Skip to main content
Log in

Compressed domain secure, robust and high-capacity audio watermarking

  • Original Article
  • Published:
Iran Journal of Computer Science Aims and scope Submit manuscript

Abstract

Watermarking has attained wide consideration for copyright security of multimedia information. Audio watermarking scheme using discrete wavelet transform and singular value decomposition (SVD) along with encryption is proposed in this article. Transform domain coefficients undergo SVD and then utilizing Fibonacci numbers encrypted watermark data is inserted into the singular values to ensure achievable acquirement of watermark. Proposed algorithm utilizes chaotic and AES encrypted watermarks for embedding to accelerate the scale of security. High imperceptible attribute, robust nature and high payload are achieved using the proposed strategy. Experimental results show that the audio watermarking scheme is not only inaudible, but also robust against various common signal processing attacks such as noise addition, filtering,equantization, echo, invert and compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. No really,rust. http://www.jamendo.com/en/album/7365 (2014). Last Accessed on 13 May 2017

  2. Bhat, V., Sengupta, I., Das, A.: Audio watermarking based on quantization in wavelet domain. In: Sekar, R., Pujari, A.K. (eds.) Information systems security: 4th international conference, ICISS 2008, pp. 235–242. Springer, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Sengupta, I., Das, A., Bhat, K.V.: An audio watermarking scheme using singular value decomposition and dither-modulation quantization. Multimed. Tools Appl. 52(2), 369–389 (2011)

    Google Scholar 

  4. Bhat, K.V., Sengupta, I., Das, A.: A new audio watermarking scheme based on singular value decomposition and quantization. Circ. Syst. Signal Process. 30(5), 915–927 (2011)

    Article  Google Scholar 

  5. Chen, K., Yan, F., Iliyasu, A.M., Zhao, J.: Dual quantum audio watermarking schemes based on quantum discrete cosine transform. Int. J. Theor. Phys. 58(2), 502–521 (2019). https://doi.org/10.1007/s10773-018-3950-9

    Article  MATH  Google Scholar 

  6. Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital watermarking and steganography, 2nd edn. Morgan Kaufmann Publishers Inc, Burlington (2008)

    Google Scholar 

  7. Daemen, J., Rijmen, V.: The design of rijndael. Springer, New York (2002)

    Book  Google Scholar 

  8. Dhar, P.K., Shimamura, T.: Blind SVD-based audio watermarking using entropy and log-polar transformation. J. Inf S.ecur. Appl. 20, 74–83 (2015)

    Google Scholar 

  9. El-Bendary, M.A.M., El-Azm, A.E.A., El-Fishawy, N.A., Al-Hosarey, F.S.M., Eltokhy, M.A., El-Samie, F.E.A., Kazemian, H.: JPEG image transmission over mobile network with an efficient channel coding and interleaving. Int. J. Elect. 99(11), 1497–1518 (2012)

    Article  Google Scholar 

  10. Fallahpour, M., Megías, D.: Audio watermarking based on Fibonacci numbers. IEEE Trans. Audio Speech Lang. Process. 23(8), 1273–1282 (2015)

    Article  Google Scholar 

  11. Fan, M., Wang, H.: Chaos-based discrete fractional sine transform domain audio watermarking scheme. Comput. Elect. Eng. 35(3), 506–516 (2009)

    Article  Google Scholar 

  12. Han, F., Yu, X., Han, S.: Improved baker map for image encryption. In: 1st International Symposium on Systems and Control in Aerospace and Astronautics, pp. 4 pp.–1276 (2006)

  13. Hu, H., Lee, T.: High-performance self-synchronous blind audio watermarking in a unified FFT framework. IEEE Access 7, 19063–19076 (2019). https://doi.org/10.1109/ACCESS.2019.2893646

    Article  Google Scholar 

  14. Hu, H.T., Hsu, L.Y.: Robust, transparent and high-capacity audio watermarking in DCT domain. Signal Process. 109, 226–235 (2015)

