generation. J. Mater. Chem. A 5, 5000–5006 (2017)

    Article  CAS  Google Scholar 

  40. Gao, Y., Lang, Z.L., Yu, F.Y., et al.: A Co2P/WC nano-heterojunction covered with N-doped carbon as highly efficient electrocatalyst for hydrogen evolution reaction. ChemSusChem 11, 1082–1091 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. Chen, X.L., Zheng, J., Zhong, X., et al.: Tuning the confinement space of N-carbon shell-coated ruthenium nanoparticles: highly efficient electrocatalysts for hydrogen evolution reaction. Catal. Sci. Technol. 7, 4964–4970 (2017)

    Article  CAS  Google Scholar 

  42. Ying, J., Jiang, G.P., Cano, Z.P., et al.: Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst. Nano Energy 40, 88–94 (2017)

    Article  CAS  Google Scholar 

  43. Yang, H.Y., Tang, Z.H., Wang, K., et al.: Co@Pd core–shell nanoparticles embedded in nitrogen-doped porous carbon as dual functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. J. Colloid Interface Sci. 528, 18–26 (2018)

    Article  CAS  PubMed  Google Scholar 

  44. Li, D.L., Zong, Z., Tang, Z.H., et al.: Total water splitting catalyzed by Co@Ir core–shell nanoparticles encapsulated in nitrogen-doped porous carbon derived from metal organic frameworks. ACS Sustain. Chem. Eng. 6, 5105–5114 (2018)

    Article  CAS  Google Scholar 

  45. Chi, J.Q., Gao, W.K., Lin, J.H., et al.: Hydrogen evolution activity of ruthenium phosphides encapsulated in nitrogen- and phosphorous-codoped hollow carbon nanospheres. ChemSusChem 11, 743–752 (2018)

    Article  CAS  PubMed  Google Scholar 

  46. Pu, Z.H., Amiinu, I.S., Kou, Z.K., et al.: RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem. Int. Ed. 56, 11559–11564 (2017)

    Article  CAS  Google Scholar 

  47. Liu, X.R., Zhang, M., Yang, T.T., et al.: Carbon nanofibers as nanoreactors in the construction of PtCo alloy carbon core–shell structures for highly efficient and stable water splitting. Mater. Des. 109, 162–170 (2016)

    Article  CAS  Google Scholar 

  48. Zhong, X., Wang, L., Zhuang, Z.Z., et al.: Double nanoporous structure with nanoporous PtFe embedded in graphene nanopores: highly efficient bifunctional electrocatalysts for hydrogen evolution and oxygen reduction. Adv. Mater. Interfaces 4, 1601029 (2017)

    Article  CAS  Google Scholar 

  49. Su, J.W., Yang, Y., Xia, G.L., et al.: Ruthenium–cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 8, 14969 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xu, Y., Li, Y.H., Yin, S.L., et al.: Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution. Nanotechnology 29, 225403 (2018)

    Article  CAS  PubMed  Google Scholar 

  51. Jiang, P., Chen, J.T., Wang, C.L., et al.: Tuning the activity of carbon for electrocatalytic hydrogen evolution via an iridium–cobalt alloy core encapsulated in nitrogen-doped carbon cages. Adv. Mater. 30, 1705324 (2018)

    Article  CAS  Google Scholar 

  52. Li, M., Liu, T.T., Bo, X.J., et al.: A novel flower-like architecture of FeCo@NC-functionalized ultra-thin carbon nanosheets as a highly efficient 3D bifunctional electrocatalyst for full water splitting. J. Mater. Chem. A 5, 5413–5425 (2017)

    Article  CAS  Google Scholar 

  53. Zhang, S.Y., Xiao, X.X., Lv, T.T., et al.: Cobalt encapsulated N-doped defect-rich carbon nanotube as pH universal hydrogen evolution electrocatalyst. Appl. Surf. Sci. 446, 10–17 (2018)

