Skip to main content

Advertisement

Log in

Understanding the Mechanism of the Oxygen Evolution Reaction with Consideration of Spin

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The oxygen evolution reaction (OER) with its intractably high overpotentials is the rate-limiting step in many devices, including rechargeable metal–air batteries, water electrolysis systems and solar fuel devices. Correspondingly, spin state transitions from spin singlet OH/H2O reactants to spin triplet O2 product have not yet received enough attention. In view of this, this article will discuss electron behaviours during OER by taking into consideration of spin attribute. The main conclusion is that, regardless of the possible adopted mechanisms (the adsorbate evolution mechanism or the lattice oxygen mechanism), the underlying rationale of OER is that three in four electrons being extracted from adsorbates should be in the same spin direction before O=O formation, superimposing high requirements on the spin structure of electrocatalysts. Therefore, upon fully understanding of the OER mechanism with considerations of spin, the awareness of the coupling between spin, charge, orbital and lattice parameters is necessary in the optimization of geometric and electronic structures in transition metal systems. Based on this, this article will discuss the possible dependency of OER efficiency on the electrocatalyst spin configuration, and the relevance of well-recognized factors with spin, including the crystal field, coordination, oxidation, bonding, the eg electron number, conductivity and magnetism. It is hoped that this article will clarify the underlying physics of OER to provide rational guidance for more effective design of energy conversion electrocatalysts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data from corresponding authors are available upon request.

References

  1. Zou, X.X., Zhang, Y.: Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e

    Article  CAS  PubMed  Google Scholar 

  2. Liu, Y.W., Xiao, C., Huang, P.C., et al.: Regulating the charge and spin ordering of two-dimensional ultrathin solids for electrocatalytic water splitting. Chem 4, 1263–1283 (2018). https://doi.org/10.1016/j.chempr.2018.02.006

    Article  CAS  Google Scholar 

  3. Suntivich, J., Gasteiger, H.A., Yabuuchi, N., et al.: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 3, 546–550 (2011). https://doi.org/10.1038/nchem.1069

    Article  CAS  PubMed  Google Scholar 

  4. Huang, Z.F., Wang, J., Peng, Y., et al.: Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv. Energy Mater. 7, 1700544 (2017). https://doi.org/10.1002/aenm.201700544

    Article  CAS  Google Scholar 

  5. Man, I.C., Su, H., Calle-Vallejo, F., et al.: Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011). https://doi.org/10.1002/cctc.201000397

    Article  CAS  Google Scholar 

  6. Koper, M.T.M.: Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710–2723 (2013). https://doi.org/10.1039/C3SC50205H

    Article  CAS  Google Scholar 

  7. Chen, X.H., Aschaffenburg, D.J., Cuk, T.: Selecting between two transition states by which water oxidation intermediates decay on an oxide surface. Nat. Catal. 2, 820–827 (2019). https://doi.org/10.1038/s41929-019-0332-5

    Article  CAS  Google Scholar 

  8. Mueller, D.N., Machala, M.L., Bluhm, H., et al.: Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat. Commun. 6, 6097 (2015). https://doi.org/10.1038/ncomms7097

    Article  CAS  PubMed  Google Scholar 

  9. Yoo, J.S., Rong, X., Liu, Y.S., et al.: Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 8, 4628–4636 (2018). https://doi.org/10.1021/acscatal.8b00612

    Article  CAS  Google Scholar 

  10. Lim, T., Niemantsverdriet, J.W., Gracia, J.: Layered antiferromagnetic ordering in the most active perovskite catalysts for the oxygen evolution reaction. ChemCatChem 8, 2968–2974 (2016). https://doi.org/10.1002/cctc.201600611

    Article  CAS  Google Scholar 

  11. Mabayoje, O., Shoola, A., Wygant, B.R., et al.: The role of anions in metal chalcogenide oxygen evolution catalysis: electrodeposited thin films of nickel sulfide as “pre-catalysts”. ACS Energy Lett. 1, 195–201 (2016). https://doi.org/10.1021/acsenergylett.6b00084

    Article  CAS  Google Scholar 

  12. McFarland, E.W., Metiu, H.: Catalysis by doped oxides. Chem. Rev. 113, 4391–4427 (2013). https://doi.org/10.1021/cr300418s