    Article  Google Scholar 

  15. Hu, H.T., Hsu, L.Y., Lai, S.Y., Chang, Y.J.: The use of spectral shaping to extend the capacity for DWT-based blind audio watermarking. In: 5th International Conference on IT Convergence and Security (ICITCS), Kuala Lumpur, 2015, pp. 1–5 (2015)

  16. Hu, H.T., Lee, T.T.: Frame-synchronized blind speech watermarking via improved adaptive mean modulation and perceptual-based additive modulation in DWT domain. Digital Signal Process. 87, 75–85 (2019). https://doi.org/10.1016/j.dsp.2019.01.006

    Article  Google Scholar 

  17. Hua, G., Huang, J., Shi, Y.Q., Goh, J., Thing, V.L.: Twenty years of digital audio watermarking—a comprehensive review. Signal Process. 128, 222–242 (2016)

    Article  Google Scholar 

  18. Huang, H.N., Chen, S.T., Lin, M.S., Kung, W.M., Hsu, C.Y.: Optimization-based embedding for wavelet-domain audio watermarking. J. Signal Process. Syst. 80(2), 197–208 (2015)

    Article  Google Scholar 

  19. Johnson, N., Duric, Z., Jajodia, S.: Information hiding: steganography and watermarking-attacks and countermeasures. Kluwer Academic Publishers, Berlin (2001)

    Book  Google Scholar 

  20. Kang, X., Yang, R., Huang, J.: Geometric invariant audio watermarking based on an LCM feature. IEEE Transa. Multimed. 13(2), 181–190 (2011)

    Article  Google Scholar 

  21. Kanhe, A., Gnanasekaran, A.: A blind audio watermarking scheme employing DCT-HT-SD technique. Circ. Syst. Signal Process. 38(8), 3697–3714 (2019). https://doi.org/10.1007/s00034-018-0994-2

    Article  Google Scholar 

  22. Karajeh, H., Khatib, T., Rajab, L., Maqableh, M.: A robust digital audio watermarking scheme based on DWT and Schur decomposition. Multimed. Tools Appl. (2019). https://doi.org/10.1007/s11042-019-7214-3

    Article  Google Scholar 

  23. Katzenbeisser, S., Petitcolas, F.A. (eds.): Information hiding techniques for steganography and digital watermarking, 1st edn. Artech House, Inc, Norwood (2000)

    Google Scholar 

  24. Kaur, A., Dutta, M.K., Soni, K., Taneja, N.: Localized and self adaptive audio watermarking algorithm in the wavelet domain. J. Inf. Secur. Appl. 33, 1–15 (2017)

    Google Scholar 

  25. Lei, B., Soon, I.Y.: Perception-based audio watermarking scheme in the compressed bitstream. AEU Int. J. Electron. Commun. 69(1), 188–197 (2015)

    Article  Google Scholar 

  26. Lei, B., Soon, I.Y., Zhou, F., Li, Z., Lei, H.: A robust audio watermarking scheme based on lifting wavelet transform and singular value decomposition. Signal Process. 92(9), 1985–2001 (2012)

    Article  Google Scholar 

  27. Lin, Y.Q., Abdulla, W.H.: Audio watermarking for copyrights protection. Tech. rep., University of Auckland, Dept. of Electrical and Computer Engineering (2006)

  28. Nair, U., Birajdar, G.: A secure audio watermarking employing AES technique. Int. Conf. Inven. Comput. Technol. (ICICT) 3, 1–5 (2016)

    Google Scholar 

  29. Natgunanathan, I., Xiang, Y.: A novel pseudonoise sequence for time-spread echo based audio watermarking. In: GLOBECOM 2009–2009 IEEE Global Telecommunications Conference, Honolulu, HI, pp. 1–6 (2009)