    Article  CAS  Google Scholar 

  54. Fei, H.L., Yang, Y., Peng, Z.W., et al.: Cobalt nanoparticles embedded in nitrogen-doped carbon for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 7, 8083–8087 (2015)

    Article  CAS  PubMed  Google Scholar 

  55. Ai, L.H., Tian, T., Jiang, J.: Ultrathin graphene layers encapsulating nickel nanoparticles derived metal-organic frameworks for highly efficient electrocatalytic hydrogen and oxygen evolution reactions. ACS Sustain. Chem. Eng. 5, 4771–4777 (2017)

    Article  CAS  Google Scholar 

  56. Li, Y.Y., Li, Z.S., Shen, P.K.: Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv. Mater. 25, 2474–2480 (2013)

    Article  CAS  PubMed  Google Scholar 

  57. Chen, Z.P., Ren, W.C., Gao, L.B., et al.: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011)

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, H.B., Ma, Z.J., Duan, J.J., et al.: Active sites implanted carbon cages in core shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 10, 684–694 (2016)

    Article  CAS  PubMed  Google Scholar 

  59. Duan, J.J., Chen, S., Jaroniec, M., et al.: Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 5, 5207–5234 (2015)

    Article  CAS  Google Scholar 

  60. Zheng, Y., Jiao, Y., Ge, L., et al.: Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 52, 3110–3116 (2013)

    Article  CAS  Google Scholar 

  61. Tavakkoli, M., Kallio, T., Reynaud, O., et al.: Single-shell carbon-encapsulated iron nanoparticles: Synthesis and high electrocatalytic activity for hydrogen evolution reaction. Angew. Chem. Int. Ed. 54, 4535–4538 (2015)

    Article  CAS  Google Scholar 

  62. Guo, H.L., Youliwasi, N., Zhao, L., et al.: Carbon-encapsulated nickel–cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media. Appl. Surf. Sci. 435, 237–246 (2018)

    Article  CAS  Google Scholar 

  63. Feng, X.G., Bo, X.J., Guo, L.P.: CoM(M = Fe, Cu, Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions. J. Power Sources 389, 249–259 (2018)

    Article  CAS  Google Scholar 

  64. Noh, S.H., Seo, M.H., Kang, J., et al.: Towards a comprehensive understanding of FeCo coated with N-doped carbon as a stable bi-functional catalyst in acidic media. NPG Asia Mater. 8, 312 (2016)

    Article  CAS  Google Scholar 

  65. Shen, Y., Zhou, Y.F., Wang, D., et al.: Nickel–copper alloy encapsulated in graphitic carbon shells as electrocatalysts for hydrogen evolution reaction. Adv. Energy Mater. 8, 1701759 (2018)

    Article  CAS  Google Scholar 

  66. Liu, P., Rodriguez, J.A.: Catalysts for hydrogen evolution from the NiFe hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J. Am. Chem. Soc. 127, 14871–14878 (2005)

    Article  CAS  PubMed  Google Scholar 

  67. Zhuang, M.H., Ou, X.W., Dou, Y.B., et al.: Polymer-embedded fabrication of Co2P nanoparticles encapsulated in N, P-doped graphene for hydrogen generation. Nano Lett. 16, 4691–4698 (2016)

    Article  CAS  PubMed  Google Scholar 

  68. Ma, J.W., Wang, M., Lei, G.Y., et al.: Polyaniline derived N-doped carbon-coated cobalt phosphide nanoparticles deposited on N-doped graphene as an efficient electrocatalyst for hydrogen evolution reaction. Small 14, 1702895 (2018)

    Article  CAS  Google Scholar 

  69. Yang, Y.Y., Liang, X.Y., Li, F., et al.: Encapsulating Co2P@C core–shell nanoparticles in a porous carbon sandwich as dual-doped electrocatalyst for hydrogen evolution. ChemSusChem 11, 376–388 (2018)