    Article  CAS  PubMed  Google Scholar 

  13. Wang, C.H., Yang, H.C., Zhang, Y.J., et al.: NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angew. Chem. Int. Ed. 58, 6099–6103 (2019). https://doi.org/10.1002/anie.201902446

    Article  CAS  Google Scholar 

  14. Yu, M.Q., Li, Y.H., Yang, S., et al.: Mn3O4 nano-octahedrons on Ni foam as an efficient three-dimensional oxygen evolution electrocatalyst. J. Mater. Chem. A 3, 14101–14104 (2015). https://doi.org/10.1039/c5ta02988k

    Article  CAS  Google Scholar 

  15. Stevens, M.B., Enman, L.J., Batchellor, A.S., et al.: Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem. Mater. 29, 140 (2017). https://doi.org/10.1021/acs.chemmater.6b02796

    Article  CAS  Google Scholar 

  16. Stoerzinger, K.A., Lü, W., Li, C., et al.: Highly active epitaxial La 1–xSrxMnO3 surfaces for the oxygen reduction reaction: role of charge transfer. J. Phys. Chem. Lett. 6, 1435–1440 (2015). https://doi.org/10.1021/acs.jpclett.5b00439

    Article  CAS  PubMed  Google Scholar 

  17. Cheng, X., Fabbri, E., Nachtegaal, M., et al.: Oxygen evolution reaction on La1–xSrxCoO3 perovskites: a combined experimental and theoretical study of their structural, electronic, and electrochemical properties. Chem. Mater. 27, 7662–7672 (2015). https://doi.org/10.1021/acs.chemmater.5b03138

    Article  CAS  Google Scholar 

  18. Gracia, J., Munarriz, J., Polo, V., et al.: Analysis of the magnetic entropy in oxygen reduction reactions catalysed by manganite perovskites. ChemCatChem 9, 3358–3363 (2017). https://doi.org/10.1002/cctc.201700302

    Article  CAS  Google Scholar 

  19. Zou, S.H., Burke, M.S., Kast, M.G., et al.: Fe (oxy)hydroxide oxygen evolution reaction electrocatalysis: intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem. Mater. 27, 8011–8020 (2015)

    Article  CAS  Google Scholar 

  20. Chung, D.Y., Lopes, P.P., Martins, P.F.B.D., et al.: Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 5, 222–230 (2020). https://doi.org/10.1038/s41560-020-0576-y

    Article  Google Scholar 

  21. Reier, T., Nong, H.N., Teschner, D., et al.: Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts. Adv. Energy Mater. 7, 1601275 (2017). https://doi.org/10.1002/aenm.201601275

    Article  CAS  Google Scholar 

  22. Tao, H.B., Xu, Y.H., Huang, X., et al.: A general method to probe oxygen evolution intermediates at operating conditions. Joule 3, 1498–1509 (2019). https://doi.org/10.1016/j.joule.2019.03.012

    Article  CAS  Google Scholar 

  23. Hirai, S., Yagi, S., Chen, W.T., et al.: Non-fermi liquids as highly active oxygen evolution reaction catalysts. Adv. Sci. 4, 1700176 (2017). https://doi.org/10.1002/advs.201700176

    Article  CAS  Google Scholar 

  24. Grimaud, A., Diaz-Morales, O., Han, B., et al.: Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017). https://doi.org/10.1038/nchem.2695

    Article  CAS  PubMed  Google Scholar 

  25. Hong, W.T., Risch, M., Stoerzinger, K.A., et al.: Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energ. Environ. Sci. 8, 1404–1427 (2015). https://doi.org/10.1039/c4ee03869j

    Article  CAS  Google Scholar 

  26. Medford, A.J., Vojvodic, A., Hummelshøj, J.S., et al.: From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015). https://doi.org/10.1016/j.jcat.2014.12.033

    Article  CAS  Google Scholar 

  27. Wei, C., Feng, Z.X., Scherer, G.G., et al.: Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29, 1606800 (2017). https://doi.org/10.1002/adma.201606800

    Article  CAS  Google Scholar 

  28. Suntivich, J., May, K.J., Gasteiger, H.A., et al.: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011). https://doi.org/10.1126/science.1212858

