Skip to main content
Log in

A survey on artificial intelligence trends in spacecraft guidance dynamics and control

  • Review Article
  • Published:
Astrodynamics Aims and scope Submit manuscript

A Correction to this article was published on 11 February 2022

This article has been updated

Abstract

The rapid developments of artificial intelligence in the last decade are influencing aerospace engineering to a great extent and research in this context is proliferating. We share our observations on the recent developments in the area of spacecraft guidance dynamics and control, giving selected examples on success stories that have been motivated by mission designs. Our focus is on evolutionary optimisation, tree searches and machine learning, including deep learning and reinforcement learning as the key technologies and drivers for current and future research in the field. From a high-level perspective, we survey various scenarios for which these approaches have been successfully applied or are under strong scientific investigation. Whenever possible, we highlight the relations and synergies that can be obtained by combining different techniques and projects towards future domains for which newly emerging artificial intelligence techniques are expected to become game changers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Girimonte, D., Izzo, D. Artificial intelligence for space applications. Intelligent Computing Everywhere, 2007, 235–253.

    Chapter  Google Scholar 

  2. Lary, D. J. Artificial intelligence in aerospace. Aerospace Technologies Advancements, 2010.

    Google Scholar 

  3. Zhu, X. X., Tuia, D., Mou, L. L., Xia, G. S., Zhang, L. P., Xu, F., Fraundorfer, F. Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8–36.

    Article  Google Scholar 

  4. Izzo, D., Sprague, C., Tailor, D. Machine learning and evolutionary techniques in interplanetary trajectory design. arXiv preprint arXiv:1802.00180, 2018.

    Google Scholar 

  5. Li, S., Huang, X. X., Yang, B. Review of optimization methodologies in global and China trajectory optimization competitions. Progress in Aerospace Sciences, 2018, 102: 60–75.

    Article  Google Scholar 

  6. Russell, S. J., Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed. Pearson Education, Inc. 2009.

    MATH  Google Scholar 

  7. Campelo, F., Aranha, C. EC Bestiary: a bestiary of evolutionary, swarm and other metaphor-based algorithms. Zenodo, 2018, DOI: 10.5281/zenodo.1293352.

    Google Scholar 

  8. Vinkó, T., Izzo, D. Global optimisation heuristics and test problems for preliminary spacecraft trajectory design. Act Technical Report, Act-TNT-Mad-GOHTPPSTD, European Space Agency, the Advanced Concepts Team, 2008.

    Google Scholar 

  9. Stracquadanio, G., La Ferla, A., De Felice, M., Nicosia, G. Design of robust space trajectories. In: Proceedings of the 31st International Conference on Innovative Techniques and Applications of Artificial Intelligence, 2011, 341–354.

    Google Scholar 

  10. Addis, B., Cassioli, A., Locatelli, M., Schoen, F. A global optimization method for the design of space trajectories. Computational Optimization and Applications, 2011, 48(3): 635–652.

    Article  MathSciNet  MATH  Google Scholar 

  11. Schlueter, M. MIDACO software performance on interplanetary trajectory benchmarks. Advances in Space Research, 2014, 54(4): 744–754.

    Article  Google Scholar 

  12. Islam, S. M., Das, S., Ghosh, S., Roy, S., Suganthan, P. N. An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(2): 482–500.

    Article  Google Scholar 

  13. Cassioli, A., Di Lorenzo, D., Locatelli, M., Schoen, F., Sciandrone, M. Machine learning for global optimization. Computational Optimization and Applications, 2012, 51(1): 279–303.

    Article  MathSciNet  MATH  Google Scholar 

  14. Simões, L. F., Izzo, D., Haasdijk, E., Eiben, A. E. Self-adaptive genotype-phenotype maps: neural networks as a meta-representation. In: Proceedings of the 13th International Conference on Parallel Problem Solving from Nature, 2014, 110–119.

    Google Scholar 

  15. Elsayed, S. M., Sarker, R. A., Essam, D. L. GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems. In: Proceedings of 2011 IEEE Congress of Evolutionary Computation, 2011, 1034–1040.

    Chapter  Google Scholar 

  16. Myatt, D. R., Becerra, V. M., Nasuto, S. J., Bishop, J. M. Advanced global optimisation for mission analysis and design. Ariadna Final Report 03-4101a, ESA Ariadna, 2004.