    Article  CAS  PubMed  Google Scholar 

  70. Li, X.Z., Fang, Y.Y., Li, F., et al.: Ultrafine Co2P nanoparticles encapsulated in nitrogen and phosphorus dual-doped porous carbon nanosheet/carbon nanotube hybrids: high-performance bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 4, 15501–15510 (2016)

    Article  CAS  Google Scholar 

  71. Yang, F.L., Chen, Y.T., Cheng, G.Z., et al.: Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal. 7, 3824–3831 (2017)

    Article  CAS  Google Scholar 

  72. Pan, Y., Sun, K., Liu, S.J., et al.: Core–shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140, 2610–2618 (2018)

    Article  CAS  PubMed  Google Scholar 

  73. Wang, R., Dong, X.Y., Du, J., et al.: MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 30, 1703711 (2018)

    Article  CAS  Google Scholar 

  74. Chung, D.Y., Jun, S.W., Yoon, G., et al.: Large-scale synthesis of carbon-shell-coated FeP nanoparticles for robust hydrogen evolution reaction electrocatalyst. J. Am. Chem. Soc. 139, 6669–6674 (2017)

    Article  CAS  Google Scholar 

  75. Yang, J., Ouyang, Y., Zhang, H.J., et al.: Novel Fe2P/graphitized carbon yolk/shell octahedra for high-efficiency hydrogen production and lithium storage. J. Mater. Chem. A 4, 9923–9930 (2016)

    Article  CAS  Google Scholar 

  76. Zhao, W.T., Lu, X.Q., Selvaraj, M., et al.: MXP(M = Co/Ni)@carbon core–shell nanoparticles embedded in 3D cross-linked graphene aerogel derived from seaweed biomass for hydrogen evolution reaction. Nanoscale 10, 9698–9706 (2018)

    Article  CAS  PubMed  Google Scholar 

  77. Pu, Z.H., Zhang, C.T., Amiinu, I.S., et al.: General strategy for the synthesis of transition-metal phosphide/N-doped carbon frameworks for hydrogen and oxygen evolution. ACS Appl. Mater. Interfaces 9, 16187–16193 (2017)

    Article  CAS  PubMed  Google Scholar 

  78. Pu, Z.H., Amiinu, I.S., Liu, X.B., et al.: Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation. Nanoscale 8, 17256–17261 (2016)

    Article  CAS  PubMed  Google Scholar 

  79. Pu, Z.H., Ya, X., Amiinu, I.S., et al.: Ultrasmall tungsten phosphide nanoparticles embedded in nitrogen-doped carbon as a highly active and stable hydrogen-evolution electrocatalyst. J. Mater. Chem. A 4, 15327–15332 (2016)

    Article  CAS  Google Scholar 

  80. Zhang, B.W., Lui, Y.H., Gaur, A.P.S., et al.: Hierarchical FeNiP@ultrathin carbon nanoflakes as alkaline oxygen evolution and acidic hydrogen evolution catalyst for efficient water electrolysis and organic decomposition. ACS Appl. Mater. Interfaces 10, 8739–8748 (2018)

    Article  CAS  PubMed  Google Scholar 

  81. Vrubel, H., Hu, X.L.: Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem. Int. Ed. 51, 12703–12706 (2012)

    Article  CAS  Google Scholar 

  82. Kitchin, J.R., Norskov, J.K., Barteau, M.A., et al.: Trends in the chemical properties of early transition metal carbide surfaces: a density functional study. Catal. Today 105, 66–73 (2005)

    Article  CAS  Google Scholar 

  83. Ma, R.G., Zhou, Y., Chen, Y.F., et al.: Ultrafine molybdenum carbide nanoparticles composited with carbon as a highly active hydrogen-evolution electrocatalyst. Angew. Chem. Int. Ed. 54, 14723–14727 (2015)

    Article  CAS  Google Scholar 

  84. Chi, J.Q., Gao, W.K., Lin, J.H., et al.: Porous core–shell N-doped Mo2C@C nanospheres derived from inorganic-organic hybrid precursors for highly efficient hydrogen evolution. J. Catal. 360, 9–19 (2018)