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, S.M., Miao, X.B., Zhao, X., et al.: Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nat. Commun. 7, 11510 (2016). https://doi.org/10.1038/ncomms11510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perry, N.H., Ishihara, T.: Roles of bulk and surface chemistry in the oxygen exchange kinetics and related properties of mixed conducting perovskite oxide electrodes. Materials 9, 858 (2016). https://doi.org/10.3390/ma9100858

    Article  CAS  PubMed Central  Google Scholar 

  31. Yagi, S., Yamada, I., Tsukasaki, H., et al.: Covalency-reinforced oxygen evolution reaction catalyst. Nat. Commun. 6, 8249 (2015)

    Article  Google Scholar 

  32. Grimaud, A., Hong, W.T., Shao-Horn, Y., et al.: Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016). https://doi.org/10.1038/nmat4551

    Article  CAS  PubMed  Google Scholar 

  33. Mefford, J.T., Rong, X., Abakumov, A.M., et al.: Water electrolysis on La1–xSrxCoO3–δ perovskite electrocatalysts. Nat. Commun. 7, 11053 (2016). https://doi.org/10.1038/ncomms11053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, X., Wang, H., Cui, Z.M., et al.: Exceptional oxygen evolution reactivities on CaCoO3 and SrCoO3. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aav6262

    Article  PubMed  PubMed Central  Google Scholar 

  35. Grimaud, A., May, K.J., Carlton, C.E., et al.: Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013). https://doi.org/10.1038/ncomms3439

    Article  CAS  PubMed  Google Scholar 

  36. Garcés-Pineda, F.A., Blasco-Ahicart, M., Nieto-Castro, D., et al.: Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 4, 519–525 (2019). https://doi.org/10.1038/s41560-019-0404-4

    Article  CAS  Google Scholar 

  37. Guo, Y.Q., Tong, Y., Chen, P.Z., et al.: Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv. Mater. 27, 5989–5994 (2015)

    Article  CAS  Google Scholar 

  38. Zhao, X., Zhang, H., Yan, Y., et al.: Engineering the electrical conductivity of lamellar silver-doped cobalt(II) selenide nanobelts for enhanced oxygen evolution. Angew. Chem. Int. Ed. 56, 328–332 (2017). https://doi.org/10.1002/anie.201609080

    Article  CAS  Google Scholar 

  39. Liu, R.C., Liang, F.L., Zhou, W., et al.: Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation. Nano Energy 12, 115–122 (2015)

    Article  CAS  Google Scholar 

  40. Stoerzinger, K.A., Choi, W.S., Jeen, H., et al.: Role of strain and conductivity in oxygen electrocatalysis on LaCoO3 thin films. J. Phys. Chem. Lett. 6, 487–492 (2015). https://doi.org/10.1021/jz502692a

    Article  CAS  PubMed  Google Scholar 

  41. Li, X.N., Sun, Y.H., Wu, Q.M., et al.: Optimized electronic configuration to improve the surface absorption and bulk conductivity for enhanced oxygen evolution reaction. J. Am. Chem. Soc. 141, 3121–3128 (2019). https://doi.org/10.1021/jacs.8b12299

    Article  CAS  PubMed  Google Scholar 

  42. She, S.X., Yu, J., Tang, W.Q., et al.: Systematic study of oxygen evolution activity and stability on La1–xSrxFeO3–δ perovskite electrocatalysts in alkaline media. ACS Appl. Mater. Interfaces. 10, 11715–11721 (2018). https://doi.org/10.1021/acsami.8b00682

    Article  CAS  PubMed  Google Scholar 

  43. Gracia, J.: Spin dependent interactions catalyse the oxygen electrochemistry. Phys. Chem. Chem. Phys. 19, 20451–20456 (2017). https://doi.org/10.1039/C7CP04289B

    Article  CAS  PubMed  Google Scholar 

  44. Grimaud, A., Carlton, C.E., Risch, M., et al.: Oxygen evolution activity and stability of Ba6Mn5O16, Sr4Mn2CoO9, and Sr6Co5O15: the influence of transition metal coordination. J. Phys. Chem. C 117, 25926–25932 (2013). https://doi.org/10.1021/jp408585z