    Google Scholar 

  17. Izzo, D., Becerra, V. M., Myatt, D. R., Nasuto, S. J., Bishop, J. M. Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories. Journal of Global Optimization, 2007, 38(2): 283–296.

    Article  MathSciNet  MATH  Google Scholar 

  18. Olds, A. D., Kluever, C. A., Cupples, M. L. Interplanetary mission design using differential evolution. Journal of Spacecraft and Rockets, 2007, 44(5): 1060–1070.

    Article  Google Scholar 

  19. Izzo, D., Simões, L. F., Märtens, M., De Croon, G. C. H. E., Heritier, A., Yam, C. H. Search for a grand tour of the Jupiter Galilean moons. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, 2013, 1301–1308.

    Chapter  Google Scholar 

  20. Yao, W., Luo, J. J., Macdonald, M., Wang, M. M., Ma, W. H. Improved differential evolution algorithm and its applications to orbit design. Journal of Guidance, Control, and Dynamics, 2018, 41(4): 935–942.

    Article  Google Scholar 

  21. Vasile, M., Minisci, E., Locatelli, M. An inflationary differential evolution algorithm for space trajectory optimization. IEEE Transactions on Evolutionary Computation, 2011, 15(2): 267–281.

    Article  Google Scholar 

  22. Pontani, M., Conway, B. A. Particle swarm optimization applied to space trajectories. Journal of Guidance, Control, and Dynamics, 2010, 33(5): 1429–1441.

    Article  Google Scholar 

  23. Vasile, M., Minisci, E., Locatelli, M. Analysis of some global optimization algorithms for space trajectory design. Journal of Spacecraft and Rockets, 2010, 47(2): 334–344.

    Article  Google Scholar 

  24. Wolpert, D. H., Macready, W. G. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67–82.

    Article  Google Scholar 

  25. Englander, J. A., Conway, B. A., Williams, T. Automated mission planning via evolutionary algorithms. Journal of Guidance, Control, and Dynamics, 2012, 35(6): 1878–1887.

    Article  Google Scholar 

  26. Sentinella, M. R., Casalino, L. Hybrid evolutionary algorithm for the optimization of interplanetary trajectories. Journal of Spacecraft and Rockets, 2009, 46(2): 365–372.

    Article  MATH  Google Scholar 

  27. Izzo, D., Hennes, D., Riccardi, A. Constraint handling and multi-objective methods for the evolution of interplanetary trajectories. Journal of Guidance, Control, and Dynamics, 2015, 38(4): 792–800.

    Article  Google Scholar 

  28. Radice, G., Olmo, G. Ant colony algorithms for two impluse interplanetary trajectory optimization. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1440–1444.

    Article  Google Scholar 

  29. Schlueter, M., Erb, S. O., Gerdts, M., Kemble, S., Rückmann, J. J. MIDACO on MINLP space applications. Advances in Space Research, 2013, 51(7): 1116–1131.

    Article  Google Scholar 

  30. Coello Coello, C. A. Evolutionary multi-objective optimization: a historical view of the field. IEEE Computational Intelligence Magazine, 2006, 1(1): 28–36.

    Article  Google Scholar 

  31. Deb, K., Padhye, N., Neema, G. Interplanetary trajectory optimization with swing-bys using evolutionary multi-objective optimization. In: Proceedings of the 2nd International Symposium on Intelligence Computation and Applications, 2007, 26–35.

    Google Scholar 

  32. Schütze, O., Vasile, M., Junge, O., Dellnitz, M., Izzo, D. Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach. Engineering Optimization, 2009, 41(2): 155–181.

    Article  MathSciNet  Google Scholar 

  33. Märtens, M., Izzo, D. The asynchronous island model and NSGA-II: study of a new migration operator and its performance. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, 2013, 1173–1180.

    Chapter  Google Scholar 

  34. Zotes, F. A., Penãs, M. S. Particle swarm optimisation of interplanetary trajectories from Earth to Jupiter and Saturn. Engineering Applications of Artificial Intelligence, 2012, 25(1): 189–199.

    Article  Google Scholar 

  35. Lee, S., Von Allmen, P., Fink, W. O., Petropoulos, A. E., Terrile, R. J. Multi-objective evolutionary algorithms for low-thrust orbit transfer optimization. In: Proceedings of Genetic and Evolutionary Computation Conference, 2005.