    Article  CAS  Google Scholar 

  85. Chen, Y.Y., Zhang, Y., Jiang, W.J., et al.: Pomegranate-like N, P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution. ACS Nano 10, 8851–8860 (2016)

    Article  CAS  PubMed  Google Scholar 

  86. Li, J.S., Wang, Y., Liu, C.H., et al.: Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 7, 11204 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shi, Z.P., Wang, Y.X., Lin, H.L., et al.: Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 4, 6006–6013 (2016)

    Article  CAS  Google Scholar 

  88. Yang, X.J., Feng, X.J., Tan, H.Q., et al.: N-doped graphene-coated molybdenum carbide nanoparticles as highly efficient electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 4, 3947–3954 (2016)

    Article  CAS  Google Scholar 

  89. Levy, R.B., Boudart, M.: Platinum-like behavior of tungsten carbide in surface catalysis. Science 181, 547–549 (1973)

    Article  CAS  PubMed  Google Scholar 

  90. Zhou, Y., Ma, R.G., Li, P.X., et al.: Ditungsten carbide nanoparticles encapsulated by ultrathin graphitic layers with excellent hydrogen-evolution electrocatalytic properties. J. Mater. Chem. A 4, 8204–8210 (2016)

    Article  CAS  Google Scholar 

  91. Jin, Y.S., Wang, H.T., Li, J.J., et al.: Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv. Mater. 28, 3785–3790 (2016)

    Article  CAS  PubMed  Google Scholar 

  92. Wu, R., Zhang, J.F., Shi, Y.M., et al.: Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Am. Chem. Soc. 137, 6983–6986 (2015)

    Article  CAS  PubMed  Google Scholar 

  93. Tang, Y.J., Gao, M.R., Liu, C.H., et al.: Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 54, 12928–12932 (2015)

    Article  CAS  Google Scholar 

  94. Jing, S.Y., Lu, J.J., Yu, G.T., et al.: Carbon-encapsulated WOX hybrids as efficient catalysts for hydrogen evolution. Adv. Mater. 30, 1705979 (2018)

    Article  CAS  Google Scholar 

  95. Dong, Q.C., Sun, C.C., Dai, Z.Y., et al.: Free-standing NiO@C nanobelt as an efficient catalyst for water splitting. ChemCatChem 8, 3484–3489 (2016)

    Article  CAS  Google Scholar 

  96. Liu, Y.Y., Han, G.S., Zhang, X.Y., et al.: Co–Co3O4@carbon core–shells derived from metal-organic framework nanocrystals as efficient hydrogen evolution catalysts. Nano Res. 10, 3035–3048 (2017)

    Article  CAS  Google Scholar 

  97. Liu, R.R., Zhang, H.M., Zhang, X., et al.: Co9S8@N, P-doped porous carbon electrocatalyst using biomass-derived carbon nanodots as a precursor for overall water splitting in alkaline media. RSC Adv. 7, 19181–19188 (2017)

    Article  CAS  Google Scholar 

  98. Huang, S.C., Meng, Y.Y., He, S.M., et al.: N-, O-, and S-tridoped carbon-encapsulated Co9S8 nanomaterials: efficient bifunctional electrocatalysts for overall water splitting. Adv. Funct. Mater. 27, 1606585 (2017)

    Article  CAS  Google Scholar 

  99. Park, S.K., Kang, Y.C.: MOF-templated N-doped carbon-coated CoSe2 nanorods supported on porous CNT microspheres with excellent sodium-ion storage and electrocatalytic properties. ACS Appl. Mater. Interfaces 10, 17203–17213 (2018)

    Article  CAS  PubMed  Google Scholar 

  100. Manikandan, A., Lee, L., Wang, Y.C., et al.: Graphene-coated copper nanowire networks as a highly stable transparent electrode in harsh environments toward efficient electrocatalytic hydrogen evolution reactions. J. Mater. Chem. A 5, 13320–13328 (2017)