  30. Nickel, J.: Mathematics: Is God Silent? Ross House Books (2001)

  31. Özer, H., Sankur, B., Memon, N.: An SVD-based audio watermarking technique. In: Proceedings of the 7th Workshop on Multimedia and Security, pp. 51–56. ACM (2005)

  32. Rezaei, A., Khalili, M.: A robust blind audio watermarking scheme based on DCT-DWT-SVD. In: Montaser Kouhsari, S. (ed.) Fundamental research in electrical engineering, pp. 101–113. Springer, Singapore (2019)

    Chapter  Google Scholar 

  33. Saadi, S., Merrad, A., Benziane, A.: Novel secured scheme for blind audio/speech norm-space watermarking by Arnold algorithm. Signal Process. 154, 74–86 (2019). https://doi.org/10.1016/j.sigpro.2018.08.011

    Article  Google Scholar 

  34. Sekhar, A.C., Suneetha, C., NagaLakshmi, G., RaviKumar, B.V.: Fast Fourier transforms and quadratic forms for digital audio watermarking. In: 2009 International Conference on Advances in Recent Technologies in Communication and Computing, pp. 449–452 (2009)

  35. Sharma, B., Dave, M.: Robust hybrid image and audio watermarking using cyclic codes and Arnold transform. In: 2019 International Conference on Communication and Electronics Systems (ICCES), pp. 309–315 (2019). https://doi.org/10.1109/ICCES45898.2019.9002117

  36. Srivastava, S., Chandra, M., Sahoo, G.: Robust voiceprint based audio watermarking using wavelet transform. In: Nath, V., Mandal, J.K. (eds.) Nanoelectronics, circuits and communication systems, pp. 457–467. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0776-8-42

    Chapter  Google Scholar 

  37. Standards, N. I. & Technology.: Advanced Encryption Standard. NIST FIPS PUB 197 (2001)

  38. Wang, X., Qi, W., Niu, P.: A new adaptive digital audio watermarking based on support vector regression. IEEE Trans. Audio Speech Lang. Process. 15(8), 2270–2277 (2007)

    Article  Google Scholar 

  39. Wang, X.Y., Ma, T.X., Niu, P.P.: A pseudo-Zernike moment based audio watermarking scheme robust against desynchronization attacks. Comput. Elect. Eng. 37(4), 425–443 (2011)

    Article  Google Scholar 

  40. Wen, X., Ding, X., Li, J., Gao, L., Sun, H.: An audio watermarking algorithm based on fast Fourier transform. In: 2009 International Conference on Information Management, Innovation Management and Industrial Engineering, vol. 1, pp. 363–366 (2009)

  41. Widmer, G., Rocchesso, D., Välimäki, V., Erkut, C., Gouyon, F., Pressnitzer, D., Penttinen, H., Polotti, P., Volpe, G.: Sound and music computing: research trends and some key issues. J. N. Music Res. 36, 169–184 (2007)

    Article  Google Scholar 

  42. Xiang, S.: Audio watermarking robust against D/A and A/D conversions. EURASIP J. Adv. Signal Process. 2011(1), 3 (2011)

    Article  Google Scholar 

  43. Yan, Y., Rong, H., Mintao, X.: A novel audio watermarking algorithm for copyright protection based on DCT domain. In: 2009 Second International Symposium on Electronic Commerce and Security, vol. 1, pp. 184–188 (2009)

  44. Zhang, J., Peng, X., Zhang, S.: Robust audio watermarking algorithm based on moving average and DCT. In: Sun, X., Pan, Z., Bertino, E. (eds.) Artificial intelligence and security, pp. 419–429. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-24271-8-38

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editors and anonymous reviewers for their valuable remarks and comments which significantly contributed to the quality of a paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gajanan K. Birajdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, U., Birajdar, G.K. Compressed domain secure, robust and high-capacity audio watermarking. Iran J Comput Sci 3, 217–232 (2020). https://doi.org/10.1007/s42044-020-00059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42044-020-00059-x

Keywords

Navigation