    Google Scholar 

  36. Montanõ, A. A., Coello Coello, A. C., Schütze, O. Multiobjective optimization for space mission design problems. Computational Intelligence in Aerospace Sciences, 2014, 1–46.

    Google Scholar 

  37. Vasile, M., Ricciardi, L. A direct memetic approach to the solution of multi-objective optimal control problems. In: Proceedings of 2016 IEEE Symposium Series on Computational Intelligence, 2016, 1–8.

    Google Scholar 

  38. Chai, R. Q., Savvaris, A., Tsourdos, A., Chai, S. C., Xia, Y. Q. Unified multiobjective optimization scheme for aeroassisted vehicle trajectory planning. Journal of Guidance, Control, and Dynamics, 2018, 41(7): 1521–1530.

    Article  Google Scholar 

  39. Izzo, D., Märtens, M. The Kessler run: on the design of the GTOC9 challenge. Acta Futura, 2018, 11: 11–24.

    Google Scholar 

  40. Petropoulos, A., Grebow, D., Jones, D., Lantoine, G., Nicholas, A., Roa, J., Senent, J., Stuart, J., Arora, N., Pavlak, T. et al. GTOC9: results from the jet propulsion laboratory (team JPL). Acta Futura, 2018, 11: 25–35.

    Google Scholar 

  41. Luo, Y. Z., Zhu, Y. H., Zhu, H., Yang, Z., Sun, Z. J., Zhang, J. GTOC9: results from the national university of defense technology (team NUDT). Acta Futura, 2018, 11: 37–47.

    Google Scholar 

  42. Shen, H. X., Zhang, T. J., Huang, A. Y., Li, Z. GTOC 9: results from the Xi’an satellite control center (team XSCC). Acta Futura, 2018, 11: 49–55.

    Google Scholar 

  43. Ceriotti, M., Vasile, M. MGA trajectory planning with an ACO-inspired algorithm. Acta Astronautica, 2010, 67(9–10): 1202–1217.

    Article  Google Scholar 

  44. Englander, J. A., Conway, B. A. Automated solution of the low-thrust interplanetary trajectory problem. Journal of Guidance, Control, and Dynamics, 2016, 40(1): 15–27.

    Article  Google Scholar 

  45. Yam, C. H., Lorenzo, D. D., Izzo, D. Low-thrust trajectory design as a constrained global optimization problem. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2011, 225(11): 1243–1251.

    Article  Google Scholar 

  46. Izzo, D., Simões, L. F., Yam, C. H., Biscani, F., Di Lorenzo, D., Addis, B., Cassioli, A. GTOC5: results from the European Space Agency and University of Florence. Acta Futura, 2014, 8: 45–55.

    Google Scholar 

  47. Abdelkhalik, O., Darani, S. Hidden genes genetic algorithms for systems architecture optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, 2016, 629–636.

    Chapter  Google Scholar 

  48. Izzo, D., Getzner, I., Hennes, D., Simões, L. F. Evolving solutions to TSP variants for active space debris removal. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 2015, 1207–1214.

    Chapter  Google Scholar 

  49. Wilt, C. M, Thayer, J. T., Ruml, W. A comparison of greedy search algorithms. In: Proceedings of the 3rd Annual Symposium on Combinatorial Search, 2010.

    Google Scholar 

  50. Hennes, D., Izzo, D. Interplanetary trajectory planning with Monte Carlo Tree search. In: Proceedings of the 24th International Conference on Artificial Intelligence, 2015, 769–775.

    Google Scholar 

  51. Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S. A survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in games, 2012, 4(1): 1–43.

    Article  Google Scholar 

  52. Simões, L. F., Izzo, D., Haasdijk, E., Eiben, A. E. Multi-rendezvous spacecraft trajectory optimization with beam P-ACO. In: Proceedings of the 17th European Conference on Evolutionary Computation in Combinatorial Optimization, 2017, 141–156.

    Chapter  MATH  Google Scholar 

  53. Basu, K., Melton, R. G., Aguasvivas-Manzano, S. Time-optimal reorientation using neural network and particle swarm formulation. In: Proceedings of 2017 AAS/AIAA Astrodynamics Specialist Conference, 2017.

    Google Scholar 

  54. Ampatzis, C., Izzo, D. Machine learning techniques for approximation of objective functions in trajectory optimisation. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) 2009, Workshop on Artificial Intelligence in Space, 2009.