    Article  CAS  Google Scholar 

  101. Xue, Y.R., Guo, Y., Yi, Y.P., et al.: Self-catalyzed growth of Cu@graphdiyne core shell nanowires array for high efficient hydrogen evolution cathode. Nano Energy 30, 858–866 (2016)

    Article  CAS  Google Scholar 

  102. Chen, Z.L., Wu, R.B., Liu, Y., et al.: Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 30, 1802011 (2018)

    Article  CAS  Google Scholar 

  103. Wang, C.D., Jiang, J., Zhou, X.L., et al.: Alternative synthesis of cobalt monophosphide@C core–shell nanocables for electrochemical hydrogen production. J. Power Sources 286, 464–469 (2015)

    Article  CAS  Google Scholar 

  104. Cai, Z.X., Xu, W., Li, F.M., et al.: Electropolymerization fabrication of Co phosphate nanoparticles encapsulated in N, P-codoped mesoporous carbon networks as a 3D integrated electrode for full water splitting. ACS Sustain. Chem. Eng. 5, 571–579 (2017)

    Article  CAS  Google Scholar 

  105. Hu, Q., Liu, X.F., Tang, C.Y., et al.: Facile fabrication of a 3D network composed of N-doped carbon-coated core–shell metal oxides/phosphides for highly efficient water splitting. Sustain. Energy Fuels 2, 1085–1092 (2018)

    Article  CAS  Google Scholar 

  106. Cheng, Z.H., Fu, Q., Han, Q., et al.: A Type of 1 nm molybdenum carbide confined within carbon nanomesh as highly efficient bifunctional electrocatalyst. Adv. Funct. Mater. 28, 1705967 (2018)

    Article  CAS  Google Scholar 

  107. Jiang, J., Liu, Q.X., Zeng, C.M., et al.: Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. J. Mater. Chem. A 5, 16929–16935 (2017)

    Article  CAS  Google Scholar 

  108. Zhu, J.H., Yao, Y., Chen, Z., et al.: Controllable synthesis of ordered mesoporous Mo2C@graphitic carbon core–shell nanowire arrays for efficient electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 10, 18761–18770 (2018)

    Article  CAS  PubMed  Google Scholar 

  109. Wang, H., Sun, C., Cao, Y.J., et al.: Molybdenum carbide nanoparticles embedded in nitrogen-doped porous carbon nanofibers as a dual catalyst for hydrogen evolution and oxygen reduction reactions. Carbon 114, 628–634 (2017)

    Article  CAS  Google Scholar 

  110. Hou, J.G., Wu, Y.Z., Cao, S.Y., et al.: Active sites intercalated ultrathin carbon sheath on nanowire arrays as integrated core–shell architecture: highly efficient and durable electrocatalysts for overall water splitting. Small 13, 1702018 (2017)

    Article  CAS  Google Scholar 

  111. Zhou, W.J., Lu, J., Zhou, K., et al.: CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 28, 143–150 (2016)

    Article  CAS  Google Scholar 

  112. Li, J., Wan, M., Li, T., et al.: NiCoSe2−x/N-doped C mushroom-like core/shell nanorods on N-doped carbon fiber for efficiently electrocatalyzed overall water splitting. Electrochim. Acta 272, 161–168 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (21872040), the Natural Science Foundation of Guangxi (2016GXNSFCB380002), the Major International (Regional) Joint Research Project (U1705252), the National Basic Research Program of China (2017YFB0103000), and the Guangxi Science and Technology Project (AB16380030, 20171107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shibin Yin or Pei Kang Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Yin, S. & Shen, P.K. Carbon-Encapsulated Electrocatalysts for the Hydrogen Evolution Reaction. Electrochem. Energ. Rev. 2, 105–127 (2019). https://doi.org/10.1007/s41918-018-0025-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0025-9

Keywords

PACS

Navigation