    Article  CAS  Google Scholar 

  45. Anantharaj, S., Ede, S.R., Sakthikumar, K., et al.: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, co, and ni: a review. ACS Catal. 6, 8069–8097 (2016). https://doi.org/10.1021/acscatal.6b02479

    Article  CAS  Google Scholar 

  46. Yamada, I., Fujii, H., Takamatsu, A., et al.: Bifunctional oxygen reaction catalysis of quadruple manganese perovskites. Adv. Mater. 29, 1603004 (2017). https://doi.org/10.1002/adma.201603004

    Article  CAS  Google Scholar 

  47. Arima, T., Tokura, Y., Torrance, J.B.: Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys. Rev. B 48, 17006–17009 (1993). https://doi.org/10.1103/physrevb.48.17006

    Article  CAS  Google Scholar 

  48. Calle-Vallejo, F., Inoglu, N.G., Su, H.Y., et al.: Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chem. Sci. 4, 1245–1249 (2013)

    Article  CAS  Google Scholar 

  49. Liu, S.B., Luo, H., Li, Y.H., et al.: Structure-engineered electrocatalyst enables highly active and stable oxygen evolution reaction over layered perovskite LaSr3Co1.5Fe1.5O10–δ. Nano Energy 40, 115–121 (2017). https://doi.org/10.1016/j.nanoen.2017.08.007

    Article  CAS  Google Scholar 

  50. Malkhandi, S., Yang, B., Manohar, A.K., et al.: Electrocatalytic properties of nanocrystalline calcium-doped lanthanum cobalt oxide for bifunctional oxygen electrodes. J. Phys. Chem. Lett. 3, 967–972 (2012). https://doi.org/10.1021/jz300181a

    Article  CAS  PubMed  Google Scholar 

  51. Maitra, U., Naidu, B.S., Govindaraj, A., et al.: Importance of trivalency and the e 1g configuration in the photocatalytic oxidation of water by Mn and Co oxides. Proc. Natl. Acad. Sci. 110, 11704–11707 (2013). https://doi.org/10.1073/pnas.1310703110

    Article  PubMed  Google Scholar 

  52. Gracia, J., Sharpe, R., Munarriz, J.: Principles determining the activity of magnetic oxides for electron transfer reactions. J. Catal. 361, 331–338 (2018). https://doi.org/10.1016/j.jcat.2018.03.012

    Article  CAS  Google Scholar 

  53. Zhou, J.S., Goodenough, J.B.: Paramagnetic phase in single-crystal LaMnO3. Phys. Rev. B 60, r15002 (1999). https://doi.org/10.1103/physrevb.60.r15002

    Article  CAS  Google Scholar 

  54. Sharpe, R., Munarriz, J., Lim, T., et al.: Orbital physics of perovskites for the oxygen evolution reaction. Top. Catal. 61, 267–275 (2018). https://doi.org/10.1007/s11244-018-0895-4

    Article  CAS  Google Scholar 

  55. Maruthapandian, V., Pandiarajan, T., Saraswathy, V., et al.: Oxygen evolution catalytic behaviour of Ni doped Mn3O4 in alkaline medium. RSC Adv. 6, 48995–49002 (2016). https://doi.org/10.1039/c6ra01877g

    Article  CAS  Google Scholar 

  56. Gao, X.H., Zhang, H.X., Li, Q.G., et al.: Inside cover: hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem. Int. Ed. 55, 6110 (2016). https://doi.org/10.1002/anie.201603361

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Australia Research Council (DP190100150, DP170104116). We would like to thank Dr. Tania Sliver for her critical insights into this article.

Author information

Authors and Affiliations

Authors

Contributions

Zhenxiang Cheng and Xiaoning Li conceived the theme of this article. Xiaoning Li prepared this article and designed the corresponding schemes and figures. Zhenxiang Cheng further contributed his insights, discussions and modifications to this article. Xiaolin Wang contributed with useful discussions.

Corresponding author

Correspondence to Zhenxiang Cheng.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Cheng, Z. & Wang, X. Understanding the Mechanism of the Oxygen Evolution Reaction with Consideration of Spin. Electrochem. Energ. Rev. 4, 136–145 (2021). https://doi.org/10.1007/s41918-020-00084-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-020-00084-1

Keywords

Navigation