    Google Scholar 

  55. Hennes, D., Izzo, D., Landau, D. Fast approximators for optimal low-thrust hops between main belt asteroids. In: Proceedings of 2016 IEEE Symposium Series on Computational Intelligence, 2016, 1–7.

    Google Scholar 

  56. Mereta, A., Izzo, D., Wittig, A. Machine learning of optimal low-thrust transfers between near-earth objects. In: Proceedings of the 12th International Conference on Hybrid Artificial Intelligence Systems, 2017, 543–553.

    Google Scholar 

  57. Izzo, D., Hennes, D., Simões, L. F., Märtens, M. Designing complex interplanetary trajectories for the global trajectory optimization competitions. Space Engineering, 2016, 151–176.

    Chapter  Google Scholar 

  58. Izzo, D. Global optimization and space pruning for spacecraft trajectory design. Spacecraft Trajectory Optimization, 2010, 178–201.

    Chapter  Google Scholar 

  59. Dachwald, B. Low-thrust trajectory optimization and interplanetary mission analysis using evolutionary neurocontrol. Ph.D. Dissertation, DLR-Universität der Bundeswehr München, München, 2004.

    Google Scholar 

  60. Dachwald, B., Ohndorf, A. Global optimization of continuous-thrust trajectories using evolutionary neurocontrol. Modeling and Optimization in Space Engineering, 2019.

    Google Scholar 

  61. Schmidhuber, J. Deep learning in neural networks: an overview. Neural Networks, 2015, 61: 85–117.

    Article  Google Scholar 

  62. Sánchez-Sánchez, C., Izzo, D., Hennes, D. Learning the optimal state-feedback using deep networks. In: Proceedings of 2016 IEEE Symposium Series on Computational Intelligence, 2016, 1–8.

    Google Scholar 

  63. Sánchez-Sánchez, C., Izzo, D. Real-time optimal control via Deep Neural Networks: study on landing problems. arXiv preprint arXiv:1610.08668, 2016.

    Google Scholar 

  64. Izzo, D., Tailor, D., Vasileiou, T. On the stability analysis of deep neural network representations of an optimal state-feedback. arXiv preprint arXiv:1812.02532, 2018.

    Google Scholar 

  65. Furfaro, R., Bloise, I., Orlandelli, M., Di Lizia, P., Topputo, F., Linares, R. A recurrent deep architecture for quasi-optimal feedback guidance in planetary landing. In: Proceedings of IAA SciTech Forum on Space Flight Mechanics and Space Structures and Materials, 2018, 1–24.

    Google Scholar 

  66. Franceschini, N. Small brains, smart machines: from fly vision to robot vision and back again. Proceedings of the IEEE, 2014, 102(5): 751–781.

    Article  Google Scholar 

  67. Krizhevsky, A., Sutskever, I., Hinton, G. E. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012, 1097–1105.

    Google Scholar 

  68. Furfaro, R., Bloise, I., Orlandelli, M., Di Lizia, P., Topputo, F., Linares, R. Deep learning for autonomous lunar landing. In: Proceedings of 2018 AAS/AIAA Astrodynamics Specialist Conference, 2018.

    Google Scholar 

  69. Shang, H. B., Wu, X. Y., Qiao, D., Huang, X. Y. Parameter estimation for optimal asteroid transfer trajectories using supervised machine learning. Aerospace Science and Technology, 2018, 79: 570–579.

    Article  Google Scholar 

  70. Shah, V., Beeson, R. Rapid approximation of invariant manifolds using machine learning methods. In: Proceedings of 2017 AAS/AIAA Astrodynamics Specialist Conference, 2017.

    Google Scholar 

  71. Hammer, B., Gersmann, K. A note on the universal approximation capability of support vector machines. Neural Processing Letters, 2003, 17(1): 43–53.

    Article  Google Scholar 

  72. Li, W. P., Huang, H., Peng, F. J. Trajectory classification in circular restricted three-body problem using support vector machine. Advances in Space Research, 2015, 56(2): 273–280.

    Article  Google Scholar 

  73. Peng, H., Bai, X. Exploring capability of support vector machine for improving satellite orbit prediction accuracy. Journal of Aerospace Information Systems, 2018, 15(6): 366–381.

    Article  Google Scholar 

  74. Peng, H., Bai, X. L. Artificial neural network-based machine learning approach to improve orbit prediction accuracy. Journal of Spacecraft and Rockets, 2018, 55(5): 1248–1260.

    Article  Google Scholar 

  75. Gaudet, B., Furfaro, R. Robust spacecraft hovering near small bodies in environments with unknown dynamics using reinforcement learning. In: Proceedings of AIAA/AAS Astrodynamics Specialist Conference, 2012, 5072.

    Google Scholar 

  76. Willis, S., Izzo, D., Hennes, D. Reinforcement learning for spacecraft maneuvering near small bodies. In: Proceedings of AAS/AIAA Space Flight Mechanics Meeting, 2016, 16–277.

    Google Scholar 

  77. Pellegrini, E., Russell, R. P. A multiple-shooting differential dynamic programming algorithm. In: Proceedings of AAS/AIAA Space Flight Mechanics Meeting, 2017.

    Google Scholar 

  78. Ozaki, N., Campagnola, S., Yam, C. H., Funase, R. Differential dynamic programming approach for robust-optimal low-thrust trajectory design considering uncertainty. In: Proceedings of the 25th International Symposium on Space Flight Dynamics, 2015.

    Google Scholar 

  79. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M. et al. Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529(7587): 484–489.

    Article  Google Scholar 

  80. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A. et al. Mastering the game of Go without human knowledge. Nature, 2017, 550(7676): 354–359.

    Article  Google Scholar 

  81. Chu, X., Alfriend, K. T., Zhang, J., Zhang, Y. Q-learning algorithm for path-planning to maneuver through a satellite cluster. In: Proceedings of 2018 AAS/AIAA Astrodynamics Specialist Conference, 2018.

    Google Scholar 

  82. Gaudet, B., Linares, R., Furfaro, R. Deep reinforcement learning for six degree-of-freedom planetary powered descent and landing. arXiv preprint arXiv:1810.08719, 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Izzo.

Additional information

Dario Izzo graduated as a doctor of aeronautical engineering from the University Sapienza of Rome (Italy). He then took his second master in Satellite Platforms at the University of Cranfield in the United Kingdom and completed his Ph.D. in mathematical modelling at the University Sapienza of Rome where he lectured classical mechanics and space flight mechanics. Dario Izzo later joined the European Space Agency and became the scientific coordinator of its Advanced Concepts Team. He devised and managed the Global Trajectory Optimization Competitions events, the ESAs Summer of Code in Space and the Kelvins innovation and competition platform for space problems. He published more than 170 papers in international journals and conferences making key contributions to the understanding of flight mechanics and spacecraft control and pioneering techniques based on evolutionary and machine learning approaches. Dario Izzo received the Humies Gold Medal and led the team winning the 8th edition of the Global Trajectory Optimization Competition.

Marcus Martens graduated from the University of Paderborn (Germany) with a master degree in computer science. He joined the European Space Agency as a Young Graduate Trainee in artificial intelligence where he worked on multi-objective optimization of spacecraft trajectories. He was part of the winning team of the 8th edition of the Global Trajectory Optimization Competition (GTOC) and received a HUMIES gold medal for developing algorithms achieving human competitive results in trajectory design. The Delft University of Technology awarded him a Ph.D. for his thesis on information propagation in complex networks. After his time at the network architectures and services group in Delft (Netherlands), Marcus rejoined the European Space Agency, where works as a research follow in the Advanced Concepts Team. While his main focus is on applied artificial intelligence and evolutionary optimization, Marcus has worked together with experts from different fields and authored works related to neuroscience, cyber-security and gaming.

Binfeng Pan received his Ph.D. degree in aerospace engineering from Northwestern Polytechnical University, China, in 2010. He is an associate professor at School of Astronautics, Northwestern Polytechnical University. His research interests are in the area of trajecotry optimizations, computational guidance and control, and applications of AI in aerospace engineering. He is the principal investigator (PI) or co-PI of several research grants on the aforementioned topics from the National Natural Science Foundation of China (NSFC), and the Chinese industry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izzo, D., Märtens, M. & Pan, B. A survey on artificial intelligence trends in spacecraft guidance dynamics and control. Astrodyn 3, 287–299 (2019). https://doi.org/10.1007/s42064-018-0053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42064-018-0053-6

Keywords

Navigation